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ABSTRACT

It is established that among all Morley triangles of △ABC the only equilaterals are the

ones determined by the intersections of the proximal to each side of △ABC trisectors

of either interior, or exterior, or one interior and two exterior angles. It is showed

that these are in fact equilaterals, with uniform proofs. It is then observed that the

intersections of the interior trisectors with the sides of the interior Morley equilateral

form three equilaterals. These along with Pasch’s axiom are utilized in showing that

Morley’s theorem does not hold if the trisectors of one exterior and two interior angles

are used in its statement.

RESUMEN

Se establece que entre todos los triángulos de Morley de △ABC, los únicos equiláteros

son theones determinados por las intersecciones del proximal a cada lado de los trisec-

tores △ABC de ángulos interior, o exterior, o uno interior y dos exteriores. Se muestra

que estos están en triángulos equiláteros de facto con demostraciones uniformes. Luego,

se observa que las intersecciones de trisectores interiores con los lados de un equilátero

Morley interior forman tres triángulos equiláteros. Junto con el axioma de Pasch, se

utilizan para probar que el Teorema de Morley no se satisface si se usan los trisectores

de un ángulo exterior y dos interiores.
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1 Introduction

The systematic study of the angle trisectors in a triangle starts after 1899, when Frank Morley, a

Cambridge mathematician, who had just been recently appointed professor at Haverford College,

U.S.A. while investigating certain geometrical properties using abstract algebraic methods, made

the following astonishing observation, known since then as Morley’s theorem.

In any triangle the trisectors of its angles, proximal to the three sides respectively, meet at the

vertices of an equilateral.

Fig.1

A Morley triangle of △ABC is formed by the three

points of intersection of pairs of angle trisectors con-

nected by each triangle side. Obviously for a particular

side there are four possibilities for pairing trisectors since

there are four of them that the side connects. Thus Mor-

ley’s theorem claims that a Morley triangle of △ABC is

equilateral, if it is formed by the intersections of trisectors

proximal to the three sides of △ABC respectively.

It should be noted that Morley’s theorem, as it is

stated, is subject to interpretation as the term angle

could mean either interior or exterior angle, or even a

combination of both for the different instances of the term

in the statement.

According to the angle meaning, Morley’s theorem

gives the following Morley equilaterals of △ABC. The

intersections of the proximal trisectors of the interior angles form the interior Morley equilateral

of △ABC. Also the intersections of the proximal trisectors of the exterior angles form the central

Morley equilateral of △ABC. In addition the intersections of the proximal trisectors of one interior

and two exterior angles form an exterior Morley equilateral of △ABC, and thus there are three

exterior Morley equilaterals of △ABC. Fig.1 depicts the above Morley equilaterals. Proofs that

the above Morley triangles are in fact equilaterals are given in Part 3 of this work.

Fig.2

But so an obvious question, that several authors have raised,

begs for an answer. In a △ABC are there other Morley equilaterals

besides the interior, the central and the three exterior Morley equi-

laterals?

Apparently the requirement of Morley’s theorem is satisfied by

three more Morley triangles formed by combinations of proximal tri-

sectors of an exterior and two interior angles. One of them is por-

trayed in Fig.2. Some experimentation using computer generated

graphs for these triangles has tempted the belief that Morley’s theo-
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rem holds for them as well [14]. But in Part 5, it will be proved that these are not equilaterals.

After the examination of all Morley triangles it will be shown that the equilateral ones are

exactly the interior, the central and the three exterior Morley equilaterals.

This enables the establishment of an analogy between the structures of the angle bisectors

and the angle trisectors in a triangle. Namely, the structure of trisectors resembles the structure

of bisectors with the inner and the exterior Morley equilaterals of △ABC corresponding to the

incenter and the excenters of △ABC respectively, while the central Morley equilateral corresponds

to the triangle with vertices the excenters of △ABC.

Morley’s theorem is considered among the most surprising discoveries in mathematics as it

went curiously unnoticed across the ages. Ancient Greeks studied the triangle geometry in depth

and they could find it. But curiously they did not and it was overlooked during the following two

thousand years.

Angle trisectors exist regardless of how they can be constructed. If the structure of angle

trisectors maintains the regularity which characterizes the triangle geometry then theorems must

exist for expressing it.

The first observation about this regularity may have forgotten. Morley didn’t publish it until

25 years later by providing a sketchy proof, when the theorem had become already famous. But

Morley, excited by his discovery, travelled back to England to mention it to his expert friends. In

turn mathematical gossip spread it over the world and several journals proposed it for a proof.

Obviously, the simplicity of the theorem statement creates the expectation of an equally simple

proof. This simplicity challenges the mathematical talent.

The vast majority of publications on Morley’s theorem has treated only the trisectors of the

interior angles and gave proofs for the interior Morley equilateral. In the preface of the first

publication on the subject, by Taylor and Marr [12], it is recognized that the Morley’s work

on vector analysis, from which the above theorem follows, holds for both interior and exterior

trisectors. The paper’s treatment of the theorem with only the interior trisectors is explained

as ”Morley’s work never published and it was only the particular case of internal trisectors that

reached the authors”. The very respectable given effort has produced proofs of many kinds,

exploiting a variety of features. Trigonometric, analytic and algebraic proofs supplement the

proofs of a purely geometric kind. Site Cut the Knot [13] presents 27 different proofs of Morley’s

theorem from many more available. Notably, Roger Penrose [9] used a tiling technique, Edsger

Dijkstra applied the rule of sines three times and then the monotonicity of the function y = sin(x)

in the first quadrant [3], Alain Connes offered a proof in Algebraic Geometry [1], John Conway

showed it in plane geometry like a jigsaw puzzle solution [2], while Richard Guy proved that it is a

consequence of his Lighthouse theorem [5]. However, a geometric, concise and logically transparent

proof is still desirable.
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Richard Guy notes: “There are a few hints that there is more than one Morley triangle, but

Hosberger [p. 98] asks the reader to show that Morley’s theorem holds also in the case of the

trisection of the exterior angles of a triangle ” [5]. Rose [10] and Spickerman [11] have proposed

proofs, using different methods, for the central Morley equilateral. In Parts 3 and 4 proofs for the

exterior Morley equilaterals will be offered.

The most popular technique for proving Morley’s theorem is encountered as indirect, backwards

or reverse construction method and fits in the following scheme.

Given a triangle assume that its angles are trisected and equal to 3α, 3β and 3γ, respectively,

where α+ β + γ = 60o. In order to show that one of its Morley triangles is equilateral, start with

an equilateral △A ′B ′C ′ and construct a △ABC with angles 3α, 3β and 3γ, so that △A ′B ′C ′ is

the appropriate (interior, central or exterior) Morley triangle of △ABC. Thus △ABC would be

similar to the given triangle and so would be their corresponding Morley triangles.

Proofs of the above method most often construct △ABC by erecting △B ′AC ′, △C ′BA ′ and

△A ′CB ′ with proper choice of the angles formed on the sides of △A ′B ′C ′. However repeated

requests have been recorded in geometry discussion forums for an explanation of the particular,

seemingly arbitrary, choice of angles made at the beginning of these proofs. Of course the rea-

soning of the choice is not necessary for their validity. But the readers unfulfilling understanding

may have encouraged the mathematical folklore the use of words “mystery”, “magic” or “mira-

cle” for referring to Morley’s theorem. This is not justifiable as there is nothing mathematically

extraordinary related to the theorem.

The presented proofs for showing that the interior, the central and the exterior Morley tri-

angles are equilaterals use the classical Analysis and Synthesis method. They exploit the inherent

symmetries of the problem and characterized by their uniform structure, logical transparency,

remarkable shortness and the distinct aesthetics of the Euclidean geometry. The Synthesis part

follows the previous method scheme. But it is empowered by two simple observations, supplying

necessary and sufficient conditions for a point to be the incenter or one of the excenters of a given

triangle. Even though they are almost trivial have a subtlety that enables to confront the messy

complexity of the triangle trisectors by enforcing clean simplicity and create proofs by harnessing

the power of the triangle angle bisector theorem. In addition these proofs reveal fundamental

properties of the Morley equilaterals stated as Corollaries. Besides their extensive use for showing

Morley triangles as not equilaterals, their fertility is demonstrated by proving the following: (1)

The two sides extensions of the inner Morley equilateral meet the corresponding inner trisectors at

two points which with the two sides common vertex form an equilateral. (2) The sides of Morley

equilaterals are collinear or parallel. (3) In any triangle the exterior trisectors of its angles, proxi-

mal to the three sides respectively, meet at the vertices of an equilateral, if and only if, the interior

trisectors of an angle and the exterior trisectors of the other two angles, proximal the three sides

respectively, meet at the vertices of an equilateral.
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In short, this work advocates that for Morley’s observation a natural theoretical setting is

Euclidean geometry.

2 Notation and Counting of all Morley triangles

In a Morley triangle of △ABC each vertex is the intersection of two trisectors, each of which is

either proximal or distal to a side of △ABC. Hence a vertex is called proximal, distal or mix with

respect to the triangle side it belongs in the case the trisectors are both proximal, both distal, or

one proximal and one distal to the side, respectively.

Fig.3

So we may denote a proximal, dis-

tal or mix vertex with respect to a side

by using as superscripts p, d or * to

the letter of the corresponding angle

of △ABC opposite to the side.

Thus Ap, Ad and A∗ denote the

proximal, distal and mix vertex of a

Morley triangle with respect to BC re-

spectively. In Fig.3 the notations for

all intersections of the interior trisec-

tors of △ABC are showed. Notice

that a Morley triangle may have either

proximal vertices, or distal vertices, or

exactly two mix vertices.

Specifically, △ApBpCp denotes

the inner Morley triangle of proximal

vertices, which is the inner Morley tri-

angle determined by the intersections

of proximal to each side trisectors. Also there is just one Morley triangle with distal vertices which

is denoted by △AdBdCd. In addition there are three Morley triangles with one vertex proximal

and two vertices mix. They are denoted by △ApB∗C∗, △BpC∗A∗ and △CpA∗B∗

Moreover there are three more Morley triangles with one vertex distal and two vertices mix.

They are denoted by △AdB∗C∗, △BdC∗A∗ and △CdA∗B∗. Notice that a proximal or a distal

vertex is uniquely determined but a mix vertex is not as there are two such denoted by the same

letter. However in a Morley triangle with a pair of mix vertices, given its proximal or distal vertex,

the mix vertices are uniquely specified due to the choice restrictions in pairing trisectors for the

second and then for the third vertex. Hence there are 8 interior Morley triangles formed by the

trisectors of the interior angles of △ABC.

Similarly the trisectors of the exterior angles of △ABC form Morley triangles. These are
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denoted by △Ap
AB

p
BC

p
C , for the Morley triangle of proximal vertices, △Ad

AB
d
BC

d
C, for the Morley

triangle of distal vertices, △Ap
AB

∗

BC
∗

C, △Bp
BC

∗

CA
∗

A and △Cp
CA

∗

AB
∗

B, for the Morley triangles with

one proximal and two mix vertices, △Ad
AB

∗

BC
∗

C, △Bd
BC

∗

CA
∗

A and △Cd
CA

∗

AB
∗

B for the Morley trian-

gles of one distal and two mix vertices. In this notation we use subscripts in order to distinguish

a vertex determined by the interior trisectors from the vertex of the same type determined by the

exterior trisectors. Hence, in general, there are 8 Morley triangles formed by the trisectors of the

exterior angles of △ABC. Their vertices are in the exterior of △ABC and due to their rather

central location with respect to △ABC are called central Morley triangles.

There are two more possibilities for the formation of a Morley triangle. One is by combining

the trisectors of an interior angle with the trisectors of the other two exterior angles of △ABC.

Another is by combining the trisectors of two interior angles with the trisectors of the third exterior

angle of △ABC.

The Morley triangles formed by combining the trisectors of the interior ∠A with the trisectors

of the exterior ∠B and ∠C are denoted by △Ap
Ab

p
Ac

p
A, for the Morley triangle of proximal vertices,

△Ad
Ab

d
Ac

d
A, for the Morley triangle of distal vertices, △Cp

Ca
∗

Cb
∗

C, △ap
Cb

∗

CC
∗

C and △bp
CC

∗

Ca
∗

C,

for the Morley triangles with one proximal and two mix vertices, and △Ad
Ab

∗

Ac
∗

A, △bd
Ac

∗

AA
∗

A,

△cdAA
∗

Ab
∗

A for the Morley triangles with one distal and two mix vertices. The use of a small letter

is for denoting the intersection of an interior and an exterior trisector of △ABC. The vertices of

these 8 triangles formed by the trisectors of the interior ∠A with the trisectors of the exterior ∠B

and ∠C are in the exterior of △ABC and thus they are called exterior Morley triangles relative to

∠A.

Similarly are denoted the Morley triangles relative to ∠B, which are formed by combining the

trisectors of the interior angle ∠B with the trisectors of the exterior ∠C and ∠A, and also the

ones relative to ∠C formed by combining the trisectors of the interior ∠C with the trisectors of

the exterior ∠A and ∠B. Hence, in general, there are 24 exterior Morley triangles determined by

the intersections of trisectors of an interior and two exterior angles of △ABC.

The Morley triangles formed by combining the trisectors of the interior ∠B and ∠C with

the trisectors of the exterior ∠A are denoted by △Apbp
Ac

p
A, for the Morley triangle of proximal

vertices, △Adbd
Ac

d
A, for the Morley triangle of distal vertices, △Apb∗

Ac
∗

A, △bp
Ac

∗

AA
∗, △cpAA

∗b∗

A,

for the Morley triangles of one proximal vertex and two mix, △Adb∗

Ac
∗

A, △bd
Ac

∗

AA
∗, △cdAA

∗b∗

A,

for the Morley triangles of one distal vertex and two mix. It should be remarked that in this

notation the same symbol for the intersection of an interior with an exterior trisector may refer to

two different points, an ambiguity which is clarified in a Morley triangle since one of its vertices

specifies its type and so the vertex that the symbolism refers. Hence, there are 8 Morley triangles

relative to the exterior ∠A, which obviously have one vertex inside and two outside △ABC. In

general, there are 24 Morley triangles of △ABC determined by the intersections of trisectors of

one exterior and two interior angles of △ABC.

Conclude that in total there are, in general, 64 Morley triangles of △ABC.
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3 Uniform Proofs for all Morley Equilaterals

Fig.4

In this part we will prove that five Morley triangles are

equilaterals. The proofs are uniform and utilize two basic

observations for determining the incenter or an excenter

of △ABC using only one of its bisectors.

Observe that the incenter I is lying on a unique arc

passing through two vertices and I. In Fig.4 the unique

arc passing through A,B and I is depicted. Obviously

∠AIB=1800 − 1
2∠ABC = 1

2∠BAC = 90o + 1
2∠ACB.

Thus I may be characterized as the intersection in the

interior of △ABC of a bisector with the arc of size 90o +
1
2∠ACB passing through A and B. Clearly an analogous

result holds for the other two pairs of vertices of △ABC.

We refer to this as the Incenter Lemma.

If IC is the excenter relative to ∠C then

∠AICB = 90o − 1
2∠ACB, ∠BICC = 1

2∠BAC and ∠CICA = 1
2∠CBA.

Thus IC is determined by the intersection in the exterior of △ABC of a bisector, either of the

interior ∠C or the exterior ∠A or ∠B with the arc of size 90o − 1
2∠ACB passing through A and B,

or with the arc passing through B and C of size 1
2∠BAC, or with the arc of size 1

2∠CBA passing

through C and A. Evidently analogous results hold for the other two excenters IA and IB. We

refer to this as the Excenter Lemma.

Theorem 1. In any triangle the interior trisectors of its angles, proximal to the sides, meet at

the vertices of an equilateral.

Proof.
Analysis: Let △ABC be a triangle with ∠A =
3α,∠B = 3β and ∠C = 3γ, where α+β+γ = 60o.
Suppose that △ApBpCp is equilateral, where Ap,
Bp and Cp are the intersections of the trisectors
proximal to the sides BC, CA and AB respec-
tively. The aim of this step is to calculate the
angles formed by the sides of △ApBpCp and the
trisectors of △ABC. See Fig.5.
Let Cd be the intersection ofABp and BAp. Since
ACp and BCp are angle bisectors in △ACdB , Cp

is the incenter.

Fig.5
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Let P and Q be the orthogonal projections of Cp on ACd and BCd respectively. Thus CpP =

CpQ and CdP = CdQ. But so △CpPBp = △CpQBp as right triangles having two pairs of

sides equal. Hence BpP = ApQ. Then CdAp = CdBp and so △ApCdBpis isosceles. Now from

△ACdB we have ∠ACdB = 180o − (2α + 2β) = 60o + 2γ.Therefore ∠CdBpAp = ∠CdApBp =
1
2 [180

o − (60o + 2γ)] = 60o − γ. Consequently

∠CpBpA = ∠CpApB = 180o − 60o − (60o − γ) = 60o + γ = γ+.

Let Ad be the intersection of BCp and CBp. Also let Bd be the intersection of CAp and ACp.

Then from △BAdC and △CBdA find similarly

∠ApCpB = ∠ApBpC = α+ and ∠BpApC = ∠BpCpA = β+.

Fig.6

Synthesis: Suppose that a triangle is

given and assume that its angles are trisected

and equal to 3α, 3β and 3γ, respectively,

where α+β+γ = 60o. Then around an equi-

lateral △ApBpCp will construct △ABC with

angles 3α, 3β and 3γ so that Ap, Bp and Cp

will be the intersections of the proximal to the

sides interior trisectors.

On the side BpCp erect △BpACp with

adjacent angles γ+ = γ + 60o and β+ = β +

60o.

Similarly, erect △CpBAp and △ApCBp on

the sides CpAp and ApBp respectively with

corresponding angles as shown in Fig.6, which

were found in the Analysis step.

Let Cd be the intersection ABp and BAp.

Notice that △ApCdBp is isosceles as two of

its angles are 180o − 60o − γ+ = 60o − γ.

Thus

CdAp = CdBp (1) and ∠ApCdBp = 180o − 2(60o − γ) = 60o + 2γ (2)

Since △ApBpCp has been taken equilateral, CpAp = CpBp. Combine this with (1) and infer

that Cp is on the ApBp bisector and so on the ∠ACdB bisector. Moreover from (2) ∠ACpB =

3600−(α++60o+β+) = 180o−(α+β) = 90o+ 1
2 (60

o+2γ) = 90o+ 1
2∠A

pCdBp = 90o+ 1
2∠ACdB.

Hence, by the Incenter Lemma, Cp is the incenter of △ACdB.

Similarly it is shown that Ap and Bp are the incenters of △BAdC and △CBdA, respectively,

where Ad is the intersection of BCp and CBp, while Bd is the intersection of CAp and ACp. Thus

∠CpAB = ∠CpABp = ∠CABp and so ABp, ACp are trisectors of ∠A.
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Also the choice of angles in the construction of △BpACp implies ∠CpABp = α. Hence

∠A = 3α. Likewise infer that BCp, BAp are trisectors of ∠B with ∠B = 3β and CAp, CBp are

trisectors of ∠C with ∠C = 3γ.

Corollary 1. a) The angles between the trisectors of △ABC and the sides of its inner

Morley equilateral △ApBpCp are: ∠ApBpC = ∠ApCpB = α+, ∠BpCpA = ∠BpApC = β+,

∠CpApB = ∠CpBpA = γ+.

b) The heights of the equilateral △ApBpCp are: ApAd, BpBd and CpCd .

Theorem 2. In any triangle the exterior trisectors of its angles, proximal to the sides, meet at

the vertices of an equilateral.

Proof.

Analysis: Let △ABC be a triangle with ∠A = 3α,∠B = 3β and ∠C = 3γ, where α+β+ γ =

60o. Let Ap
A, B

p
B and Cp

C be the intersections of the exterior trisectors proximal to the sides BC,

CA and AB respectively. Suppose △Ap
AB

p
BC

p
C is equilateral. The aim of this step is to calculate

the angles formed by the sides of △Ap
AB

p
BC

p
C and the exterior trisectors of △ABC.

Fig.7a (γ < 30o) Fig.7b (γ > 30o) Fig.7c (γ = 30o)

Let P and Q be the orthogonal projections of Cp
C on ABp

B and BAp
A respectively.

Notice that ABp
B and BAp

A may intersect each other or be parallel since

∠PAB+ ∠QBA = 2(β + γ) + 2(γ+ α) = 120o + 2γ.

If ABp
B and BAp

A intersect each other let Cd
C be their intersection. Next consider all possible

cases.

◃ If γ < 30o then

Cd
C and Cp

C are at the same side of AB. In △ACd
CB, ACp

C and BCp
C are interior angle bisectors

and so Cp
C is the incenter, while it is calculated ∠ACd

CB = 60o − 2γ. Fig.7a.
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◃ If γ > 30o then

Cd
C and Cp

C are on different sides of AB. In △ACd
CB, ACp

C and BCp
C are exterior angle bisectors

and so Cp
C is the excenter relative to ∠Cd

C, while it is calculated ∠ACd
CB = 2γ− 60o. Fig.7b.

Hence in both the above cases (γ ̸= 30o) it holds Cp
CP = Cp

CQ. Thus △Cp
CPB

p
B = △Cp

CQAp
A,

as right triangles having two pairs of sides equal. Consequently ∠Cp
CB

p
BP = ∠Cp

CA
p
AQ and so

△Ap
AC

d
CB

p
B is isosceles. Thus:

⋄ If γ > 30o then

∠Cp
CB

p
BP = ∠Cp

CA
p
AQ = 1

2 [180
o − ∠Ap

AC
d
CB

p
B]− 60o = 1

2 [180
o − (60o − 2γ)]− 60o = γ.

⋄ If γ < 30o then

∠Cp
CB

p
BP = ∠Cp

CA
p
AQ = 180o−60o− 1

2 [180
o−∠Ap

AC
d
CB

p
B] = 180o−60o 1

2 [180
o− (2γ−60o)] = γ.

Deduce that for γ ̸= 30o it holds ∠Cp
CB

p
BA = ∠Cp

CA
p
AB = γ.

◃ If γ = 30o then α+ β = 30o and ABp
B//BA

p
A. Fig.7c.

Notice ∠ACp
CB = 180o − (30o + β)− (30o + α) and so ∠ACp

CB = 90o.

Let M be the midpoint of AB. Since △ACp
CB is right triangle, Cp

CM = MA = MB. Then Cp
CM =

MA gives ∠Cp
CAM = ∠MCp

CA. But ACp
C is the ∠PAB bisector and thus ∠Cp

CAM = ∠Cp
CAP.

Hence ∠MCp
CA = ∠Cp

CAP and so Bp
BA//Cp

CM//Ap
AB.

Since MA = MB, Cp
CM bisects Ap

AB
p
B and so Cp

CM ⊥ Ap
AB

p
B, as △Ap

AB
p
BC

p
C is equilateral.

Then ABp
B, BA

p
A ⊥ Ap

AB
p
B. Therefore ∠ABp

BA
p
A = 90o and given that ∠Cp

CB
p
BA

p
A = 60o infer

∠Cp
CB

p
BA = 30o. Similarly infer ∠Cp

CA
p
AB = 30o.

Deduce that for γ = 30o it holds ∠Cp
CB

p
BA = ∠Cp

CA
p
AB = γ.

◦ Conclude that for any value of γ it holds ∠Cp
CB

p
BA = ∠Cp

CA
p
AB = γ.

Then from △Cp
CABp

B and △Cp
CBA

p
A deduce ∠Bp

BC
p
CA = β and ∠Ap

AC
p
CB = α respectively.

Also from △BAp
AC and △CBp

BA infer ∠Bp
BA

p
AC = β and ∠Ap

AB
p
BC = α.

Synthesis: Let a triangle be given in which its angles are equal to 3α, 3β and 3γ respectively,

where α + β + γ = 60o. Then around an equilateral, which is denoted by △Ap
AB

p
BC

p
C, will

construct a △ABC with angles 3α, 3β and 3γ so that Ap
A, B

p
B and Cp

C will be the meeting points

of the exterior angle trisectors proximal to the sides of △ABC. On the side Bp
BC

p
C erect △Bp

BACp
C

with adjacent angles γ and β which were calculated in the Analysis step. Similarly, erect △Cp
CBA

p
A

and △Ap
ACB

p
B on the sides Cp

CA
p
A and Ap

AB
p
B with corresponding angles as they are depicted in

Fig.8. Hence △ABC has been determined. So it remains to be proved that the resulting △ABC

has angles 3α, 3β and 3γ respectively and the erected sides are the trisectors of its exterior angles.

Let P and Q be the orthogonal projections of Cp
C on the extensions of ABp

B and BAp
A respec-

tively. Next consider all cases regarding ABp
B and BAp

A.
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Fig.8a (γ < 30o) Fig.8b (γ > 30o) Fig.8c (γ = 30o)

◃ Assume γ ̸= 30o. Set s = (30o − γ)/|30o − γ| and let Cd
C be the meeting point of ABp

B and

Ap
AB. The choice of angles in the erection of △Bp

BACp
C and △Cp

CBA
p
A implies:

Cp
C is lying on the ∠Ap

AC
d
CB

p
B bisector (1) and ∠ACp

CB = 90o + 1
2s∠ACd

CB (2)

To verify (1) notice that △Ap
AC

d
CB

p
B is isosceles, as two of its angles are by construction

either 60o + γ (γ < 30o) or 120o − γ (γ > 30o). But △Ap
AB

p
BC

p
C is assumed equilateral and so

Cp
CA

p
A = Cp

CB
p
B. Thus C

d
CC

p
C bisects side Ap

AB
p
B of the isosceles △Ap

AC
d
CB

p
B and so Cp

C is lying on

the ∠Ap
AC

d
CB

p
B bisector.

To verify (2) notice that in the isosceles △Ap
AC

d
CB

p
B either ∠ACd

CB = 180o − 2(60o + γ) −

60o−2γ (γ < 30o) or ∠ACd
CB=180o−2(60o+γ) = 2γ−60o (γ > 30o). Thus ∠ACd

CB = s(60o−2γ).

Hence ∠ACp
CB = β+ 60o + β = 60o + (60o − γ) = 90o + 1

2s(60
o − 2γ) = 90o + s∠ACd

CB.

Therefore from (1) and (2), by the Incenter Lemma (γ < 30o, s = 1) or the Excenter Lemma

(γ > 30o, s = −1), Cp
C is the incenter or the excenter of △ACd

CB respectively.

Thus ACp
C and BCp

C are bisectors (interior or exterior) in △ACd
CB. So, using △Cp

CABp
B and

△Cp
CBA

p
A, deduce ∠Cp

CAB = ∠Cp
CAP = γ + β and ∠Cp

CBA = ∠Cp
CBQ = γ + β. Consequently

∠Cp
CAB = γ + β and ∠Cp

CBA = γ + β while ACp
C and BCp

C bisect the angles formed by AB and

the extensions of ABp
B and BAp

A respectively.

◃ Assume γ = 30o . Then α+β = 30o. Notice ABp
B , BAp

A ⊥ Ap
AB

p
B and so Ap

AB//B
p
BA. Also

∠ACp
CB = β+60o+α = 90o and so△ACp

CB is right triangle. Let M be the midpoint of AB. Hence

Cp
CM=MA=MA. But Cp

CM = MA implies ∠Cp
CAM = ∠MCp

CA. Since ∠Cp
CAM = ∠Cp

CAP,

∠Cp
CAM = ∠ACp

CM. Consequently Cp
CM//AP. Thus Ap

AB//C
p
CM//Bp

BA and since MA = MA,

Cp
CM passes through the midpoint of Ap

AB
p
B. As a result Cp

CM is a height of the equilateral

△Ap
AB

p
BC

p
C and so ∠Ap

AC
p
CM = ∠Bp

BC
p
CM = 30o. Therefore

∠Cp
CAB = ∠MCp

CA = ∠MCp
CB

p
B = ∠Bp

BC
p
CA = 30o + β = γ+ β.

Similarly it is shown ∠Cp
CBA = 30o + α = γ+ α.

Also Ap
AB//C

p
CM//Bp

BA implies ∠Cp
CAP =∠ACp

CM and ∠QBCp
C = ∠BCp

CM. So

∠Cp
CAP = ∠Cp

CAB and ∠Cp
CBQ = ∠Cp

CBA.
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◦ Conclude for any γ it holds ∠Cp
CAB = γ + β and ∠Cp

CBA = γ + α, while ACp
C and BCp

C

bisect the angles formed by AB and the extensions of ABp
B and BAp

A respectively.

The rest cases are treated similarly. Considering BCp
C and CBp

B it shown that ∠Ap
ABC = α+γ

and ∠Ap
ACB = α+β while BAp

A and CAp
A bisect the angles formed by BC and the extensions of BCp

C

and CBp
B respectively, and eventually considering CAp

A and ACp
C it is proved that ∠Bp

BCA = β+α

and ∠Bp
BAC = β + γ while CBp

B and ABp
B bisect the angles formed by AC and the extensions of

ACp
C and CAp

A respectively. Conclude that ABp
B bisects the angle between AC and the extension

of ACp
C, while ACp

C bisects the angle between AB and the extension of ABp
B. Thus ABp

B and ACp
C

are trisectors of the exterior ∠A.

Also ∠Cp
CAB = ∠Bp

BAC = γ + β. Hence ∠A = 1
2 [360

o − 6(β + γ)] = 180o − 3(β + γ) = 3α.

Similarly it is shown that BCp
C, BA

p
A are trisectors of the exterior ∠B with ∠B = 3β and CAp

A,

CBp
B are trisectors of the exterior ∠C with ∠C = 3γ.

Corollary 2. a) The angles between the exterior trisectors of △ABC and the sides of its cen-

tral Morley equilateral △Ap
AB

p
BC

p
C are: ∠Ap

AB
p
BC = ∠Ap

AC
p
CB = α, ∠Bp

BC
p
CA = ∠Bp

BA
p
AC = β,

∠Cp
CA

p
AB = ∠Cp

CB
p
BA = γ.

b) The heights of the equilateral △Ap
AB

p
BC

p
C are: Ap

AA
d
A, B

p
BB

d
B and Cp

CC
d
C.

Theorem 3. In any triangle the interior trisectors of an angle and the exterior trisectors of

the other two angles, proximal the three sides respectively, meet at the vertices of an equilateral.

Proof.

Analysis: Let △ABC be a triangle with ∠A = 3α, ∠B = 3β and ∠C = 3γ, where α+β+γ = 60o.

Let Cp
C be the intersection of the exterior trisectors of ∠B and ∠C, proximal to AB, while ap

C

and bp
C are the intersections of the interior with the exterior trisectors proximal to BC and CA

respectively. Suppose that △ap
CC

p
Cb

p
C is equilateral. The aim of this step is to calculate the angles

between the sides of △ap
CC

p
Cb

p
C and the interior trisectors of ∠C and also the exterior trisectors

of ∠A and ∠B.

Let P and Q be the orthogonal projections of Cp
C on Abp

C and Bap
C, respectively. It was

observed in the course of the Analysis Step of Theorem 2 that the trisectors Abp
C and Bap

C inter-

sect each other iff γ ̸= 30o. Recall that if γ ̸= 30o Cp
C is the incenter (γ < 30o) or the excenter

(γ > 30o) of △BCd
CC while for γ = 30o Abp

C//Ba
p
C. But it was shown that in either case it holds

Cp
CP = Cp

CQ and hence △Cp
CPb

p
C = △Cp

CQap
C, as right triangles having two pairs of sides equal.

This implies ∠Abp
CC

p
C = ∠Bap

CC
p
C (1). Consequently:

◃ If γ ̸= 30o then Cd
C is determined. Hence (1) implies ∠bp

Ca
p
CC

d
C = ∠ap

Cb
p
CC

d
C. Thus

△ap
CC

d
Cb

p
C is isosceles. However from △ACd

CB it is calculated that
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Fig.9a (γ < 30o) Fig.9b (γ > 30o) Fig.9c (γ = 30o)

∠ACd
CB = 60o − 2γ (γ < 30o) or ∠ACd

CB = 2γ− 60o (γ > 30o).

Then we have respectively.

⋄ For γ < 30o, Cd
C is on the other side of ap

Cb
p
C from A, B and

∠Abp
Ca

p
C = ∠Bap

Cb
p
C = 180o − 1

2 [180
o − (60o − 2γ)] = 120o − γ.

⋄ For γ > 30o, Cd
C is on the same side of ap

Cb
p
C with A,B and

∠Abp
Ca

p
C = ∠Bap

Cb
p
C = 1

2 [180
o − (2γ− 60o)] = 120o − γ.

In either case ∠Cp
Ca

p
CB = ∠Cp

Cb
p
CA = 60o − γ = α+ β.

◃ If γ = 30o then Abp
C//Ba

p
C. Also Cp

CP, Cp
CQ are collinear and α + β = 30o. Thus

∠ap
CC

p
Cb

p
C = 180o − (30o + β) − (30o + α) = 60o and so by (1) ∠ap

CC
p
CQ = ∠bp

CC
p
CP =

1
2 (180

o − ∠ap
CC

p
Cb

p
C) =

1
2 (180

o − 60o) = 60o. Hence ∠Cp
Ca

p
CB = ∠Cp

Cb
p
CA = 30o = α+ β.

◦ In conclusion for any γ it holds ∠Abp
CC

p
C = ∠Bap

CC
p
C = 60o − γ = α+ β.

Finally from △Bap
CC and △Cbp

CA we find ∠Bap
CC = α and ∠Abp

CC = β respectively,

and so ∠Cp
Ca

p
CC = β and ∠Cp

Cb
p
CC = α. Yet from △bp

CACp
C and △Cp

CBa
p
C calculate that

∠bp
CC

p
CA = (γ+ α)+ and ∠ap

CC
p
CB = (γ+ β)+.

Synthesis: Suppose that a triangle is given with angles equal to 3α, 3β and 3γ, respectively,

where α + β + γ = 60o. Then from an equilateral, which we denote △ap
CC

p
Cb

p
C, will construct

a △ABC with angles 3α, 3β and 3γ so that the sides of the erected triangles are the proper

angle trisectors of the resulting △ABC. On the side ap
Cb

p
C erect △ap

CCb
p
C with adjacent angles

β+ = 60o + β and α+ = 60o + α so that Cp
C is inside △ap

CCb
p
C. Next on the side bp

CC
p
C erect

△bp
CACp

C with adjacent angles α + β and (γ + α)+. Finally on the side Cp
Ca

p
C erect △ap

CBC
p
C

with adjacent angles α + β and (γ + β)+. Thus △ABC has been determined. See Fig.10 for the

corresponding value of γ. So it remains to be proved that the resulting △ABC has angles 3α, 3β

and 3γ, respectively and the erected sides Cap
C, Cb

p
C are trisectors of ∠C, while Abp

C, ACp
C, and
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BCp
C, Ba

p
C are trisectors of the exterior angles ∠A and ∠B respectively.

Fig.10a (γ < 30o) Fig.10b (γ > 30o) Fig.10c (γ = 30o)

Notice that if either γ < 30o or γ > 30o then Abp
C and Bap

C intersect each other, while for

γ = 30o Abp
C//Ba

p
C.

First we deal with the erected sides Cap
C and Cbp

C and prove that they are trisectors of ∠C .

We also show that ∠C = 3γ. See Fig.11.

Fig.11

Let bd
C be the intersection of ACp

C and Cap
C.

Notice the choice of angles in the construction of

△ap
CCb

p
C and △ap

CBC
p
C yields ∠Cap

CC
p
C = β and

∠ap
CC

p
Cb

d
C = 180o − (γ + α)+ − 60o = β. Hence

△ap
Cb

d
CC

p
C is isosceles. Thus ∠Abd

CC = 2β and

∠Abp
CC = 1

2∠Abd
CC.

Since △ap
Cb

d
CC

p
C is isosceles and from the as-

sumption △ap
CC

p
Cb

p
C is equilateral, infer that bd

Cb
p
C

bisects ap
CC

p
C and so bd

Cb
p
C is the ∠ap

Cb
d
CC

p
C bisector.

Hence bd
C is lying on the exterior bisector of △Abd

CC.

Thus, by the Excenter Lemma, bp
C is the excenter of

△Abd
CC relative to ∠C. But so Cbp

C is the ∠ACap
C bisector.

Similarly show that Cap
C is the ∠BCbp

C bisector.

Therefore Cbp
C and Cap

C are trisectors of ∠C. Also

∠ap
CCb

p
C = 180o − ∠Cbp

Ca
p
C − ∠Cap

Cb
p
C = 180o − α+ − β+ = γ.

Conclude ∠C = 3γ.

Next we deal with the erected sides ACp
C, Abp

C and BCp
C, Ba

p
C and prove that are trisectors

of ∠A and ∠B. We also show that ∠A = 3α and ∠B = 3β.
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◃ Assume γ ̸= 30o. Set s = (30o − γ)/|30o − γ| and let Cd
C be the meeting point of Abp

C and

Bap
C. The choice of angles in the erection of △Cp

CAbp
Cand △Cp

CBa
p
C implies:

Cp
C is lying on the ∠ACd

CB bisector (1) and ∠ACp
CB = 90o + 1

2s∠ACd
CB (2)

To verify (1) notice that △ap
AC

d
Cb

p
C is isosceles, as two of its angles are either 120o − (α+β)

(γ < 30o) or 60o + (α + β) (γ > 30o). Using the fact that △ap
CC

p
Cb

p
C is equilateral, infer that

Cd
CC

p
C bisects ap

Cb
p
C and so Cp

C is lying on the ∠ap
CC

d
Cb

p
C bisector.

To verify (2) notice that in the isosceles △ap
CC

d
Cb

p
C

⋄ if γ < 30o then ∠ACd
CB = 180o − 2[120o − (α+ β)] = 60o − 2γ = s(60o − 2γ) ,

⋄ if γ > 30o then ∠ACd
CB = 180o − 2[60o + (α + β)] = 2γ − 60o − s(60o − 2γ).

So for the cases γ < 30o and γ > 30o have respectively:

⋄ ∠ACd
CB = s(60o − 2γ) and

⋄ ∠ACp
CB = 360o − (α+ γ)+ − (β+ γ)+ = 120o − γ = 90o + 1

2(60
o − 2γ) = 90o + 1

2s∠ACd
CB.

Therefore from (1) and (2), by the Incenter Lemma (γ < 30o, s = 1) or the Excenter

Lemma (γ > 30o, s = −1), Cp
C is the incenter or the excenter of △ACd

CB respectively. Thus

∠Cp
CAbp

C = ∠Cp
CAB and ∠Cp

CBa
p
C = ∠Cp

CBA.

Moreover from △Cp
CAbp

C and △Cp
CBa

p
C infer ∠Cp

CAbp
C = γ+ β and ∠Cp

CBa
p
C = γ+ α.

Deduce for γ ̸= 30o it holds ∠Cp
CAbp

C = ∠Cp
CAB = γ+ β and ∠Cp

CBa
p
C = ∠Cp

CBA = γ+ α.

◃ Assume γ = 30o and so α+β = 30o. Then the choice of angles in construction of △Cp
CBa

p
C

and △Cp
CAbp

C implies ∠Cp
Cb

p
CA = ∠Cp

Ca
p
CB = α + β = 30o. Hence Abp

C, Ba
p
C ⊥ ap

Cb
p
C and thus

Abp
C//Ba

p
C. Draw from Cp

C the height of the equilateral △ap
Cb

p
CC

p
C meeting AB at M. Hence

Cp
CM//Abp

C//Ba
p
C, and also MCp

C bisects ap
Cb

p
C. But so M is the midpoint of AB. Also notice

that △ACp
CB is right triangle as ∠ACp

CB = 360o − 60o − (β + 30o)+ − (α + 30o)+ = 90o. Then

Cp
CM = MA = MB. Now Cp

CM = MA implies ∠Cp
CAM = ∠MCp

CA. Yet Cp
CM//Abp

C implies

∠Cp
CAbp

C = ∠ACp
CM. Thus ∠Cp

CAbp
C = ∠Cp

CAM and so ACp
C is the ∠bp

CAB bisector.

Similarly it is shown that BCp
C is the ∠ap

CBA bisector.

Also the choice of angles in the construction of △Cp
CAbp

C gives

∠Cp
CAbp

C = 180o − 30o − (α + 30o)+ = 30o + β.

Deduce for γ = 30o it holds ∠Cp
CAbp

C = ∠Cp
CAB = 30o + β = γ+ β.

Similarly it is shown that ∠Cp
CBa

p
C = ∠Cp

CBA = γ+ α.

◦ Conclude for all γ it holds

∠Cp
CAbp

C = ∠Cp
CAB = 30o + β = γ+ β and ∠Cp

CBa
p
C = ∠Cp

CBA = γ+ α.

From △Abp
CC it follows ∠bp

CAC = 180o −β− γ, since from the construction choice of angles

∠Abp
CC = β and ∠ACbp

C = γ, as found in the first step. But clearly ∠bp
CAC = ∠bp

CACp
C +

∠Cp
CAB + ∠CAB = 2(γ + β) + ∠A. Then ∠A = 3α and similarly ∠B = 3β. Therefore the angles

of △ABC are 3α, 3β and 3γ. Since ∠Cp
CAbp

C = ∠Cp
CAB = γ + β it follows that Abp

C and ACp
C
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are trisectors of ∠A in △ABC.

Similarly it shown that Bap
C and BCp

C are trisectors of ∠B in △ABC.

Corollary 3. a) In any △ABC, the angles formed by the side’s of the exterior Morley

equilateral △ap
CC

p
Cb

p
C relative to the ∠C and the exterior trisectors of ∠A and ∠B are: ∠ap

CC
p
CB =

(γ + β)+, ∠bp
AC

p
CA = (γ + α)+, ∠Cp

Ca
p
CB = ∠Cp

Cb
p
AA = α+ β, while with the interior trisectors

of ∠C are: ∠Cp
Ca

p
CC = β and ∠Cp

Cb
p
CC = α.

b) The heights of the equilateral △ap
CC

p
Cb

p
C are: ap

Ca
d
C, b

p
Cb

d
C and Cp

CC
d
C.

4 Implications

4.1 Companion Equilaterals of the inner Morley equilateral

Theorem 4. The two sides’ extensions of the inner Morley equilateral meet the corresponding

inner trisectors at two points which with the two sides’ common vertex form an equilateral.

Fig.12

Proof. As usually △ApBpCp denotes the interior Mor-

ley equilateral of △ABC. Let SA be the intersection of the

extension of side ApCp with the trisector CBp and let KA be

the intersection of the extension of side ApBp with the trisec-

tor BCp. Moreover let Ad be the intersection of the trisectors

BCp and CBp. By Corollary 1a, ∠ApBpC = ∠CpApB = α+

and so △BpAdCp is isosceles. Thus ApAd is bisector of both

∠BpApCp and ∠BpAdCp.

Hence ∠BpApAd = ∠CpApAd and ∠BpAdAp = ∠CpAdAp.

Also ∠SAAdAp = ∠KAAdAp as obviously ∠SAAdCp =

∠KAAdBp and ∠SAAdAp = ∠SAAdCp + ∠CpAdAp while

∠KAAdAp = ∠KAAdAp + ∠BpAdAp.

Therefore △ApSAA
d and △ApKAA

d are equal because in

addition they have side ApAd in common. Consequently

△SAApKA is equilateral.

The previous equilateral is named companion equilateral relative to vertex Ap and it will be

denoted by △SAApKA. Obviously there are two more companion equilaterals relative to vertices

Bp and Cp, denoted by △SBBpKB and △SCCpKC, respectively.

Corollary 4. For the companion equilateral relative to vertex Ap, △SAApKA, it holds

∠BASA = ∠CAKA = |β+ γ− α|.
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In fact, the points SA and KA , for α < 30o are outside △ABC, for α = 30o are on AB and AC,

respectively, and for α > 30o are inside △ABC.

Fig.13

Proof. Corollary 1a asserts ∠CpApB = γ+ and

∠BpApC = β+. Thus from △KAApB and △KAApB it

is calculated ∠CpSABp = α and ∠CpKABp = α, respec-

tively. Then the points Bp, Cp, SA and KA are cyclic as

BpCp is seen from SA and KA with the same angle. Thus

∠ASAKA = ∠ABpKA and ∠AKASA = ∠ACpSA. From

△BCpA and △CBpA infer that ∠ACpKA = β + γ and

∠ABpSA = α+ γ, respectively. Hence

∠ASAKA = β+ γ and ∠AKASA = α+ γ.

Next notice that ∠SAACp = 180o − ∠ASACp −

∠SACpA = 180o − (60o + β+ γ)− (α+ γ) = β+ γ

and similarly ∠KAAC = β+ γ.

However

∠SAACp = ∠SAAB± ∠BACp and

∠KAAC = ∠KAAC± ∠CABp,

where ± may be either + or − depending on the location of SA and KA with respect to AB and

AC respectively. Therefore ∠SAAB = ∠KAAC = |β+ γ− α|.

Because α+ β + γ = 60o for α < 30o the points SA and KA are outside △ABC, for α = 30o

the points SA and KA are on AB and AC, respectively and for α > 30o the points SA and KA are

inside △ABC.

4.2 Relation of the Morley equilaterals

Theorem 5. In any triangle the sides of Morley equilaterals are either collinear or parallel.

Fig.14

Proof. Corollary 2a claims ∠BCp
CA

p
A = α. Also

Corollary 3a confirms ∠BCp
Ca

p
C = (β + γ)+. Hence

∠Bp
BC

p
Ca

p
C = ∠Bp

BC
p
CA

p
A + ∠Ap

AC
p
CB+ ∠BCp

Ca
p
C =

= 60o + α+ (β + γ)+ = 180o.

Thus ap
CC

p
C is extension of Bp

BC
p
C.

Similarly it is shown that bp
CC

p
C is extension of Ap

AC
p
C.

As ∠bp
Ca

p
CC

p
C = ∠Ap

AB
p
BC

p
C = 60o, it follows

ap
Cb

p
C//A

p
AB

p
B.

Since ∠bp
Ca

p
CC = ∠bp

Ca
p
CC

p
C +∠Cp

Ca
p
CC = 60o +β
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and ∠BpApC = β+ then

ap
Cb

p
C//A

pBp.

The previous result is mentioned as a fact in [8] and it might be in print elsewhere. At any

event, it inspires the next theorem.

4.3 Interrelationship between central and exterior Morley equilaterals

Theorem 6. In any triangle, the exterior trisectors of its angles, proximal to the three sides re-

spectively, meet at the vertices of an equilateral, if and only if, the interior trisectors of an angle

and the exterior trisectors of the other two angles, proximal the three sides respectively, meet at

the vertices of an equilateral.

Fig.15a

Proof. Let △ABC be given with ∠A = 3α, ∠B = 3β

and ∠C = 3γ, where α+ β + γ = 600.

(=⇒) Assume that △Ap
AB

p
BC

p
C is the central Mor-

ley equilateral formed by the intersections of the exterior

trisectors, proximal to the sides of △ABC. See Fig.15a.

Extend Ap
AC

p
C and Bp

BC
p
C to meet the extensions of

Ap
AB and Bp

BA at A ′′ and B ′′ respectively. Then AB ′′ and

BA ′′ are trisectors of the exterior ∠A and ∠B respectively,

as extensions of the corresponding trisectors. Thus it suf-

fices to show that △A ′′Cp
CB

′′ is equilateral and also that

CA ′′ and CB ′′ are trisectors of the interior ∠C.

First show that △A ′′Cp
CB

′′ is equilateral.

Notice that △A ′′Ap
AB

p
B = △B ′′Ap

AB
p
B because they

have Ap
AB

p
B common, ∠A ′′Bp

BA
p
A = ∠B ′′Ap

AB
p
B = 60o and ∠A ′′Ap

AB
p
B = ∠B ′′Bp

BA
p
A = 60o + γ by

Corollary 2a. Thus A ′′Bp
B = B ′′Ap

A. But so Cp
CA

′′ = Cp
CB

′′, as Cp
CA

p
A = Cp

CB
p
B since △Ap

AB
p
BC

p
C

is equilateral. Also ∠A ′′Cp
CB

′′ = ∠Ap
AC

p
CB

p
B = 60o and hence △A ′′Bp

BC
p
C is equilateral.

Next show that CA ′′ and CB ′′ are trisectors of the interior ∠C.

From △Ap
AA

′′Bp
B and △Ap

AB
′′Bp

B it is easily calculated that ∠Ap
AA

′′Bp
B = α+ β and ∠AB ′′Bp

B =

α + β. Hence Ap
A, B

p
B, A

′′, B ′′ are cyclic. But ∠Bp
BA

p
AC = β and ∠Ap

AB
p
BC = α, by Corollary

2a. So from △Ap
ACB

p
B, ∠Ap

ACB
p
B = 180o − (α + β). But so C is also on this circle. Thus

∠CA ′′Ap
A = ∠Ap

AB
p
BC = α and ∠CB ′′Bp

B = ∠Bp
BA

p
AC = β. Finally note that in △BA ′′C and

△CB ′′A it holds respectively ∠A ′′CB = (α+ γ)− α = γ and ∠B ′′CA = (β + γ)− β = γ.

Conclude CA ′′ and CB ′′ are trisectors of the interior ∠C, as ∠C = 3γ.
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Fig.15b

(⇐=) Assume that the exterior triangle △ap
CC

p
Cb

p
C is

equilateral formed by the intersections of the trisectors of

the interior ∠C and the exterior ∠A and ∠B. See Fig.15b.

Extend ap
CC

p
C and bp

CC
p
C to meet the extensions of

ap
CB and bp

C A at A ′′ and B ′′ respectively. Then AB ′′ and

BA ′′ are trisectors of the exterior ∠A and ∠B respectively,

as extensions of the corresponding trisectors.

Thus it suffices to show that △A ′′Cp
CB

′′ is equilateral

and that CA ′′ and CB ′′ are trisectors of the interior ∠C.

Note △A ′′ap
Cb

p
C = △B ′′ap

Cb
p
C, because they have

ap
Cb

p
C common, ∠A ′′Bp

BA
p
A = ∠B ′′Ap

AB
p
B = 60o and

∠A ′′Ap
AB

p
B = ∠B ′′Bp

BA
p
A = 600 + α + β by Corollary 3a. Thus A ′′bp

C = B ′′ap
C. Since △ap

CC
p
Cb

p
C

is equilateral then Cp
CA

′′ = Cp
CB

′′ and so △A ′′Cp
CB

′′ is equilateral.

Also from △ap
CBC and △bp

CCA it is calculated that ∠ap
CCB = ∠bp

CCA = γ and so Cap
C and

Cbp
C are trisectors of ∠C.

5 The non Equilateral Morley Triangles

Fig.16

For a given △ABC there are in general 64 Morley triangles, as the

trisectors of its three angles meet at many points. Among them are

the inner, the central and the exterior Morley equilaterals.

A number of authors (see for example [4] or [5]) have wondered:

Are there more Morley equilaterals for △ABC ?

This part examines all the remaining Morley triangles of△ABC

systematically and shows that none of them is equilateral.

In the sequel the following easily proved lemma is

used.

The Equilateral Center Lemma. The incenter of an equi-

lateral is the unique interior point from which its sides are seen with

120o. Similarly the excenter relative to an angle is the unique exterior point from which the side

opposite to the angle is seen with 120o while the other two sides are seen with 60o.

5.1 Morley triangles by trisectors of interior angles

This section treats the non equilateral Morley triangles formed by the trisectors of the interior

angles of △ABC . The proximal to the sides trisectors meet at Ap, Bp and Cp and △ApBpCp
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denotes the inner Morley equilateral.

5.1.1 The Interior Morley triangle of distal vertices

Fig.17

The interior Morley triangle of distal vertices is

denoted by △AdBdCd where Ad, Bd and Cd are

the meeting points of the distal trisectors with re-

spect to the sides BC, CA and AB, respectively,

as shown in Fig.17. If △ABC is equilateral then

△AdBdCd is equilateral as well. Thus in the fol-

lowing we assume that △ABC is not equilateral.

From Corollary 1b, we have that ApAd,

BpBd and CpCd are the heights of the inner Mor-

ley equilateral △ApBpCp.

Let M be the center of △ApBpCp. Thus

∠ApMBd=∠BdMCp= ∠CpMAd=∠AdMBp

= ∠BpMCd=∠CdMAp= 60o

So ∠AdMBd = ∠BdMCd = ∠CdMAd = 120o.

Hence the sides of △AdBdCd are seen from M

with 120o.

Assume towards a contradiction that △AdBdCd is equilateral. Then, by the Equilateral

Center Lemma, ApAd is a height of △AdBdCd. Thus ApAd bisects BdCd. Hence ApAd bisects

∠BdApCd and so ∠BApC. Since Ap is the incenter of △BAdC, ApAd bisects also ∠BAdC. But

so the exterior angles of △AdApB and △AdApC at vertex Ap are 1
2∠BA

pC = 1
2∠BA

dC+ β and
1
2∠BA

pC = 1
2∠BA

dC + γ. Hence β = γ. Similarly it is shown that α = β. Thus △ABC is

equilateral contrary to the assumption.

Conclude that △AdBdCd cannot be equilateral (if △ABC is not equilateral).

5.1.2 Interior Morley triangles with one proximal and two mix vertices

There are three interior Morley triangles with one proximal and two mix vertices denoted by

△ApB∗C∗, △BpC∗A∗ and △CpA∗B∗. We will study only △ApB∗C∗ as the other two are similar.
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SinceAp is the intersection of the proximal trisectors, B∗

must be the intersection of the remaining trisector CBp

(proximal to CA) with ACp as distal. Then C∗ is the
intersection of the left trisectors BCp (distal to AB) and
ABp (proximal). So B∗ is on ACp and C∗ is on ABp.
See Fig.18. Corollary 1a asserts ∠ACpBp = β+ and
∠ABpCp = γ+. Hence ∠ACpAp = 60o + β+ < 180o

and ∠ABpAp = 60o + γ+ < 180o. Therefore the quad-
rangle ABpApCp is convex and so ∠B∗ApC∗ is inside
∠BpApCp.

Fig.18

Conclude that ∠B∗ApC∗ < 60o and thus △ApB∗C∗ cannot be equilateral.

5.1.3 Interior Morley triangles with one distal and two mix vertices

Fig.19

There are three interior Morley triangles with

one distal and two mix vertices which are de-

noted by △AdB∗C∗, △BdC∗A∗ and △CdA∗B∗.

We will study only △AdB∗C∗ as the other two

are similar. Since Ad is the intersection of the

distal trisectors, B∗ must be the intersection of

the remaining trisectors CAp (distal to CA) and

ABp, as proximal. So C∗ is the intersection of

the left trisectors ACp and BAp (mix to AB).

First notice that if β = γ then △AdB∗C∗

is isosceles, because Corollary 1a with β = γ

yields △BpApB∗ = △CpApC∗ and so ApB∗ =

ApC∗ which implies △AdApB∗ = △AdApC∗.

Thus if α = β = γ then △AdB∗C∗ is equi-

lateral.

Assume △ABC is not equilateral. Then it

has two sides not equal and thus in the following we may assume γ < β. Fig.19.

Suppose, towards a contradiction, that AdB∗ = AdC∗. Let Z be the symmetric point of C∗

with respect to ApAd. We will fist show that Z is inside △AdApB∗.

From Corollary 1b, ApAd is height of the equilateral △ApBpCp and so Bp and CP are symmetric

with respect to ApAd. Consequently ∠BpApZ = ∠CpApC∗ and since ∠CpApC∗ = γ+ infer

∠BpApZ = γ+. Since ∠BpApB∗ = β+ and by assumption γ < β, deduce ∠BpApZ < ∠BpApB∗.

Moreover ∠ApBpZ = ∠ApCpC∗ = α+ (α + β) = α+ γ while ∠ApBpB∗ = α+ (α+ γ) = α+ β.

So ∠ApBpZ < ∠ApBpB∗.
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Since Z is inside △AdApB∗ then ∠AdZB∗ > ∠AdApB∗ = ∠AdApBp + ∠BpApB∗ = 30o +

β+ = 90o + β. However, the assumption AdB∗ = AdC∗ implies AdZ = AdB∗ and so ∠AdZB∗ =

∠AdB∗Z. Thus ∠AdZB∗ + ∠AdB∗Z > 2(90o + β) > 180o. Hence two angles of △AdZB∗ have

sum greater than 180o, which is a contradiction.

Conclude that △AdB∗C∗ cannot be equilateral (if △ABC is not equilateral).

5.2 Morley triangles by trisectors of exterior angles

This section treats the non equilateral Morley triangles formed by the trisectors of the exterior

angles. So throughout this section trisectors mean trisectors of the exterior angles of △ABC.

The proximal trisectors meet at the points Ap
A, B

p
B and Cp

C and so △Ap
AB

p
BC

p
C denotes the

central Morley equilateral. Notice that the trisectors BCp
C and CBp

B are parallel iff

∠Bp
BCB+ ∠Cp

CBC = 180o ⇔ 2(α + β) + 2(α + γ) = 180o.

So for α = 30o BCp
C//CB

p
B. In this case the distal trisectors with respect to BC do not intersect

and hence the distal to BC vertex Ad
A is not determined. Also if 30o > α then Ad

A and Ap
A are on

the same side of BC while ∠BAd
AC = 60o − 2α. If 30o < α then Ad

A and Ap
A are on different sides

of BC while ∠BAd
AC = 2α − 60o. See Fig.20.

5.2.1 The Central Morley triangle of distal vertices

Fig.20a (γ < 30o) Fig.20b (γ > 30o)

The Morley triangle of distal vertices is denoted by △Ad
AB

d
BC

d
C, where Ad

A, B
d
B and Cd

C are

the meeting points of the distal trisectors of the exterior angles with respect to the sides BC, CA

and AB, respectively. In Fig.20a and Fig.20b the different locations of △Ad
AB

d
BC

d
C with respect to

△Ap
AB

p
BC

p
C are illustrated. Note that Ap

AA
d
A, B

p
BB

d
B and Cp

CC
d
C, by Corollary 1b, are the heights

of the central Morley equilateral △Ap
AB

p
BC

p
C and let N be their intersection.

Notice that if△ABC is equilateral then△Ad
AB

d
BC

d
C is equilateral as well. Thus in the following
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we assume that △ABC is not equilateral. Also suppose towards a contradiction that △Ad
AB

d
BC

d
C

is equilateral.

◃ If △ABC is an acute triangle the equilateral △Ap
AB

p
BC

p
C is inside △Ad

AB
d
BC

d
C. Hence

∠Ad
ANBd

B = ∠BdNCd
C = ∠Cd

CNAd
A = 120o.

◃ If △ABC is an obtuse triangle (assume α > 30o) Ad
A and Ap

A are on different sides of BC.

Hence

∠Ad
ANBd

B = ∠Ad
ANCd

C = 60o and ∠Bd
BNCd

C = 120o.

Thus, by the Equilateral Center Lemma, N is the incenter (acute) or the excenter (obtuse) of

the assumed equilateral △Ad
AB

d
BC

d
C. Hence A

p
AA

d
A is a height of △Ad

AB
d
BC

d
C and so Ap

AA
d
A bisects

Bd
BC

d
C and ∠Bd

BA
p
AC

d
C.

◃ In the case of the acute triangle, notice in △BAd
AC that Ap

A is the incenter while the bisector

Ap
AA

d
A bisects ∠BAp

AC. As a result ∠Ad
ABC = ∠Ad

ACB ⇔ 2(α + γ) = 2(α + β) ⇔ γ = β.

◃ In the case of the obtuse triangle, note that since Ap
AA

d
A bisects Bd

BC
d
C it bisects ∠BAp

AC.

Also it bisects ∠BAd
AC as a height of △Ap

AB
p
BC

p
C. Then △Ap

ABA
d
A = △Ap

ACA
d
A and so Ap

AB =

Ap
AC.

Therefore α+ γ = α+ β and so γ = β. Similarly we show that α = β.

Deduce that △ABC is equilateral contrary to the assumption that it is not.

Conclude that △Ad
AB

d
BC

d
C cannot be equilateral (if △ABC is not equilateral).

5.2.2 The Central Morley triangles with one proximal and two mix vertices

Fig.21

There are three Morley triangles of △ABC formed

by exterior trisectors with one proximal and two

mix vertices denoted by △Ap
AB

∗

BC
∗

C, △Bp
BC

∗

CA
∗

A and

△Cp
CA

∗

AB
∗

B. We will study only△Ap
AB

∗

BC
∗

C as the other

two are similar.

As vertex Ap
A is the intersection of the proximal to

BC trisectors, vertex B∗

B is the intersection of the re-

maining trisector CBP
B (proximal to CA) with ACP

C, as

distal. Then vertex C∗

C is the intersection of the left tri-

sectors ABP
B (distal to AB) and BCP

C (proximal). Thus

B∗

B is on CBP
B while C∗

C is on BCP
C. Using the angle

values between the sides of △Ap
AB

p
BC

p
C and the trisec-

tors of △ABC given by Corollary 2a it is easily deduced

that all the angles of the quadrangles B∗

BB
p
BA

p
AC

p
C and
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C∗

CC
p
CA

p
AB

p
B are less than 180o and so they are convex.

For instance

∠C∗

CC
p
CA

p
A = 180o − ∠BCp

CA
p
A = 180o − α,

while

∠ABp
BA

p
A = 60o + α.

Since B∗

BB
p
BA

p
AC

p
C is convex infer Ap

AC
∗

C is inside ∠Bp
BA

p
AC

p
C. Also since C∗

CC
p
CA

p
AB

p
B is

convex infer Ap
AB

∗

B is inside ∠Bp
BA

p
AC

p
C.

Conclude that ∠B∗

CA
p
AC

∗

C < LBp
BA

p
AC

p
C = 60o and so △Ap

AB
∗

BC
∗

C cannot be equilateral.

5.2.3 The Central Morley triangles with one distal and two mix vertices

There are three Morley triangles formed by exterior trisectors with one distal and two mix vertices

which are denoted by △Ad
AB

∗

BC
∗

C, △Bd
BC

∗

CA
∗

A and △Cd
CA

∗

AB
∗

B. We will study only △Ad
AB

∗

BC
∗

C as

the other two are similar.

Since Ad
A is the intersection of the distal to BC trisectors BCp

C and CBp
B, B

∗

B is the intersection

of the remaining trisector CAp
A (proximal to CA) with ABP

B as distal. Then C∗

C is the intersection

of the left trisectors ACp
C (proximal to AB) and BAp

A (distal).

Fig.22

If α = 30o then Ad
A is not determined.

If 30o > α then Ad
A is on the same side of

BC with Ap
A and ∠BAd

AC = 60o − 2α. If

30o < α then Ad
A and Ap

A are on different

sides of BC while ∠BAd
AC = 2α − 60o.

Consider the case β = γ. Then

△Bp
BA

p
AB

∗

B = △Cp
CA

p
AC

∗

C by Corol-

lary 2a. So Ap
AB

∗

B = Ap
AC

∗

C and in

turn △Ad
AA

p
AB

∗

B = △Ad
AA

p
AC

∗

C. Thus

△Ad
AB

∗

BC
∗

C is isosceles. So if △ABC is equi-

lateral then △Ad
AB

∗

BC
∗

C is equilateral.

Next consider that △ABC is not equi-

lateral and let β > γ.

Since the location of Ad
A depends on the

value of α, assume that 30o > α. Suppose,

towards a contradiction that △Ad
AB

∗

BC
∗

C is

equilateral. Let W be the symmetric point

of C∗

C with respect to Ap
AA

d
A and let V be

the intersection of Ad
AW and B∗

BB
p
B. In the
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sequel we find the location of W.

From Corollary 2b, Ap
AA

d
A is height of the equilateral △Ap

AB
p
BC

p
C and so Ap

A and Bp
B are

symmetric with respect to Ap
AA

d
A.

Also by Corollary 2a the angles between the trisectors of △ABC and the central Morley

equilateral are as depicted in Fig.22. Consequently,

∠Ad
AC

p
CW = ∠Ad

AC
p
CC

∗

C = 180o − 60o −α−β = 60o + γ and ∠Ad
AB

p
BB

∗

B = 180o − 60o −α−β =

60o + β. Therefore ∠B∗

BB
p
BW < ∠Ad

AB
p
BB

∗

B and the line Bp
BW is inside ∠CBp

BB
∗

B.

Furthermore ∠Bp
BA

p
AW = ∠Cp

CA
p
AC

∗

C = γ and since β > γ, Ap
AW is inside ∠Bp

BA
p
AB

∗

B. Thus

W is inside △CBp
BB

∗

B.

Clearly C∗

C is outside△ABCp
C. Thus we may set ∠Cp

CA
d
AC

∗

C = ϕ. Then by symmetry ∠Bp
BA

d
AW =

ϕ. Also set ∠Ad
AWB∗

B = ω. Since △Ad
AB

∗

BC
∗

C is assumed equilateral then ∠C∗

CA
d
AB

∗

B = 60o and

so ∠WAd
AB

∗

B = 2(α− ϕ).

However Ad
AB

∗

B = Ad
AW and so Ad

AC
∗

C = Ad
AB

∗

B implies Ad
AW = Ad

AB
∗

B. Thus ∠WB∗

BA
d
A = ω

and from △Ad
AWB∗

B, 2ω+2(α−ϕ) = 180o ⇔ ω = 90o+ϕ−α. Given that W is inside △CBp
BB

∗

B

infer △CBp
BB

∗

B, ω > ∠Ad
AVB

∗

B.

But from △Ad
AVB

∗

B we deduce ∠Ad
AVB

∗

B = ∠Ad
AB

p
BB

∗

B + ∠Bp
BA

d
AV = 60o + β +ϕ.

Thus ω > 60o + β+ϕ =⇒ ω > 60o + β+ (ω+ α− 90o) =⇒ α+ β < 30o which contradicts

the assumption 30o > α.

The case α > 30o is similar and it is omitted.

Conclude that △Ad
AB

∗

BC
∗

C cannot be equilateral (if △ABC is not equilateral).

5.3 Morley triangles by trisectors of one interior and two exterior angles

This section deals with the non equilateral Morley triangles formed by the trisectors of one interior

and two exterior angles. Even crude figures of these triangles indicate clearly that they are too

asymmetric to be equilaterals. Nevertheless it must be shown rigorously that they are not. We will

consider only those formed by the interior trisectors of ∠C and the exterior trisectors of ∠A and

∠B, as the other two cases are similar. △ap
cC

p
Cb

p
c denotes the exterior Morley equilateral relative

to ∠C.

Notice that the trisectors Abp
C and Bap

C are parallel iff

∠ap
CBA+ ∠bp

CAB = 180o ⇔ 2(α+ γ) + 2(β + γ) = 180o ⇔ γ = 30o.

In this case the distal trisectors with respect to AB do not intersect and hence the distal vertex

Cd
C is not determined. Also if 30o > γ then Cd

C and Cp
C are on the same side of AB with ∠ACd

CB =

60o − 2γ. If 30o < γ then Cd
C and Cp

C are on different sides of AB with ∠ACd
CB = 2γ − 60o. See

Fig.23.

Futhermore note that from Corollary 3a the trisectror Cap
C is inside ∠Cp

Ca
p
CB and so Cap

C
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intersects the trisector BCp
C between B and Cp

C. Moreover Corollary 3a implies that the extension

of ACp
C is inside ∠ap

CC
p
CB and so Cap

C intersects ACp
C inside △Cp

CBa
p
C. In addition ACp

C intesects

Bap
C between B and ap

C. Similarly the trisectror Cbp
C intersects the trisector ACp

C between A and

Cp
C and the trisector BCp

C inside △Cp
CAbp

C. Also BCp
C intersects Abp

C between A and bp
C.

5.3.1 The Morley triangle of distal vertices

This is denoted by △ad
CC

d
Cb

d
C. Vertex Cd

C is the intersection of the distal to AB trisectors Abp
C

and Bap
C and is determined iff γ ̸= 30o. Vertex ad

C is the intersection of the distal to BC trisectors

BCp
C and Cbp

C and hence it is inside △Cp
CAbp

C. Vertex bd
C is the intersection of the distal to AC

trisectors Cap
C and ACp

C and hence it is inside △Cp
CBa

p
C. See Fig.23.

Thus, for ∠C ̸= 90o Cd
C is determined while ad

C and bd
C are inside ∠ACd

CB. But so ∠a
d
CC

d
Cb

d
C <

∠ACd
CB. However ∠ACd

CB = |60o − 2γ|. Hence ∠ACd
CB < 60o. Therefore ∠ad

CC
d
Cb

d
C < 60o.

Conclude △ad
CC

d
Cb

d
C is not equilateral.

Fig.23a (γ < 30o) Fig.23b (γ > 30o)

5.3.2 The Morley triangles with one proximal and two mix vertices

There are three such triangles denoted by △ap
Cb

∗

CC
∗

C, △bp
Ca

∗

CC
∗

C and △Cp
Ca

∗

Cb
∗

C.
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Fig.24

a. △ap
Cb

∗

CC
∗

C : Vertex ap
C is the intersection of

the proximal to BC trisectors Bap
C and Cap

C. Vertex

b∗

C must be the intersection of the remaining interior

trisector Cbp
C (proximal to ) with the exterior trisec-

tor Abp
C, as distal. Hence C∗

C is the intersection of

the left trisectors, BCp
C (proximal to AB) and Abp

C

(distal). See Fig.24.

So b∗

C is on ACp
C and it is between A and Cp

C.

Also C∗

C is on Abp
C and it is between A and bp

C. No-

tice ∠ap
Cb

p
CC

p
C = ∠ap

CC
p
Cb

p
C = 60o while, by Corol-

lary 3a, ∠Cp
Cb

p
CA = α+β and ∠bp

CC
p
CA = (γ+α)+. Thus ∠ap

CC
p
CA < 180o and ∠ap

Cb
p
CA < 180o.

Hence the quadrangle Abp
Ca

p
CC

p
C is convex. Therefore ∠b∗

Ca
p
CC

∗

C is inside ∠bp
Ca

p
CC

p
C and so

∠b∗

Ca
p
CC

∗

C < 60o.

Conclude that △ap
Cb

∗

CC
∗

C is not equilateral.

b. △bp
Ca

∗

CC
∗

C : It is shown as above that it is not equilateral.

c. △Cp
Ca

∗

Cb
∗

C : Vertex Cp
C is the intersection of the proximal to AB exterior trisectors. Thus

a∗

C is the intersection of the remaining exterior trisector Bap
C (proximal to BC) with the interior

trisector Cbp
C, as distal. Then b∗

C is the intersection of the left trisectors Cap
C (distal to AC) and

Abp
C (proximal).

So a∗

C and Cp
C are on the same side of BC iff

∠BCbp
C + ∠CBap

C < 180o ⇔ 2γ+ 2(α + γ) + 3β < 180o ⇔ γ < α.

If γ = α then a∗

C is not determined as Bap
C//Cb

p
C.

Also b∗

C and Cp
C are on different sides of AC iff

∠ACap
C + ∠CAbp

C < 180o ⇔ 2γ + 2(β + γ) + 3α < 180o ⇔ γ < β.

If γ = β then b∗

C is not determined as Abp
C//Ca

p
C.

Since a∗

C, b
∗

C and Cp
C are outside △ABC while a∗

C and b∗

C are on Abp
C and Bap

C respectively we

deduce

a∗

C and Cp
C are on the same side of AB iff γ < α

while

b∗

C and Cp
C are on the same side of AB iff γ < β.

The above conditions correlate the ranges of α,βCp
C and γ with the different locations of a∗

C

and b∗

C and vise versa.

Recall that Abp
C and Bap

C intersect at Cd
C iff γ ̸= 30o, with ∠ACd

CB = |60o − 2γ|, while Cp
C and

Cd
C are on the same side of AB iff γ < 30o.

Next all the different locations of a∗

C and b∗

C are considered.
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Case 1: a∗

C and b∗

C are on the other side of AB from Cp
C.

This happens iff γ ≤ 30o (and so α < γ and β < γ ) or γ < 30o with α < γ and β < γ. Fig.25a,b.

If γ = 30o then Abp
C//Ba

p
C, while for γ ̸= 30o Abp

C and Bap
C meet at Cd

C.

But so, a∗

C and b∗

C are on the extensions (to the other side of AB from Cp
C) of Cb

p
C, Ba

p
C and

Cap
C, b

p
CA respectively.

Since Cp
C is inside △ap

CC
p
Cb

p
C, then ∠a∗

CC
p
Cb

∗

C encompasses ∠a∗

CCb
∗

C . Therefore

∠a∗

CC
p
Cb

∗

C < ∠a∗

CCb
∗

C. However ∠a
∗

CCb
∗

C = γ. Deduce ∠a∗

CC
p
Cb

∗

C < 60o.

Fig.25a (γ > 30o) Fig.25b (γ < 30o,β < γ,α < γ)

Case 2 : a∗

C and b∗

C are on the same side of AB with Cp
C.

This happens iff γ < 30o, β > γ and α > γ . Fig.25c.

Then Cd
C and Cp

C are on the same side of AB. Note that Cap
C intersects sides AB and BCd

C of

△ACd
CB internally and so, by Pasch’s axiom, it intersects the third side ACd

C externally. Thus b∗

C

is on the extension of ACd
C. Similarly a∗

C is on the extension of BCd
C. Since Cp

C is inside △ACd
CB

then ∠a∗

CC
p
Cb

∗

C encompasses ∠a∗

CC
d
Cb

∗

C. Therefore ∠a∗

CC
p
Cb

∗

C < ∠a∗

CC
d
Cb

∗

C. But ∠a∗

CC
d
Cb

∗

C =

∠ACd
CB = 60o − 2γ. Deduce ∠a∗

CC
p
Cb

∗

C < 60o.

Case 3: a∗

C and b∗

C are on different sides of AB. Fig.25d.

This happens iff γ < 30o with β > γ and α < γ or with β < γ and α > γ.

Next consider the case γ < 30o with β > γ and α < γ.

Then Cp
C is on the same side with Cd

C. Hence C
p
C is inside △ACd

CB and also Cp
C is inside △ap

CCb
p
C.

By Pasch’s axiom on △ACd
CB , since Cap

C intersects sides AB and BCd
C at interior points, infer

Cap
C intersects the third side ACd

C at an exterior point. Thus b∗

C is on extensions of ACd
C and Bap

C

on the same side of AB with Cp
C. So Cp

C is inside △bp
CCb

∗

C on the other side of ap
Cb

p
C from Cd

C and
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Fig.25c (γ < 30o,β > γ,α > γ) Fig.25d (γ < 30o, β < γ, α < γ)

b∗

C. Consequently ap
CC

d
C intersects b∗

CC
p
C between b∗

C and Cp
C. Hence a∗

Ca
p
C is inside △a∗

CC
p
Cb

∗

C.

Consequently ap
C and B are inside ∠a∗

CC
p
Cb

∗

C. Therefore ∠a
∗

CC
p
Cb

∗

C encompasses ∠ap
CC

p
CB and so

∠a∗

CC
p
Cb

∗

C > ∠ap
CC

p
CB.

However Corollary 3a asserts ∠ap
CC

p
CB = (β + γ)+ . Deduce ∠b∗

CC
p
Ca

∗

C > 60o.

The case γ < 30o with β > γ and α < γ is similar and it is omitted.

Conclude that △Cp
Ca

∗

Cb
∗

C is not equilateral.

5.3.3 The Morley triangles with one distal and two mix vertices

These Morley triangles are denoted by △Cd
Ca

∗

Cb
∗

C, △bd
CC

∗

Ca
∗

C and △ad
Cc

∗

CB
∗

C.

Fig.26

a. △Cd
Ca

∗

Cb
∗

C: Vertex Cd
C is the in-

tersection of the distal to AB trisectors

Abp
C and Bap

C. Thus vertex a∗

C is deter-

mined by the intersection of the remain-

ing trisector CP
C , distal to BC, with Cap

C,

as proximal. Vertex b∗

C, is determined by

the left trisectorsACP
C and Cbp

C which are

distal and proximal to CA, respectively.

Vertex Cd
C is determined iff γ ̸= 30o

with CP
C and Cd

C to be on the same side

of AB iff γ > 30o.

Moreover a∗

C is always located be-

tween B and CP
C while b∗

C is always lo-

cated between A and CP
C. Fig.39 depicts the case for CP

C and Cd
C to be on the same side of AB.

Regardless the location of Cd
C, vertices a

∗

C and b∗

C are inside ∠ACd
CB. Thus ∠a

∗

CC
d
Cb

∗

C < ∠ACd
CB.

Since ∠ACd
CB = |60o − 2γ| < 60o then ∠a∗

CC
d
Cb

∗

C < 60o.
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Conclude that △Cd
Ca

∗

Cb
∗

C is not equilateral.

b. △bd
CC

∗

Ca
∗

C: Vertex bd
C is the intersection of the distal to CA trisectors Cap

C and ACp
C.

Hence vertex C∗

C is determined by the intersection of the remaining trisector bp
C, distal to AB,

with BCp
C, as proximal.

Vertex a∗

C is determined by the intersection of the left trisectors Cbp
C and Bap

C which are

distal and proximal to BC, respectively.

Trisectors Cap
C and ACp

C always intersect each other and so bd
C is located on the same side of AB

with Cp
C. Also Abp

C and BCp
C always intersect each other and so C∗

C is located on the same side of

AB with Cp
C. However a∗

C is not always determined as Cbp
C//Ba

p
C iff ∠bp

CCB + ∠bp
CCa

p
C = 180o

⇔ γ = α. In fact a∗

C is on the same side with bd
C and C∗

C iff α = γ . It should also be noted that

30o < γ implies α < γ. See Fig.27a.

For establishing that △bd
Ca

∗

CC
∗

C is not equilateral we will show that ∠bd
Ca

∗

CC
∗

C < 60o. Recall

that bd
C is inside △ap

CBC
p
C.

Thus ∠Ba∗

CC
∗

C encompasses ∠bd
Ca

∗

CC
∗

C. Hence for proving ∠bd
Ca

∗

CC
∗

C < 60o it suffices to

show ∠Ba∗

CC
∗

C < 60o.

Notice that ∠Ba∗

CC
∗

C = ∠Ba∗

Ca
d
C + ∠ad

Ca
∗

CC
∗

C and ∠Ba∗

Ca
d
C = ∠Ba∗

CC. From △Ba∗

CC it is

calculated ∠Ba∗

CC = |γ−α| regardless the location of a∗

C. Hence ∠Ba
∗

CC
∗

C = |γ−α|+∠ad
Ca

∗

CC
∗

C.

Moreover:

Fig.27a (30o < γ, α < γ) Fig.27b (α < γ < 30o)

◃ If α < γ then a∗

C is on the other side of AB from ad
C and C∗

C. See Fig.27a,b. Thus

∠Bad
CC is exterior angle in △ad

Ca
∗

CC
∗

C. Hence ∠ad
Ca

∗

CC
∗

C < ∠Bad
CC. In △Bad

CC it is calculated

∠Cp
Ca

d
CC = 2α and so ∠ad

Ca
∗

CC
∗

C < 2α. Infer ∠Ba∗

CC
∗

C < (γ− α) + 2α = γ+ α < 60o.

◃ If γ < α then a∗

C is on the same side of AB, with ad
C and C∗

C. See Fig.27c.
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Fig.27c (γ < 30o, γ < α)

Thus ∠ad
Cb

p
CC

∗

C is exterior angle in △bp
Ca

∗

CC
∗

C. Hence ∠bp
Ca

∗

CC
∗

C < ∠ad
Cb

p
CC

∗

C. But

∠ad
Cb

p
CC

∗

C = ∠Cbp
CA. In △Cbp

CA it is calculated ∠Cbp
CA = β and so ∠bp

Ca
∗

CC
∗

C < β.

Infer ∠Ba∗

CC
∗

C < (α − γ) + β < 60o.

Conclude that △bd
Ca

∗

CC
∗

C is not equilateral.

c. △ad
CB

∗

Cc
∗

C: It is shown as above that it is not equilateral.

5.4 Morley triangles by trisectors of one exterior and two interior angles

Eventually the non equilateral Morley triangles formed by trisectors of one exterior and two interior

angles are treated. Obviously these Morley triangles have one vertex in the interior and two in

the exterior of △ABC . As previously we will consider only those formed by the trisectors of the

exterior ∠A combined with the interior trisectors of ∠B and ∠C as the other two cases are similar.

5.4.1 The Morley triangle of proximal vertices

This is denoted by △Apbp
Ac

p
A . Vertex Ap is

the intersection of the proximal to BC interior
trisectors, vertex bp

A is the intersection of CBp

with the exterior trisector of ∠A proximal to AC,
while vertex cpA is the intersection of BCp with
the exterior trisector of ∠A proximal to AB.

Fig.28
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Consider the companion equilateral△SAApKA relative to vertexA. In Fig.28 the case α < 30o

is depicted for which Corollary 4 asserts that ∠BASA = ∠CAKA = β + γ − α while SA and KA

are outside of △ABC . Consider the intersections of line ApCp with the sides of △bp
AA

dcpA. Then

ApCp intersects side AdcpA at Cp and so externally, while it intersects side Adbp
A at SA internally

since ∠BAbp
A = 2(β + γ) and ∠BASA = β + γ − α. Thus, by Pasch’s axiom, ApCp intersects

the third side bp
Ac

p
A internally. Similarly line ApBp intersects bp

Ac
p
A internally. Thus ∠bp

AA
pcpA

encompasses ∠SAApKA and so ∠SAApKA < Lbp
AA

pcpA.

But ∠SAApKA = 60o and so ∠bp
AA

pcpA > 60o. Therefore for α < 30o the △Apbp
Ac

p
A is not

equilateral. The cases α > 30o and α = 30o are similar.

Conclude that △Apbp
Ac

p
A cannot be equilateral.

◃ Note that the non equilateral △Apbp
Ac

p
A fails the original statement of Morley’s theorem.

5.4.2 The Morley triangle of distal vertices

This is denoted by △Adbd
Ac

d
A. Vertex bd

A is the
intersection of CAp, the distal to CA trisector of the
interior ∠C, and the distal to CA trisector of the
exterior ∠A. Vertex cdA is the intersection of BAp,
the remaining trisector of ∠B (distal to AB) with the
distal to AB trisector of the exterior ∠A. Also it is
easily seen that bd

A and cdA are determined iff β ̸= γ.
Hence, for β ̸= γ, Ad is inside ∠AcdAB and ∠Cbd

AA.
From △Cbd

AA it is calculated that
∠Cbd

AA = 180o−3α−(β+γ)−2γ = 2β and similarly
from △AcdAB, ∠AcdAB = 2γ. Since α+β+γ = 60o,
at least one of β and γ is less than 30o. Thus either
∠bd

Ac
d
AA

d or ∠cdAb
d
AA

d is less than 60o.
Conclude that △Adbd

Ac
d
A is not equilateral.

Fig.29
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5.4.3 The Morley triangles with a proximal and two mix vertices

These triangles are denoted by △Apb∗

Ac
∗

A, △bp
AA

∗c∗A and △cpAA
∗b∗

A.

Fig.30

a. △Apb∗

Ac
∗

A : Vertex Ap is the inter-

section of the proximal to BC interior trisec-

tors. Hence b∗

A and c∗A are the intersections

of the two remaining interior trisectors, CBp

and BCp, with the trisectors of the exterior

∠A. Since each of these interior trisectors is

proximal to the side it belongs, it must be

paired with the distal to the corresponding

side exterior trisector.

Consider the companion equilateral

△SAApKA relative to vertex Ap. In Fig.30

the case α > 30o is depicted for which Corol-

lary 4 asserts that vertices SA and KA are

inside △ABC.

Consider the intersections of line ApCp with the sides of △bp
AA

dcpA. ApCp intersects side

AdcpA at Cp and so externally, while ApCp intersects side Adbp
A at SA and so internally. Thus,

by Pasch’s axiom, ApCp intersects the third side Ab∗

A internally. Similarly ApBp intersects

Ac∗A internally. Hence ∠bp
AA

pcpA encompasses ∠SAApKA and so ∠SAApKA < ∠bp
AA

pcpA. But

∠SAApKA = 60o and so ∠b∗

AA
pc∗A > 60o. Therefore for α > 30o △Apb∗

Ac
∗

A is not equilateral.

The cases α < 30o and α = 30o are similar and they are omitted.

Conclude that △Apb∗

Ac
∗

A is not equilateral.

b. △bp
AA

∗c∗A: Vertex bp
A is the intersection of the proximal to AC trisectors, which are CBp

and the corresponding trisector of the exterior ∠A. Thus A∗ is the intersection of the remaining

interior trisector of ∠C, CAp, which is proximal to BC, with BCp as distal to BC. Then c∗A is the

intersection of the left trisectors BAp, which is distal to AB, with the proximal to AB trisector of

the exterior ∠A.

Notice that the last two trisectors are parallel iff 2β = β + γ ⇔ β = γ. Thus c∗A exists iff

β ̸= γ.

Also if β > γ then bp
A and c∗A are on the same side of AC, while for β < γ, bp

A and c∗A are on

different sides of AC.

Case β > γ: We will show ∠bp
Ac

∗

AA
∗ < 60o.
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Notice that A∗ is inside △ABAp and so c∗AA
p is a right bound for the right side c∗AA

∗ of

∠bp
Ac

∗

AA
∗.

In following we will find a left bound for the left side c∗Ab
∗

A of ∠bp
Ac

∗

AA
∗.

Let b∗

A be the intersection of CAp with Abp
A and note that the points A, Ap, c∗A, and b∗

A are

cyclic, because from △BApC it follows that b∗

AA
pc∗A = β+γ and so b∗

Ac
∗

A is seen from A and Ap

with angle β + γ.

The extension of ApCp meets the exterior trisector Ab∗

A between A and b∗

A. Then it crosses

the circle, say at T . We will show that a left bound for side c∗Ab
∗

A of ∠bp
Ac

∗

AA
∗ is the bisector of

∠b∗

Ac
∗

AA.

Note that in a triangle the bisector of an angle crosses its opposite side at a point which is

between the side’s middle point and the side’s common vertex with the shortest of the other two

sides.

Let G be the intersection of the ∠b∗

Ac
∗

A A bisector with Ab∗

A. Also let M be the middle of

Ab∗

A.

◃ Cbp
A is angle bisector in △ACb∗

A. It is easily calculated from △ACb∗

A that ∠Ab∗

AC = β+γ and

so ∠Ab∗

AC < ∠b∗

AAC. Thus CA < Cb∗

A. Hence bp
A is between A and M.

◃ c∗AG is angle bisector in△Ab∗

Ac
∗

A. Obviously ∠b∗

AAc∗A = β+γ. Also ∠c∗Ab
∗

AA = ∠c∗Ab
∗

AC+

∠Cb∗

AA while ∠c∗Ab
∗

AA = ∠c∗Ab
∗

AC+ ∠Cb∗

AA. But ∠c∗Ab
∗

AC = ∠c∗AAAp = ∠c∗AAB+ ∠BAAp =

(β+γ)+∠BAAp. So ∠b∗

AAc∗A < ∠c∗Ab
∗

AA and thus b∗

Ac
∗

A < b∗

AA. Hence G is between b∗

A and M.

Therefore bp
A is on Ab∗

A and it is between A and G. So ∠Gc∗AA
p encompasses ∠bp

Ac
∗

AA
∗ and thus

∠bp
Ac

∗

AA
∗ < ∠Gc∗AA

p .

In the sequel we calculate ∠Gc∗AA
p. Notice that ∠Gc∗AA

p = ∠Gc∗AA + ∠Ac∗AA
p whereas

∠Ac∗AA
p = β − γ and ∠Gc∗AA = 1

2∠b
∗

Ac
∗

AA = 1
2∠b

∗

AA
pA = 1

2 [∠b
∗

AA
pT + ∠TApA].

But

∠b∗

AA
pT = ∠BApCp − ∠BApA∗ = γ+ − (β + γ) = α+ γ .

Also

∠TAb∗

A = ∠TApb∗

A = α+ γ and ∠ApTA = ∠Ac∗AA
p = β− γ.

Then from △TAAp it is calculated

∠TApA = α+ γ− ∠CpAAp .

Thus

∠Gc∗AA = α+ γ− 1
2∠TA

pA

and so ∠Gc∗AA
p = α+β− 1

2∠C
pAAp where 0 < ∠CpAAp < α. Hence ∠Gc∗AA

p < 60o. Therefore

∠bp
Ac

∗

AA
∗ < 60o.

Conclude that for β > γ △bp
AA

∗c∗A is not equilateral.
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Fig.31a (β > γ)

Fig.31b

Case β < γ: We will show that ∠bP
AA

∗c∗A >

60o.

Consider the intersections of Ac∗A with BCp and

CBp denoted by cpA and b∗

A respectively. Notice that

∠bP
AA

∗c∗A encompasses ∠b∗

AA
∗cpA. So it suffices to

show that ∠b∗

AA
∗cpA > 60o.

Observe that b∗

A, A
∗, C and cpA are cyclic, be-

cause side b∗

AA
∗ is seen from cpA and C with angle γ

as from △AcpAB it is calculated ∠AcpAB = γ. Thus

∠b∗

AA
∗cpA = ∠b∗

ACc
p
A.

Moreover ∠b∗

ACc
p
A = ∠AdCcpA, since Cb∗

A

passes through Ad. But

∠AdCcpA = ∠AdCA+∠ACcpA = γ+∠ACcpA and so

∠b∗

ACc
p
A = γ+ ∠ACcpA.

In adition A, Ad, C and cpA are also cyclic since

AAd is seen from C and cpA with angle γ.

Consequently ∠ACcpA = ∠AAdcpA and so

∠b∗

ACc
p
A = γ+ ∠AAdcpA.

Yet from △AAdB infer
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∠AAdcpA = ∠ABAd + ∠AdAB.

However ∠AdAB > ∠CpAB and thus

∠AAdcpA > ∠ABAd + ∠CpAB = β+ α.

Therefore ∠b∗

AA
∗cpA > γ+ β+ α = 60o.

Conclude that for β < γ, △bp
AA

∗c∗A is not equilateral.

c. △cpAA
∗b∗

A : It is showed that it is not equilateral similarly as △bp
AA

∗c∗A.

5.4.4 The Morley triangles with one distal and two mix vertices

These triangles are denoted by △Adb∗

Ac
∗

A, △cdAA
∗b∗

A and △bd
AA

∗c∗A.

Fig.32

a. △Adb∗

Ac
∗

A: Obviously Ad is the intersection

of CBp and BCp. Then b∗

A is the intersection of the

remaining interior trisectors CAp (distal to AC) with

the proximal to AC exterior trisector of ∠A. Notice

these two lines are parallel iff β + γ = 2γ ⇔ β = γ.

Moreover c∗A is the intersection of the left trisectors,

the interior BCp (proximal) with the distal to AB

trisector of the exterior ∠A. Notice these lines are

parallel iff β = γ. Therefore △Adb∗

Ac
∗

A is deter-

mined iff β ̸= γ. From △Ac∗AB and △Ab∗

AC it fol-

lows ∠Apb∗

AA = ∠Apb∗

AA = |β − γ| and so b∗

A and

c∗A are on the same side of AC.

We will consider only the case γ > β as the other

one is similar.

Notice that Ap is inside ∠BAdC. Thus

∠Adc∗Ab
∗

A encompasses ∠Apc∗Ab
∗

A and so

∠Adc∗Ab
∗

A > ∠Apc∗Ab
∗

A.

Also notice that A, Ap, b∗

A and c∗A are cyclic as AAp is seen from b∗

A and c∗A with angle γ−β.

Thus ∠Apc∗Ab
∗

A = ∠ApAb∗

A. But ∠A
pAb∗

A = ∠ApAC+∠CAb∗

A = ∠ApAC+ (β+ γ). Moreover

∠ApAC > ∠BpAC = α and so ∠ApAb∗

A > α+ (β + γ) = 60o. Therefore ∠Adc∗Ab
∗

A > 60o.

Conclude that △Adb∗

Ac
∗

A is not equilateral.

b. △bd
AA

∗c∗A : Obviously bd
A is the intersection of CAp with the distal to AC exterior

trisector of ∠A. Then A∗ is the intersection of the remaining trisector CBp (proximal to AB)
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Fig.33

with the BAp (distal). Thus c∗A is the intersection of the left trisectors, BCp and the distal to AB

exterior trisector of ∠A.

Notice that bd
A and c∗A exist iff β ̸= γ. We will show that ∠bd

AA
∗c∗A > 60o.

Note that Bp is inside △bd
AA

∗c∗A and so ∠bd
AA

∗c∗A encompasses ∠bp
AA

∗c∗A. Thus it suffices

to prove ∠bp
AA

∗c∗A > 60o.

For this we use a symmetric argument to the proof of ∠b∗

AA
∗cpA > 60o (5.4.4.a case β < γ).

Let bp
A be the intersection of Ac∗A with CA∗. Notice that c∗A, A∗, B, bp

A are cyclic as

c∗AA
∗ is seen from B and bp

A with angle β. Thus ∠c∗AA
∗bp

A = ∠c∗ABb
p
A. Moreover ∠c∗AA

∗bp
A =

∠AdBbp
A, since Bc∗A passes through Ad. But ∠AdBbp

A = ∠AdBA + ∠ABbp
A = β + ∠ABbp

A and

so ∠c∗AA
∗bp

A = β + ∠ABbp
A.

However A, Ad, B, bp
A are cyclic as AAd is seen from B and bp

A with angle β. Consequently

∠ABbp
A = ∠AAdbp

A and so ∠c∗AA
∗bp

A = β + ∠AAdbp
A.

Yet from △AAdC infer ∠AAdbp
A = ∠ACAd + ∠AdAC. However ∠AdAC > ∠BpAB and

thus ∠AAdcpA > ∠ACAd + ∠BpAB = γ+ α. Therefore ∠c∗AA
∗bp

A > β + γ+ α = 60o.

Conclude that △bd
AA

∗c∗A is not equilateral.

c. △cdAA
∗b∗

A: This case is similar to the above and it is omitted.
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6 Analogy between Bisectors and Trisectors in a triangle

The essence of the previous work is portrayed in the following two figures illustrating the analogy

between the (well understood) structure of angle bisectors and the (under study) structure of angle

trisectors in a triangle.

The structure of angle bisectors The structrure of angle trisectors

Fig.34a Fig.34b

The interior angle bisectors pass through a

unique point (incenter).

The interior angle trisectors proximal to the tri-

angle sides pass through the vertices of a unique

equilateral (inner Morley equilateral).

The bisector of an interior angle and the bi-
sectors of the other two exterior angles pass

through a unique point (excenter).

The trisectors of an interior angle and the trisec-
tors of the other two exterior angles proximal to

the triangle sides pass through the vertices of a
unique equilateral (exterior Morley equilateral).

The exterior bisectors pass through the vertices

of a unique triangle with orthocenter the interior

angle bisectors common point (incenter). +

The exterior trisectors proximal to the triangle

sides pass through the vertices of a unique equi-

lateral (central Morley equilateral). +

+ This fact follows from the previous one
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This structural similarity suggests that the triangle trisectors with the proper pairing meet

at equilaterals which correspond to the triangle bisectors common points. The perception that

trisectors behave like bisectors with equilaterals instead of points invites further exploration. New

results could be inspired from the vast variety of the angle bisectors’ point-line-circle theorems

revealing more exciting analogies between the two structures.

This work owes gratitude to John Conway, Gerry Ladas, George Metakides, Stanley Tennen-

baum, Thanasis Fokas, Fotis Fragos and foremost to Frank Morley. Its title is the instanta-

neous Ladas response to the showing of the last figure, when the project was trying to take off.

If it revealed any of the Morley triangles’ mystery hopefully it has left their charm untouched.

Received: January 2014. Revised: April 2014.
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