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ABSTRACT

It is established that among all Morley triangles of AABC the only equilaterals are the
ones determined by the intersections of the proximal to each side of AABC trisectors
of either interior, or exterior, or one interior and two exterior angles. It is showed
that these are in fact equilaterals, with uniform proofs. It is then observed that the
intersections of the interior trisectors with the sides of the interior Morley equilateral
form three equilaterals. These along with Pasch’s axiom are utilized in showing that
Morley’s theorem does not hold if the trisectors of one exterior and two interior angles
are used in its statement.

RESUMEN

Se establece que entre todos los tridngulos de Morley de AABC, los tnicos equilateros
son theones determinados por las intersecciones del proximal a cada lado de los trisec-
tores AABC de dngulos interior, o exterior, o uno interior y dos exteriores. Se muestra
que estos estan en triangulos equilateros de facto con demostraciones uniformes. Luego,
se observa que las intersecciones de trisectores interiores con los lados de un equildtero
Morley interior forman tres tridngulos equilateros. Junto con el axioma de Pasch, se
utilizan para probar que el Teorema de Morley no se satisface si se usan los trisectores
de un adngulo exterior y dos interiores.
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1 Introduction

The systematic study of the angle trisectors in a triangle starts after 1899, when Frank Morley, a
Cambridge mathematician, who had just been recently appointed professor at Haverford College,
U.S.A. while investigating certain geometrical properties using abstract algebraic methods, made
the following astonishing observation, known since then as Morley’s theorem.

In any triangle the trisectors of its angles, proximal to the three sides respectively, meet at the

vertices of an equilateral.

A Morley triangle of AABC is formed by the three
points of intersection of pairs of angle trisectors con-
nected by each triangle side. Obviously for a particular
side there are four possibilities for pairing trisectors since
there are four of them that the side connects. Thus Mor-
ley’s theorem claims that a Morley triangle of AABC is
equilateral, if it is formed by the intersections of trisectors

prozimal to the three sides of AABC respectively.

It should be noted that Morley’s theorem, as it is
stated, is subject to interpretation as the term angle
could mean either interior or exterior angle, or even a
combination of both for the different instances of the term

in the statement.

According to the angle meaning, Morley’s theorem
gives the following Morley equilaterals of AABC. The
intersections of the proximal trisectors of the interior angles form the interior Morley equilateral
of AABC. Also the intersections of the proximal trisectors of the exterior angles form the central
Morley equilateral of AABC. In addition the intersections of the proximal trisectors of one interior
and two exterior angles form an exterior Morley equilateral of AABC, and thus there are three
exterior Morley equilaterals of AABC. Fig.1 depicts the above Morley equilaterals. Proofs that
the above Morley triangles are in fact equilaterals are given in Part 3 of this work.

But so an obvious question, that several authors have raised,
begs for an answer. In a AABC are there other Morley equilaterals
besides the interior, the central and the three exterior Morley equi-

laterals?

Apparently the requirement of Morley’s theorem is satisfied by
three more Morley triangles formed by combinations of proximal tri-
sectors of an exterior and two interior angles. One of them is por-

trayed in Fig.2. Some experimentation using computer generated
graphs for these triangles has tempted the belief that Morley’s theo-
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rem holds for them as well [14]. But in Part 5, it will be proved that these are not equilaterals.

After the examination of all Morley triangles it will be shown that the equilateral ones are
exactly the interior, the central and the three exterior Morley equilaterals.

This enables the establishment of an analogy between the structures of the angle bisectors
and the angle trisectors in a triangle. Namely, the structure of trisectors resembles the structure
of bisectors with the inner and the exterior Morley equilaterals of AABC corresponding to the
incenter and the excenters of AABC respectively, while the central Morley equilateral corresponds
to the triangle with vertices the excenters of AABC.

Morley’s theorem is considered among the most surprising discoveries in mathematics as it
went curiously unnoticed across the ages. Ancient Greeks studied the triangle geometry in depth
and they could find it. But curiously they did not and it was overlooked during the following two
thousand years.

Angle trisectors exist regardless of how they can be constructed. If the structure of angle
trisectors maintains the regularity which characterizes the triangle geometry then theorems must
exist for expressing it.

The first observation about this regularity may have forgotten. Morley didn’t publish it until
25 years later by providing a sketchy proof, when the theorem had become already famous. But
Morley, excited by his discovery, travelled back to England to mention it to his expert friends. In
turn mathematical gossip spread it over the world and several journals proposed it for a proof.

Obviously, the simplicity of the theorem statement creates the expectation of an equally simple
proof. This simplicity challenges the mathematical talent.

The vast majority of publications on Morley’s theorem has treated only the trisectors of the
interior angles and gave proofs for the interior Morley equilateral. In the preface of the first

publication on the subject, by Taylor and Marr [12], it is recognized that the Morley’s work
on vector analysis, from which the above theorem follows, holds for both interior and exterior
trisectors. The paper’s treatment of the theorem with only the interior trisectors is explained
as "Morley’s work never published and it was only the particular case of internal trisectors that
reached the authors”. The very respectable given effort has produced proofs of many kinds,
exploiting a variety of features. Trigonometric, analytic and algebraic proofs supplement the
proofs of a purely geometric kind. Site Cut the Knot [13] presents 27 different proofs of Morley’s
theorem from many more available. Notably, Roger Penrose [9] used a tiling technique, Edsger
Dijkstra applied the rule of sines three times and then the monotonicity of the function y = sin(x)
in the first quadrant [3], Alain Connes offered a proof in Algebraic Geometry [1], John Conway
showed it in plane geometry like a jigsaw puzzle solution [2], while Richard Guy proved that it is a
consequence of his Lighthouse theorem [5]. However, a geometric, concise and logically transparent
proof is still desirable.
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Richard Guy notes: “There are a few hints that there is more than one Morley triangle, but
Hosberger [p. 98] asks the reader to show that Morley’s theorem holds also in the case of the
trisection of the exterior angles of a triangle ” [5]. Rose [10] and Spickerman [11] have proposed
proofs, using different methods, for the central Morley equilateral. In Parts 3 and 4 proofs for the
exterior Morley equilaterals will be offered.

The most popular technique for proving Morley’s theorem is encountered as indirect, backwards
or reverse construction method and fits in the following scheme.

Given a triangle assume that its angles are trisected and equal to 3, 3 and 3y, respectively,
where & +  +7v = 60°. In order to show that one of its Morley triangles is equilateral, start with
an equilateral AA'B’C’ and construct a AABC with angles 3, 3p and 3y, so that AA'B'C’ is
the appropriate (interior, central or exterior) Morley triangle of AABC. Thus AABC would be

similar to the given triangle and so would be their corresponding Morley triangles.

Proofs of the above method most often construct AABC by erecting AB’AC’, AC’BA’ and
AA'CB’ with proper choice of the angles formed on the sides of AA’B’C’. However repeated
requests have been recorded in geometry discussion forums for an explanation of the particular,
seemingly arbitrary, choice of angles made at the beginning of these proofs. Of course the rea-
soning of the choice is not necessary for their validity. But the readers unfulfilling understanding
may have encouraged the mathematical folklore the use of words “mystery”, “magic” or “mira-
cle” for referring to Morley’s theorem. This is not justifiable as there is nothing mathematically
extraordinary related to the theorem.

The presented proofs for showing that the interior, the central and the exterior Morley tri-
angles are equilaterals use the classical Analysis and Synthesis method. They exploit the inherent
symmetries of the problem and characterized by their uniform structure, logical transparency,
remarkable shortness and the distinct aesthetics of the Euclidean geometry. The Synthesis part
follows the previous method scheme. But it is empowered by two simple observations, supplying
necessary and sufficient conditions for a point to be the incenter or one of the excenters of a given
triangle. Even though they are almost trivial have a subtlety that enables to confront the messy
complexity of the triangle trisectors by enforcing clean simplicity and create proofs by harnessing
the power of the triangle angle bisector theorem. In addition these proofs reveal fundamental
properties of the Morley equilaterals stated as Corollaries. Besides their extensive use for showing
Morley triangles as not equilaterals, their fertility is demonstrated by proving the following: (1)
The two sides extensions of the inner Morley equilateral meet the corresponding inner trisectors at
two points which with the two sides common vertex form an equilateral. (2) The sides of Morley
equilaterals are collinear or parallel. (3) In any triangle the exterior trisectors of its angles, proxi-
mal to the three sides respectively, meet at the vertices of an equilateral, if and only if, the interior
trisectors of an angle and the exterior trisectors of the other two angles, proximal the three sides

respectively, meet at the vertices of an equilateral.



CUBO

201 Trisectors like Bisectors with equilaterals instead of Points . .. 75
16, 2 (2014

In short, this work advocates that for Morley’s observation a natural theoretical setting is
FEuclidean geometry.

2 Notation and Counting of all Morley triangles

In a Morley triangle of AABC each vertex is the intersection of two trisectors, each of which is
either proximal or distal to a side of AABC. Hence a vertex is called proximal, distal or mix with
respect to the triangle side it belongs in the case the trisectors are both proximal, both distal, or
one proximal and one distal to the side, respectively.

So we may denote a proximal, dis-
tal or mix vertex with respect to a side
by using as superscripts p,d or * to
the letter of the corresponding angle
of AABC opposite to the side.

Thus AP, A4 and A* denote the
proximal, distal and mix vertex of a
Morley triangle with respect to BC re-
spectively. In Fig.3 the notations for
all intersections of the interior trisec-
tors of AABC are showed. Notice
that a Morley triangle may have either
proximal vertices, or distal vertices, or

exactly two mix vertices.

Specifically, AAPBPCP denotes
the inner Morley triangle of proximal Fig.3

vertices, which is the inner Morley tri-

angle determined by the intersections

of proximal to each side trisectors. Also there is just one Morley triangle with distal vertices which
is denoted by AAYB4CY. In addition there are three Morley triangles with one vertex proximal
and two vertices mix. They are denoted by AAPB*C*, ABPC*A* and ACPA*B*

Moreover there are three more Morley triangles with one vertex distal and two vertices mix.
They are denoted by AAIB*C*, ABYC*A* and ACYA*B*. Notice that a proximal or a distal
vertex is uniquely determined but a mix vertex is not as there are two such denoted by the same
letter. However in a Morley triangle with a pair of mix vertices, given its proximal or distal vertex,
the mix vertices are uniquely specified due to the choice restrictions in pairing trisectors for the
second and then for the third vertex. Hence there are 8 interior Morley triangles formed by the
trisectors of the interior angles of AABC.

Similarly the trisectors of the exterior angles of AABC form Morley triangles. These are
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denoted by AARBECR | for the Morley triangle of proximal vertices, AASBECE, for the Morley
triangle of distal vertices, AAR B} Ct, ABRCEA% and ACRA% By, for the Morley triangles with
one proximal and two mix vertices, AASB%Ce, ABICEA% and ACLA% B for the Morley trian-
gles of one distal and two mix vertices. In this notation we use subscripts in order to distinguish
a vertex determined by the interior trisectors from the vertex of the same type determined by the
exterior trisectors. Hence, in general, there are 8 Morley triangles formed by the trisectors of the
exterior angles of AABC. Their vertices are in the exterior of AABC and due to their rather
central location with respect to AABC are called central Morley triangles.

There are two more possibilities for the formation of a Morley triangle. One is by combining
the trisectors of an interior angle with the trisectors of the other two exterior angles of AABC.
Another is by combining the trisectors of two interior angles with the trisectors of the third exterior
angle of AABC.

The Morley triangles formed by combining the trisectors of the interior ZA with the trisectors
of the exterior /B and ZC are denoted by AARbY ¢k, for the Morley triangle of proximal vertices,
AASHScq, for the Morley triangle of distal vertices, ACRatbl, AalbeCy and AbRCEaf,
for the Morley triangles with one proximal and two mix vertices, and AASb%ch, AbSch AL,
Ack A% by for the Morley triangles with one distal and two mix vertices. The use of a small letter
is for denoting the intersection of an interior and an exterior trisector of AABC. The vertices of
these 8 triangles formed by the trisectors of the interior ZA with the trisectors of the exterior /B
and ZC are in the exterior of AABC and thus they are called exterior Morley triangles relative to
ZA.

Similarly are denoted the Morley triangles relative to /B, which are formed by combining the
trisectors of the interior angle /B with the trisectors of the exterior ZC and ZA, and also the
ones relative to ZC formed by combining the trisectors of the interior ZC with the trisectors of
the exterior ZA and ZB. Hence, in general, there are 24 exterior Morley triangles determined by
the intersections of trisectors of an interior and two exterior angles of AABC.

The Morley triangles formed by combining the trisectors of the interior /B and ZC with
the trisectors of the exterior ZA are denoted by AAPbBY ¢k, for the Morley triangle of proximal
vertices, AA9b4ck, for the Morley triangle of distal vertices, AAPb3 ¢, Abhch A*, Ach A*by,
for the Morley triangles of one proximal vertex and two mix, AAdb% ch, AbSci A%, ActA*b%,
for the Morley triangles of one distal vertex and two mix. It should be remarked that in this
notation the same symbol for the intersection of an interior with an exterior trisector may refer to
two different points, an ambiguity which is clarified in a Morley triangle since one of its vertices
specifies its type and so the vertex that the symbolism refers. Hence, there are 8 Morley triangles
relative to the exterior ZA, which obviously have one vertex inside and two outside AABC. In
general, there are 24 Morley triangles of AABC determined by the intersections of trisectors of
one exterior and two interior angles of AABC.

Conclude that in total there are, in general, 64 Morley triangles of AABC.
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3 Uniform Proofs for all Morley Equilaterals

In this part we will prove that five Morley triangles are
equilaterals. The proofs are uniform and utilize two basic
observations for determining the incenter or an excenter
of AABC wusing only one of its bisectors.

Observe that the incenter I is lying on a unique arc
passing through two vertices and I. In Fig.4 the unique
arc passing through A, B and I is depicted. Obviously

ZAIB=180° — 1/ABC = 1/BAC = 90° + 1 ZACB.

Thus I may be characterized as the intersection in the
interior of AABC of a bisector with the arc of size 20° + Fig.4
%ZACB passing through A and B. Clearly an analogous
result holds for the other two pairs of vertices of AABC.

We refer to this as the Incenter Lemma.

If Ic is the excenter relative to ZC then
ZAIcB =90° — JZACB, ZBIcC = J/BAC and £CIcA = 1 ZCBA.

Thus I¢ is determined by the intersection in the exterior of AABC of a bisector, either of the
interior ZC or the exterior ZA or /B with the arc of size 90° — %AACB passing through A and B,
or with the arc passing through B and C of size %ABAC, or with the arc of size %ACBA passing
through C and A. Evidently analogous results hold for the other two excenters Ia and Ig. We

refer to this as the Excenter Lemma.

Theorem 1. In any triangle the interior trisectors of its angles, proximal to the sides, meet at
the vertices of an equilateral.

Proof.

Analysis: Let AABC be a triangle with ZA =
3x, /B =3B and ZC = 3y, where a+p+y = 60°.
Suppose that AAPBPCP is equilateral, where AP,
BP and CP are the intersections of the trisectors
proximal to the sides BC, CA and AB respec-
tively. The aim of this step is to calculate the
angles formed by the sides of AAPBPCP and the
trisectors of AABC. See Fig.5.

Let C4 be the intersection of ABP and BAP. Since
ACP and BCP are angle bisectors in AACYB , CP
is the incenter.

Fig.5b
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Let P and Q be the orthogonal projections of CP on AC¢ and BC¢ respectively. Thus CPP =
CPQ and CYP = C4Q. But so ACPPBP = ACPQBP as right triangles having two pairs of
sides equal. Hence BPP = APQ. Then C4AP = C9BP and so AAPC9BPis isosceles. Now from
AACYB we have ZACIB = 180° — (2« + 23) = 60° + 2y.Therefore ZCIBPAP = LCIAPBP =
%[180" — (60° 4+ 2y)] = 60° —vy. Consequently

ZCPBPA = ZCPAPB = 180° — 60° — (60° —y) =60° +vy =vT.

Let A4 be the intersection of BCP and CBP. Also let B4 be the intersection of CAP and ACP.
Then from ABAYC and ACBYA find similarly
ZAPCPB = ZAPBPC = ot and ZBPAPC = /BPCPA =3™.

Synthesis: Suppose that a triangle is
given and assume that its angles are trisected
and equal to 3«, 33 and 3y, respectively,
where o+ 3 +7v = 60°. Then around an equi-
lateral AAPBPCP will construct AABC with
angles 3, 3f and 3y so that AP, BP and CP
will be the intersections of the proximal to the
sides interior trisectors.

On the side BPCP erect ABPACP with
adjacent angles y* =y +60° and B+ = +
60°.

Similarly, erect ACPBAP and AAPCBP on
the sides CPAP and APBP respectively with
corresponding angles as shown in Fig.6, which

A

were found in the Analysis step. Fig.6
Let C9 be the intersection ABP and BAP.
Notice that AAPCIBP is isosceles as two of
its angles are 180° — 60° —y™ = 60° — .
Thus
C4AP = C9BP (1) and ZAPCIBP = 180° —2(60° —y) = 60° + 2y (2)

Since AAPBPCP has been taken equilateral, CPAP = CPBP. Combine this with (1) and infer
that CP is on the APBP bisector and so on the ZACYB bisector. Moreover from (2) ZACPB =
360° — (ot +60°+BF) = 180° — (a+B) = 90° + 1 (60° +2y) = 90° + 1 LAPCIBP = 90°+ 1 ZAC9B.

Hence, by the Incenter Lemma, CP is the incenter of AAC9YB.

Similarly it is shown that AP and BP are the incenters of ABAYC and ACBYA, respectively,
where A4 is the intersection of BCP and CBP, while B¢ is the intersection of CAP and ACP. Thus
/CPAB = ZCPABP = ZCABP and so ABP, ACP are trisectors of ZA.
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Also the choice of angles in the construction of ABPACP implies ZCPABP = «. Hence
/A = 3«x. Likewise infer that BCP, BAP are trisectors of /B with /B = 3 and CAP, CBP are
trisectors of Z/C with ZC = 3y.

Corollary 1. a) The angles between the trisectors of AABC and the sides of its inner
Morley equilateral AAPBPCP are: ZAPBPC = ZAPCPB = at, ZBPCPA = /BPAPC = BT,
/CPAPB = /CPBPA =vT.

b) The heights of the equilateral ANAPBPCP are: APAY, BPBY and CPCHY .

Theorem 2. In any triangle the exterior trisectors of its angles, proximal to the sides, meet at
the vertices of an equilateral.

Proof.

Analysis: Let AABC be a triangle with ZA =3, 4B =3 and ZC = 3y, where a+ 3 +v =
60°. Let AR,B} and C? be the intersections of the exterior trisectors proximal to the sides BC,
CA and AB respectively. Suppose AAR BECP is equilateral. The aim of this step is to calculate
the angles formed by the sides of AAL B C2 and the exterior trisectors of AABC.

Fig.7a (y < 30°) Fig.7b (y > 30°) Fig.7c (y = 30°)
Let P and Q be the orthogonal projections of C{ on ABE and BAR respectively.
Notice that ABE and BAR may intersect each other or be parallel since

ZPAB + ZQBA =2(B +v) + 2(y + o) = 120° + 2y.

If ABY and BAY intersect each other let C% be their intersection. Next consider all possible
cases.

> If v < 30° then

Cd and CP. are at the same side of AB. In AACEB, ACY and BC}. are interior angle bisectors
and so C¥ is the incenter, while it is calculated ZACEB = 60° — 2y. Fig.7a.
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> If v > 30° then
Cd and CP are on different sides of AB. In AACEB, ACP and BCY. are exterior angle bisectors
and so C} is the excenter relative to ZC&, while it is calculated ZAC&B = 2y — 60°. Fig.7b.

Hence in both the above cases (y # 30°) it holds CZP = CRQ. Thus ACEPBE = ACRQAL,
as right triangles having two pairs of sides equal. Consequently ZCRLBEP = ZCRALQ and so
AAR CABE is isosceles. Thus:

o If v > 30° then
ZCRBRP = ZCRARQ = 1[180° — ZAR CEBE] — 60° = 1[180° — (60° — 2y)] — 60° = .
o If y < 30° then
ZCRBEP = ZCPARQ = 180° —60° — 1[180° — ZAR CABE] = 180° —60° 1[180° — (2y — 60°)] = y.
Deduce that for y # 30° it holds ZCEBEA = ZCRARB =1.

> If y =30° then o+ p = 30° and ABY//BAL. Fig.7c.
Notice ZACEB = 180° — (30° + B) — (30° + «) and so ZACEB = 90°.
Let M be the midpoint of AB. Since AACEB is right triangle, CEM = MA = MB. Then CEM =
MA gives ZCEAM = ZMCZA. But ACY is the ZPAB bisector and thus ZCRAM = ZCRAP.
Hence ZMCRA = ZCRAP and so BEA//CEM//ARB.
Since MA = MB, CZM bisects AL BE and so CZM L AR BE, as AALBECP is equilateral.
Then ABY, BAR L ARBE. Therefore ZABEAL = 90° and given that ZCZBEAR = 60° infer
ZCPBEA =30°. Similarly infer ZCPARB = 30°.
Deduce that for y = 30° it holds ZCEBEA = ZCRALRB =1.

o Conclude that for any value of y it holds ZCEBEA = ZCRARB =1.

Then from ACRABY and ACEBAR deduce ZBECRA = B and ZAL CEB = « respectively.
Also from ABAR C and ACBRA infer ZBEAR C =B and ZARBLC = «.

Synthesis: Let a triangle be given in which its angles are equal to 3a, 33 and 37y respectively,
where o + B +vy = 60°. Then around an equilateral, which is denoted by AARBECE, will
construct a AABC with angles 3x, 3B and 3y so that AR, BE and CZ will be the meeting points
of the exterior angle trisectors proximal to the sides of AABC. On the side BE CY. erect ABEACY
with adjacent angles y and § which were calculated in the Analysis step. Similarly, erect ACEBAR
and AAR CBE on the sides CRAR and AR BE with corresponding angles as they are depicted in
Fig.8. Hence AABC has been determined. So it remains to be proved that the resulting AABC
has angles 3o, 33 and 3y respectively and the erected sides are the trisectors of its exterior angles.

Let P and Q be the orthogonal projections of C{ on the extensions of ABE and BAR respec-
tively. Next consider all cases regarding AB}, and BAR .
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Qs

\ .
¥p? : B

Fig.8a (y <30°) Fig.8b (y >30°) Fig.8¢ (y = 30°)

> Assume Yy . oet s = —-v — 7| and let e the meeting point o an
A 30°. S (30° )/130° | and let C& be th i i f ABY and
AR B. The choice of angles in the erection of ABEACE and ACEBAR implies:

CP is lying on the ZAR CEBY bisector (1) and ZACEB = 90° + 1s/ACEB (2)

To verify (1) notice that AAR CEBE is isosceles, as two of its angles are by construction
either 60° +v (y < 30°) or 120° —vy (y > 30°). But AARBECE is assumed equilateral and so
CRAR = CEBE. Thus CECP bisects side AR BE of the isosceles AAR CEBE and so CP is lying on
the ZAR C¢B} bisector.

To verify (2) notice that in the isosceles AAR CABY either ZACIB = 180° — 2(60° + ) —
60°—2y (v < 30°) or ZACEB=180°—2(60°+y) = 2y—60° (y > 30°). Thus ZACEB — s(60°—2y).
Hence JACEB = B +60° + p = 60° + (60° —y) = 90° + 15(60° — 2y) = 90° + s ZACLB.

Therefore from (1) and (2), by the Incenter Lemma (y < 30°,s = 1) or the Excenter Lemma
(y >30°,s =—1), C} is the incenter or the excenter of AACZB respectively.
Thus ACP and BCY are bisectors (interior or exterior) in AACEB. So, using ACRAB} and
ACEBAR, deduce ZCRAB = ZCRAP =y + B and ZCZBA = ZCEBQ = vy + B. Consequently
ZCRAB =v+ B and ZCLBA =y + 3 while AC. and BCY bisect the angles formed by AB and
the extensions of ABE and BAR respectively.

> Assume y = 30° . Then o+ 3 = 30°. Notice AB} , BAR L AR B} and so AR B//BEA. Also
ZACRB = B+60°+a = 90° and so AACEB is right triangle. Let M be the midpoint of AB. Hence
CPM=MA=MA. But C®M = MA implies ZCRLAM = /MCPA. Since ZCPAM = ZCP.AP,
ZCRAM = ZACEM. Consequently CZM//AP. Thus ARB//CEM//BEA and since MA = MA,
CZM passes through the midpoint of AR BE. As a result CEM is a height of the equilateral
AARBECY and so ZAR CEM = ZBE CZM = 30°. Therefore
ZCPAB = /MCPA = ZMCRBE, = /BLCPA = 30° + = y + B.

Similarly it is shown ZCEBA =30° + o« =y + a.

Also ARB//CEM//BEA implies ZCZAP =ZACEM and ZQBCY = ZBCEM. So
ZCPAP = Z/CPAB and ZCPBQ = ZCPBA.
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o Conclude for any vy it holds ZCRAB =y + p and ZCEBA =y + «, while AC{ and BCR
bisect the angles formed by AB and the extensions of AB} and BAR respectively.

The rest cases are treated similarly. Considering BCE and CB}, it shown that ZARBC = o+
and ZAX CB = o+ while BAR and CA% bisect the angles formed by BC and the extensions of BCR
and CB}, respectively, and eventually considering CAR and ACY. it is proved that ZBECA =+«
and ZBRAC = B +y while CBE and ABE bisect the angles formed by AC and the extensions of
ACP and CAX respectively. Conclude that ABE bisects the angle between AC and the extension
of ACP, while ACY. bisects the angle between AB and the extension of ABY. Thus ABE and ACR
are trisectors of the exterior ZA.

Also ZCPAB = ZBRAC =y + B. Hence ZA = J[360° — 6(B +v)] = 180° —3(B +7v) = 3.
Similarly it is shown that BCR, BAR are trisectors of the exterior /B with /B = 3 and CAR,
CB} are trisectors of the exterior ZC with ZC = 3y.

Corollary 2. a) The angles between the exterior trisectors of AABC and the sides of its cen-
tral Morley equilateral AARBECY. are: ZARBEC = ZARCEB = o, ZBJCRA = ZBRALC = B,
ZCRARB = ZCRBEA =Y.
b) The heights of the equilateral AAY,BECYR are: AR AL, BEBS and CRCE.

Theorem 3. In any triangle the interior trisectors of an angle and the exterior trisectors of

the other two angles, proximal the three sides respectively, meet at the vertices of an equilateral.

Proof.

Analysis: Let AABC be a triangle with ZA =3, /B = 3p and ZC = 3y, where a«+ 3 +v = 60°.
Let C? be the intersection of the exterior trisectors of /B and ZC, proximal to AB, while af
and by are the intersections of the interior with the exterior trisectors proximal to BC and CA
respectively. Suppose that AafCZbP is equilateral. The aim of this step is to calculate the angles

between the sides of Aafj CEbE and the interior trisectors of ZC and also the exterior trisectors
of ZA and ZB.

Let P and Q be the orthogonal projections of C% on Ab{ and Bap, respectively. It was
observed in the course of the Analysis Step of Theorem 2 that the trisectors Ab{ and Bal inter-
sect each other iff y # 30°. Recall that if y # 30° C is the incenter (y < 30°) or the excenter
(y > 30°) of ABCAC while for y = 30° Abl//Bafl. But it was shown that in either case it holds
CZP = CZQ and hence ACEPbE = ACRQaP, as right triangles having two pairs of sides equal.
This implies ZAbZ.CP = ZBal C (1). Consequently:

> If v # 30° then C¢ is determined. Hence (1) implies ZblaRCd = ZalbRC&. Thus
Aal CebY is isosceles. However from AACEB it is calculated that
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Fig.9a (y < 30°)

Fig.9b (y > 30°)

ZAC%B =60° — 2y (y < 30°) or ZAC%B =2y —60° (y > 30°).
Then we have respectively.
o For y < 30°, C¢ is on the other side of albf from A, B and
ZAbPal = /Balbl = 180° — 1[180° — (60° — 2y)] = 120° — .
o For y > 30°, CZ is on the same side of al.bl. with A,B and

ZAbRaP. = /Balbl = 1[180° — (2y — 60°)] = 120° — .

In either case ZCRalB = ZCRbLA =60° —y = a + B.

> If y = 30° then AbZ//Bal. Also CRP, CZQ are collinear and o« + f = 30°. Thus
ZaP.CPBY = 180° — (30° + B) — (30° + &) = 60° and so by (1) ZaRCRQ = /bRCRP =
1(180° — ZaP.CRbP) = 1(180° — 60°) = 60°. Hence ZCRalB = ZCRbRA = 30° = a+ p.

o In conclusion for any 7y it holds ZAbRCR = ZBalCR =60° —y = ot + B.

Finally from ABaPC and ACbZA we find ZBalC = o and ZAbRC = B respectively,

and so ZCRalC = B and ZCEbRC = «. Yet from AbZACE and ACEBal calculate that
ZbRCRA = (y+ o)™ and ZalCEB = (y +B)".

Synthesis: Suppose that a triangle is given with angles equal to 3x, 33 and 3y, respectively,
where o + B +y = 60°. Then from an equilateral, which we denote AaRCEbY, will construct
a NAABC with angles 3x, 3 and 3y so that the sides of the erected triangles are the proper
angle trisectors of the resulting AABC. On the side aRbf erect AafCb{ with adjacent angles
BT =60°+ B and ot = 60° + « so that C¥. is inside AaR CbR. Next on the side bR CP erect
AbLACE with adjacent angles o« + B and (y + «)*. Finally on the side CRal erect AalBCR
with adjacent angles o+ and (y + p)*. Thus AABC has been determined. See Fig.10 for the
corresponding value of y. So it remains to be proved that the resulting AABC has angles 3«, 33
and 3y, respectively and the erected sides Ca, Cb{ are trisectors of ZC, while AbP, ACY., and
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BCE, Ba. are trisectors of the exterior angles ZA and ZB respectively.

Fig.10a (y < 30°) Fig.10b (y > 30°) Fig.10c (y = 30°)

Notice that if either y < 30° or y > 30° then AbY and Bap intersect each other, while for
y =30° AbY.//Ba.

First we deal with the erected sides Cal and Cb{ and prove that they are trisectors of ZC .
We also show that ZC = 3y. See Fig.11.

Let bd be the intersection of ACY and Cap.
Notice the choice of angles in the construction of a?
AafCbf and AalBCP yields ZCalCR = B and
ZalCRbd = 180° — (y + o)™ — 60° = P. Hence
AalbdCR is isosceles. Thus ZAbIC = 2B and
ZAbRC = 1/AbEC.

Since AalbdCP is isosceles and from the as-
sumption AalCRbY is equilateral, infer that bdbl
bisects al. CY and so bdby. is the Zalbd CY bisector.

Hence bd is lying on the exterior bisector of AAbEC.

Fig.11

Thus, by the Excenter Lemma, b} is the excenter of
AAbLC relative to ZC. But so Cb. is the ZACa bisector.

Similarly show that Cal is the ZBCb} bisector.

Therefore CbY: and Caf are trisectors of ZC. Also
ZaR CbR =180° — ZCblal — ZCalbl =180° —a™ — B+ =1.

Conclude ZC = 3y.

Next we deal with the erected sides ACE, AbP and BCP, Bal and prove that are trisectors
of ZA and /ZB. We also show that /A =3« and ZB = 3f3.
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> Assume y # 30°. Set s = (30° —v)/|30° —y| and let C& be the meeting point of AbY and
Baf.. The choice of angles in the erection of ACZAbLand ACEBaf implies:
CP is lying on the ZACZB bisector (1) and ZACEB = 90° + $sZACEB (2)

To verify (1) notice that Aah CIbY is isosceles, as two of its angles are either 120° — (a4 3)
(v < 30°) or 60° + (« + B) (v > 30°). Using the fact that AaR CRbY is equilateral, infer that
CaCY bisects al bl and so CP is lying on the ZalC3bY bisector.

To verify (2) notice that in the isosceles Aal CEbY
o if y < 30° then ZACIB = 180° — 2[120° — (a + B)] = 60° — 2y = s(60° — 2y) ,
o if y > 30° then ZACIB = 180° — 2[60° + (cx + B)] = 2y — 60° — 5(60° — 2v).
So for the cases y < 30° and 'y > 30° have respectively:
o ZACIB = s(60° — 2vy) and
o ZACEB =360° — (x +v)" — (B+7v)" =120° —y = 90° + %(600 —2y) =90° + %SZACgB.

Therefore from (1) and (2), by the Incenter Lemma (y < 30°, s = 1) or the Excenter
Lemma (y > 30°, s = —1), C} is the incenter or the excenter of AACEB respectively. Thus
ZCPAbY. = /CPAB and ZCPBaP = Z/CRBA.

Moreover from ACRAbY and ACZBap infer ZCRAbY =y + f and ZCZBal =y + a.
Deduce for y # 30° it holds ZCRAbY = ZCRAB =y + f and ZC{Baf = ZCRBA =y + «.

> Assume Yy = 30° and so oc+ B = 30°. Then the choice of angles in construction of ACEBal
and ACZADbE implies ZCEbRA = ZCRalB = o+ p = 30°. Hence AbZ,Bal L afbl and thus
AbY//Bal. Draw from C} the height of the equilateral Aafb%CP meeting AB at M. Hence
CZM//AbY//Baf, and also MCP bisects albf. But so M is the midpoint of AB. Also notice
that AACEB is right triangle as ZACZB = 360° — 60° — (B + 30°)" — (a« + 30°)" = 90°. Then
CPM = MA = MB. Now CEM = MA implies ZCRAM = ZMCPA. Yet CE.M//AbP. implies
ZCRADBY = ZACEM. Thus ZCRAbY = ZCELAM and so ACR is the ZbPAB bisector.

Similarly it is shown that BCY. is the ZaRBA bisector.

Also the choice of angles in the construction of ACRAbY gives
ZCPADY. = 180° — 30° — (ot +30°)* = 30° + .
Deduce for y = 30° it holds ZCRAbY = ZCRAB =30° + B =v + B.
Similarly it is shown that ZCZBag = ZCZBA =v + «.

o Conclude for all y it holds
ZCRADbYL = ZCRAB =30°+ B =v+ B and ZCEBal = ZCRBA =v + «.

From AADBLC it follows ZbZAC = 180° — 3 —y, since from the construction choice of angles
ZABRC = B and ZACbY = v, as found in the first step. But clearly Zb2AC = ZbRACY +
ZCRAB+ ZCAB =2(y + B) + ZA. Then ZA = 3o and similarly ZB = 3. Therefore the angles
of AABC are 3w, 3B and 3y. Since ZCZAbY = ZCRAB =y + B it follows that Abf and ACY
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are trisectors of ZA in AABC.
Similarly it shown that Bal and BCP. are trisectors of /B in AABC.

Corollary 3. a) In any AABC, the angles formed by the side’s of the exterior Morley
equilateral Aaf.CLbY relative to the ZC and the exterior trisectors of ZA and ZB are: ZaZCRB =
(y+B)", LZbRCRA = (v + &) t, ZCLalB = ZCRbR A = o+ B, while with the interior trisectors
of ZC are: ZCRalC=p and ZCLLRC = «.

b) The heights of the equilateral AalCRbY are: afad, bbd and CRCY.

4 Implications

4.1 Companion Equilaterals of the inner Morley equilateral

Theorem 4. The two sides’ extensions of the inner Morley equilateral meet the corresponding

inner trisectors at two points which with the two sides’ common vertex form an equilateral.

Proof. As usually AAPBPCP denotes the interior Mor-
ley equilateral of AABC. Let Sa be the intersection of the
extension of side AP CP with the trisector CBP and let Ka be
the intersection of the extension of side APBP with the trisec-
tor BCP. Moreover let A9 be the intersection of the trisectors
BCP and CBP. By Corollary la, ZAPBPC = ZCPAPB = "
and so ABPAYCP is isosceles. Thus APA¢ is bisector of both
Z/BPAPCP and /BPA4CP.

Hence /ZBPAPAY = /CPAPAY and ZBPAYAP = LCPALAP,
Also ZSAAYAP = /KAAYAP as obviously ZSAAdCP =
ZKAAYBP and LSAAYAP = /SAAICP + LCPAYAP while
ZKAAYAP = LZKAAYAP + /BPAYAP.

Therefore AAPSAAY and AAPKAAY are equal because in
addition they have side APA?4 in common. Consequently
ASAAPK, is equilateral.

Fig.12

The previous equilateral is named companion equilateral relative to vertex AP and it will be
denoted by ASAAPKA. Obviously there are two more companion equilaterals relative to vertices
BP and CP, denoted by ASgBPKpg and AScCPKc, respectively.

Corollary 4. For the companion equilateral relative to vertexr AP, ASAAPKa, it holds
/ZBASA = ZCAKA = +v —«f.
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In fact, the points SA and Ka , for a < 30° are outside AABC, for o« = 30° are on AB and AC,
respectively, and for o > 30° are inside AABC.

Proof. Corollary la asserts ZCPAPB = y* and
/BPAPC = B*. Thus from AKAAPB and AKAAPB it
is calculated ZCPSABP = o and ZCPKABP = «, respec-
tively. Then the points BP, CP, Sao and KA are cyclic as
BPCP is seen from Sa and KA with the same angle. Thus
ZASAKA = ZABPKA and ZAKASA = ZACPSA. From
ABCPA and ACBPA infer that ZACPKa = f + v and
ZABPSA = a+ 7y, respectively. Hence
/ASAKA =B +7v and ZAKASA = ax+.

Next notice that ZSAACP = 180° — LASACP —
ZSACPA =180° —(60° +B+v)—(x+v)=p+Y
and similarly ZKAAC = + .

However Fig.13
/SAACP = ZSAAB £+ ZBACP and

LKAAC = LZKAAC £+ LZCABP,
where + may be either + or — depending on the location of Sa and Ka with respect to AB and
AC respectively. Therefore ZSAAB = ZKAAC =|f +v — «f.

Because oc +  +v = 60° for o < 30° the points Sp and K are outside AABC, for o« = 30°
the points Sa and K5 are on AB and AC, respectively and for o« > 30° the points Sa and K5 are
inside AABC.

4.2 Relation of the Morley equilaterals

Theorem 5. In any triangle the sides of Morley equilaterals are either collinear or parallel.

Proof. Corollary 2a claims ZBCRAR = «. Also
Corollary 3a confirms ZBCRal = (B +v)". Hence
/BRCRaP = /BLCRAY + ZARCPRB + /BChal =
=60°+a+ (p+vy)t =180°.

PP : PP
Thus aCg is extension of By C-.

Similarly it is shown that bY C. is extension of A} CZ. .
As /bRalCP = ZARBECR = 60°, it follows N od
albf//ALBE.

Fig.14
Since /bP.alC = /bPalCP + /CPal.C = 60° + f e



38 Spiridon A. Kuruklis SEI(ZBM?)

and Z/BPAPC = B+ then
aPbP. //APBP.

The previous result is mentioned as a fact in [8] and it might be in print elsewhere. At any

event, it inspires the next theorem.

4.3 Interrelationship between central and exterior Morley equilaterals

Theorem 6. In any triangle, the exterior trisectors of its angles, prozimal to the three sides re-
spectively, meet at the vertices of an equilateral, if and only if, the interior trisectors of an angle
and the exterior trisectors of the other two angles, prozimal the three sides respectively, meet at

the vertices of an equilateral.

Proof. Let AABC be given with ZA =3, /B =3
and ZC = 3y, where « + p + v = 60°.

(=) Assume that AARBECE is the central Mor-
ley equilateral formed by the intersections of the exterior
trisectors, proximal to the sides of AABC. See Fig.15a.

Extend AR CZ and BECE to meet the extensions of
AR B and BRA at A” and B” respectively. Then AB” and
BA" are trisectors of the exterior ZA and /B respectively,

as extensions of the corresponding trisectors. Thus it suf-
fices to show that AA”CRB” is equilateral and also that
CA” and CB” are trisectors of the interior ZC.

First show that AA”CZB” is equilateral.

Notice that AA”AR BY = AB”AR BY because they
have A% BY common, ZA”BRAR, = /B”ARBE = 60° and ZA”ARBE = /B"BLAR = 60° +y by
Corollary 2a. Thus A”BE = B”AR. But so CLA” = CEB”, as CRAR = CZB} since AALBECR
is equilateral. Also ZA”CRB” = ZAL CZBY = 60° and hence AA”BE CP is equilateral.

Next show that CA” and CB” are trisectors of the interior ZC.
From AAR A”BY and AALB”B}, it is easily calculated that ZAR A”BY = « + p and ZAB”BE =
o+ B. Hence AR, BE, A”, B” are cyclic. But ZBRARC = B and ZARBEC = «, by Corollary
2a. So from AARCBE, ZARCBE = 180° — (x + B). But so C is also on this circle. Thus
ZCA"AR = ZARBEC = « and ZCB”B} = ZBR AR C = B. Finally note that in ABA”C and
ACB”A it holds respectively ZA”"CB = (ax+vy)—a=vand ZB"CA=B+v)—-pB=7.

Conclude CA” and CB” are trisectors of the interior ZC, as ZC = 3y.
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X

" a

. . . 6o\
(&) Assume that the exterior triangle Aag CZbP is Fg \
equilateral formed by the intersections of the trisectors of ,.E,I_’Q(Z’-_——L—"-\

the interior ZC and the exterior ZA and Z/B. See Fig.15b.

Extend alCP{ and bECP to meet the extensions of
alB and b A at A” and B” respectively. Then AB” and
BA are trisectors of the exterior ZA and ZB respectively,

as extensions of the corresponding trisectors.

. B”
Thus it suffices to show that AA”CEB” is equilateral Fig.15b
and that CA” and CB” are trisectors of the interior ZC.

Note AA”albl = AB”albl, because they have
af bl common, ZA"BEAR = ZB”ALBE = 60° and
ZA"ARBE = ZB"BEAR = 60° + a+ B by Corollary 3a. Thus A”bP. = B”al. Since Aal.CEbY
is equilateral then CRA” = CZB” and so AA”CEB” is equilateral.

Also from AaPBC and AbYCA it is calculated that Zal:CB = ZbECA =+ and so Caf and
Cbf are trisectors of ZC.

5 The non Equilateral Morley Triangles

For a given AABC there are in general 64 Morley triangles, as the
trisectors of its three angles meet at many points. Among them are B
the inner, the central and the exterior Morley equilaterals.

A number of authors (see for example [4] or [5]) have wondered:
Are there more Morley equilaterals for AABC ¢

This part examines all the remaining Morley triangles of AABC

systematically and shows that none of them is equilateral.

In the sequel the following easily proved lemma is
used.

The Equilateral Center Lemma. The incenter of an equi-
lateral is the unique interior point from which its sides are seen with
120°. Similarly the excenter relative to an angle is the unique exterior point from which the side
opposite to the angle is seen with 120° while the other two sides are seen with 60°.

5.1 Morley triangles by trisectors of interior angles

This section treats the non equilateral Morley triangles formed by the trisectors of the interior
angles of AABC . The proximal to the sides trisectors meet at AP, BP and CP and AAPBPCP
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denotes the inner Morley equilateral.

5.1.1 The Interior Morley triangle of distal vertices

The interior Morley triangle of distal vertices is
denoted by AAIBICY where A4, B and C? are
the meeting points of the distal trisectors with re-
spect to the sides BC, CA and AB, respectively,
as shown in Fig.17. If AABC is equilateral then
AAYBACH is equilateral as well. Thus in the fol-
lowing we assume that AABC is not equilateral.

From Corollary 1b, we have that APA9,
BPB% and CPCHY are the heights of the inner Mor-
ley equilateral AAPBPCP.

Let M be the center of AAPBPCP. Thus
/APMB4=/Bi¢MCP= L/CPMAd=/AIMBP

= /BPMC4=/CIMAP= 60°
So ZAYMBY = /BIMCY = LZCIMAQ = 120°.
Hence the sides of AAYBACY are seen from M
with 120°.

Fig.17

Assume towards a contradiction that AAYB4CY is equilateral. Then, by the Equilateral
Center Lemma, APAY is a height of AAYB4C%. Thus APA? bisects BCY. Hence APA¢ bisects
/B4APCY and so ZBAPC. Since AP is the incenter of ABAYC, APAY bisects also ZBAYC. But
so the exterior angles of AAYAPB and AAYAPC at vertex AP are %ABAPC = %ABAdC + B and
%ZBAPC = %ZBA“C +v. Hence = y. Similarly it is shown that « = 3. Thus AABC is
equilateral contrary to the assumption.

Conclude that AAYBACY cannot be equilateral (if AABC is not equilateral).

5.1.2 Interior Morley triangles with one proximal and two mix vertices

There are three interior Morley triangles with one proximal and two mix vertices denoted by
AAPB*C*, ABPC*A* and ACPA*B*. We will study only AAPB*C* as the other two are similar.
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Since AP is the intersection of the proximal trisectors, B*
must be the intersection of the remaining trisector CBP
(proximal to CA) with ACP as distal. Then C* is the
intersection of the left trisectors BCP (distal to AB) and
ABP (proximal). So B* is on ACP and C* is on ABP.
See Fig.18. Corollary la asserts ZACPBP = B* and
/ABPCP = y*. Hence ZACPAP = 60° + B+ < 180°
and ZABPAP = 60° +y* < 180°. Therefore the quad-
rangle ABPAPCP is convex and so Z/B*APC* is inside
ZBPAPCP.

Fig.18
Conclude that ZB*APC* < 60° and thus AAPB*C* cannot be equilateral.

5.1.3 Interior Morley triangles with one distal and two mix vertices

There are three interior Morley triangles with
one distal and two mix vertices which are de-
noted by AAIB*C*, ABAC*A* and ACLA*B*.
We will study only AAYB*C* as the other two
are similar. Since A?¢ is the intersection of the
distal trisectors, B* must be the intersection of
the remaining trisectors CAP (distal to CA) and
ABP as proximal. So C* is the intersection of
the left trisectors ACP and BAP (mix to AB).

First notice that if B =y then AAYB*C*
is isosceles, because Corollary la with f = vy
yields ABPAPB* = ACPAPC* and so APB* =
APC* which implies AAYAPB* = AACAPC*.

Thus if « = B =7y then AAYB*C* is equi-
lateral.

Fig.19

Assume AABC is not equilateral. Then it
has two sides not equal and thus in the following we may assume vy < 3. Fig.19.

Suppose, towards a contradiction, that A4B* = A4C*. Let Z be the symmetric point of C*
with respect to APAY. We will fist show that Z is inside AAYAPB*.
From Corollary 1b, APA¢ is height of the equilateral AAPBPCP and so BP and C” are symmetric
with respect to APAY. Consequently /BPAPZ = ZCPAPC* and since ZCPAPC* = y* infer
/BPAPZ =+vy*. Since /ZBPAPB* = 3" and by assumption y < B, deduce /BPAPZ < /BPAPB*.
Moreover ZAPBPZ = ZAPCPC* = x+ (¢ + ) = « + vy while ZAPBPB* = o+ (ax +v) = x + .
So ZAPBPZ < /APBPB*.
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Since Z is inside AAYAPB* then ZAYZB* > LAYAPB* = LZAYAPBP + /BPAPB* = 30° +
B+ =90° + B. However, the assumption AYB* = A4C* implies AYZ = A9B* and so ZAYZB* =
Z/AYB*Z. Thus ZAYZB* + ZA9B*Z > 2(90° + B) > 180°. Hence two angles of AAYZB* have
sum greater than 180°, which is a contradiction.

Conclude that AAYB*C* cannot be equilateral (if AABC is not equilateral).

5.2 Morley triangles by trisectors of exterior angles

This section treats the non equilateral Morley triangles formed by the trisectors of the exterior
angles. So throughout this section trisectors mean trisectors of the exterior angles of AABC.

The proximal trisectors meet at the points A%, BE and C¥ and so AARBECY denotes the
central Morley equilateral. Notice that the trisectors BCR and CB} are parallel iff
ZBECB + ZCEBC =180° & 2(ax + B) + 2(x +y) = 180°.
So for o« = 30° BCY//CBE. In this case the distal trisectors with respect to BC do not intersect
and hence the distal to BC vertex Af\ is not determined. Also if 30° > « then A% and AR are on
the same side of BC while LBA%C =60° —2«x. If 30° < « then A% and AR are on different sides
of BC while ZBAS C = 2« — 60°. See Fig.20.

5.2.1 The Central Morley triangle of distal vertices

Fig.20a (y < 30°) Fig.20b (y > 30°)

The Morley triangle of distal vertices is denoted by AASB4CE, where A4, B¢ and C¢ are
the meeting points of the distal trisectors of the exterior angles with respect to the sides BC, CA
and AB, respectively. In Fig.20a and Fig.20b the different locations of AASBSCE with respect to
AARBECY are illustrated. Note that AR AS,BEBY and CRCZ, by Corollary 1b, are the heights
of the central Morley equilateral AAR BECP and let N be their intersection.

Notice that if AABC is equilateral then AAS B4 C4 is equilateral as well. Thus in the following
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we assume that AABC is not equilateral. Also suppose towards a contradiction that AASB4Cd

is equilateral.

> If AABC is an acute triangle the equilateral AARBECP is inside AASBECZ. Hence
ZALNBY = /BINCE = ZCANAY = 1200

> If AABC is an obtuse triangle (assume « > 30°) A4 and AR are on different sides of BC.
Hence
ZASNBE = ZASNCE =60° and ZBENCE = 120°.

Thus, by the Equilateral Center Lemma, N is the incenter (acute) or the excenter (obtuse) of
the assumed equilateral AASB4Cd. Hence AR A4 is a height of AASBECE and so AR AS bisects
BACY and /BEAR CL.

> In the case of the acute triangle, notice in ABAS C that AR is the incenter while the bisector
AR A4 bisects ZBAR C. As aresult ZASBC = ZASCB & 2(a+v) =2(a+B) &y =5B.

> In the case of the obtuse triangle, note that since AR A& bisects BEC& it bisects ZBAF C.
Also it bisects ZBAS C as a height of AARBECE. Then AARBAS = AAR CAS and so ARB =
AR C.

Therefore «x +vy = &+ 3 and so y = 3. Similarly we show that & = f3.
Deduce that AABC is equilateral contrary to the assumption that it is not.

Conclude that AASBY4Cd cannot be equilateral (if AABC is not equilateral).

5.2.2 The Central Morley triangles with one proximal and two mix vertices

There are three Morley triangles of AABC formed
by exterior trisectors with one proximal and two
mix vertices denoted by AARB;CL, ABECEAR and
ACRA%RBY. We will study only AAR Bj CE as the other

two are similar.

As vertex AE\ is the intersection of the proximal to
BC trisectors, vertex By is the intersection of the re-

maining trisector CBE (proximal to CA) with ACY., as
distal. Then vertex C¢. is the intersection of the left tri-
sectors ABY (distal to AB) and BCP (proximal). Thus
B} is on CBY while Cf is on BCP. Using the angle
values between the sides of AARBECP and the trisec-
tors of AABC given by Corollary 2a it is easily deduced
that all the angles of the quadrangles BBEAR C2 and
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CECRARBE are less than 180° and so they are convex.

For instance

/CLCRAR =180° — /BCRAR =180° — «,

while

ZABEAR =60° + «.

. «RP AP P : Pk e ira PAP P : x CP AP RP
Since BBy A, Ci is convex infer A C¢ is inside ZBzAj Ci. Also since CtCRAL By is

: PR* e il PAP P
convex infer A}, By is inside ZBp A, Ci.

Conclude that ZBEAR Ct < LBRAR CR = 60° and so AAR Bj CE cannot be equilateral.

5.2.3 The Central Morley triangles with one distal and two mix vertices

There are three Morley triangles formed by exterior trisectors with one distal and two mix vertices
which are denoted by AALB%CE, ABSCELA% and ACEA% By, We will study only AASBECE as

the other two are similar.

Since A4 is the intersection of the distal to BC trisectors BCE. and CBE, B} is the intersection

of the remaining trisector CAR (proximal to CA) with AB} as distal. Then C{ is the intersection

of the left trisectors ACE (proximal to AB) and BAR (distal).

If o« = 30° then A¢ is not determined.
If 30° > « then Af\ is on the same side of
BC with AR and ZBA4C = 60° — 2«. If
30° < « then A% and AR are on different
sides of BC while LBA%C =2x — 60°.

Consider the case 3 = <vy. Then
ABEARBy = ACRZARCE by Corol-
lary 2a. So ARB; = ARCE and in
turn AASARBL = AASARCL.  Thus
AASB} CL is isosceles. So if AABC is equi-
lateral then AASB%CE is equilateral.

Next consider that AABC is not equi-
lateral and let B > .

Since the location of Af\ depends on the
value of «, assume that 30° > «. Suppose,
towards a contradiction that AASBECE is
equilateral. Let W be the symmetric point
of C¢ with respect to AR A% and let V be
the intersection of AAW and B} BE. In the

Fig.22
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sequel we find the location of W.

From Corollary 2b, AR A4 is height of the equilateral AAR BRCP and so AR and Bf are
symmetric with respect to AR AS.

Also by Corollary 2a the angles between the trisectors of AABC and the central Morley
equilateral are as depicted in Fig.22. Consequently,
ZASCRW = ZA4CRCE =180° —60° — a— B = 60° +y and ZASBEBY =180° —60° —ax— B =
60° + B. Therefore /B3BEW < ZA4BEB}; and the line BYW is inside ZCBEBj.

Furthermore ZBRARW = ZCRAR C¢ =y and since B >y, AR W is inside ZBE AR B};. Thus
W is inside ACBEBj.
Clearly C¢ is outside AABCR. Thus we may set ZCRAS CE = ¢. Then by symmetry ZBEASW =
@. Also set ZASWB% = w. Since AASB; CE is assumed equilateral then ZCEASBE = 60° and
so ZWASB; =2(x— o).

However ASB% = ASW and so A4 Ct = A$Bj, implies ASW = A4 B%;. Thus ZWBEAS = w
and from AASWBY, 2w +2(a— @) = 180° & w = 90° + @ — . Given that W is inside ACBE B},
infer ACBEB}, w > ZAS VB}.

But from AASVBj we deduce ZASVBE = ZASBEBY + ZBEASV =60° + B + o.

Thus w >60°+ B+ ¢ = w >60°+f + (w+ ax—920°) = «+ B < 30° which contradicts
the assumption 30° > «.

The case o > 30° is similar and it is omitted.

Conclude that AASB% CE cannot be equilateral (if AABC is not equilateral).

5.3 Morley triangles by trisectors of one interior and two exterior angles

This section deals with the non equilateral Morley triangles formed by the trisectors of one interior
and two exterior angles. Even crude figures of these triangles indicate clearly that they are too
asymmetric to be equilaterals. Nevertheless it must be shown rigorously that they are not. We will
consider only those formed by the interior trisectors of ZC and the exterior trisectors of ZA and
ZB, as the other two cases are similar. Aaf CRb¥ denotes the exterior Morley equilateral relative
to £C.

Notice that the trisectors AbY and Ba} are parallel iff
ZaPBA + ZbPAB = 180° & 2(a+v) + 2(B + ) = 180° & y = 30°.

In this case the distal trisectors with respect to AB do not intersect and hence the distal vertex
Cd is not determined. Also if 30° >y then C& and C} are on the same side of AB with ZAC3B =
60° — 2y. If 30° < 7y then Cé and CE are on different sides of AB with AACgB =2y —60°. See
Fig.23.

Futhermore note that from Corollary 3a the trisectror Caf is inside ZCPalB and so Cal
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intersects the trisector BCE between B and C{. Moreover Corollary 3a implies that the extension
of AC. is inside ZaP CRB and so Caf. intersects ACP. inside ACZBaf. In addition ACY intesects
Bap between B and af. Similarly the trisectror Cbp intersects the trisector ACE between A and
C% and the trisector BCY inside ACRAbY. Also BCY. intersects AbL: between A and bf..

5.3.1 The Morley triangle of distal vertices

This is denoted by AadC&bd. Vertex CZ is the intersection of the distal to AB trisectors Abl
and Ba and is determined iff y # 30°. Vertex ad is the intersection of the distal to BC trisectors
BCY and Cb{ and hence it is inside ACRADbR. Vertex bd is the intersection of the distal to AC
trisectors Caf. and ACP and hence it is inside ACRBaf. See Fig.23.

Thus, for ZC # 90° C& is determined while ad and b are inside ZAC2B. Butso ZadCdbd <
LAC%B. However AACéB = |60° — 2y|. Hence LAC%B < 60°. Therefore Aaécgbg < 60°.

Conclude AadCdbd is not equilateral.

Fig.23a (y < 30°) Fig.23b (y > 30°)

5.3.2 The Morley triangles with one proximal and two mix vertices

There are three such triangles denoted by AalbiCe, AbLaiCh and ACRafbE.
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a. AalbiCg @ Vertex af is the intersection of a®
a..-

the proximal to BC trisectors Baf and Cal. Vertex
b must be the intersection of the remaining interior
trisector Cb: (proximal to ) with the exterior trisec-
tor Abp, as distal. Hence C{ is the intersection of
the left trisectors, BCY (proximal to AB) and AbP
(distal). See Fig.24.

So b is on ACP and it is between A and CZ.
Also C¢ is on AbY. and it is between A and b{:. No-
tice ZaRbRCP = ZaP CRbY = 60° while, by Corol-
lary 3a, ZCPbPA = a+p and ZbP.CRA = (y+a)*. Thus ZaBCPA < 180° and ZabbRA < 180°.
Hence the quadrangle AbPalR C¥ is convex. Therefore Zbfal Cg is inside ZbRalCP and so
/balCh < 60°.

Fig.24

Conclude that AafbgCE is not equilateral.
b. AbRafCg : It is shown as above that it is not equilateral.

c. ACZagbg : Vertex CP is the intersection of the proximal to AB exterior trisectors. Thus
af is the intersection of the remaining exterior trisector Bag (proximal to BC) with the interior
trisector Cby., as distal. Then b{. is the intersection of the left trisectors Cap (distal to AC) and
AbY. (proximal).

So af and C¥ are on the same side of BC iff
ZBCbP + ZCBaf < 180° & 2y + 2(x +v) +3p < 180° & v < «.

If v = « then af is not determined as Ba{.//CbP.
Also b{ and CE are on different sides of AC iff
ZACal + ZCAbY < 180° & 2y +2(B +v) + 30 < 180° & v < B.

If v = B then bf is not determined as Abf.//Cal.
Since af,bf and CY are outside AABC while af and b{ are on AbP and Bal respectively we
deduce
a¢ and CE are on the same side of AB iff y < «

while
bf and CP are on the same side of AB iff y < f.

The above conditions correlate the ranges of «, BCE and y with the different locations of a

and b{- and vise versa.
Recall that AbY and Ba intersect at C iff y # 30°, with ZACIB = [60° — 2y|, while C}. and
C% are on the same side of AB iff y < 30°.

Next all the different locations of ai- and b{. are considered.
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Case 1: a¢ and b are on the other side of AB from CE.
This happens iff y < 30° (and so « <y and f <y ) ory < 30° with « <y and § <. Fig.25a,b.

If y = 30° then AbY//Bal, while for y # 30° AbY and Ba} meet at CZ.

But so, af and b{ are on the extensions (to the other side of AB from C{.) of Cb¥, Bal and
Cal, b2 A respectively.

Since C¥. is inside Aaf CRbY, then ZafCRbE encompasses ZagCbg . Therefore
ZarCRbe < LagChbe. However ZafCbE =vy. Deduce ZafCRbE < 60°.

3
Fig.25a (y > 30°) Fig.25b (y < 30%, B <vy,a <)

Case 2 : ai and b{ are on the same side of AB with CE.
This happens iff y < 30°, 3 >y and « > vy . Fig.25c.
Then Cé and CE are on the same side of AB. Note that Cag intersects sides AB and BC% of
AAC %B internally and so, by Pasch’s axiom, it intersects the third side AC % externally. Thus b
is on the extension of AC&. Similarly af is on the extension of BCE. Since C is inside AACEB
then ZafCRbE encompasses ZagCabg. Therefore ZarChby < ZaptClby. But ZaiClby =
ZACEB =60° — 2y. Deduce Zat:CRbE < 60°.

Case 3: ai and b are on different sides of AB. Fig.25d.

This happens iff y < 30° with 3 >y and & <y or with 3 <y and o > .
Next consider the case y < 30° with 3 >y and « <.
Then C{ is on the same side with C&. Hence C? is inside AACZEB and also C{. is inside Aaf Cby..
By Pasch’s axiom on AACEB |, since Cal intersects sides AB and BCZ at interior points, infer
Caf intersects the third side AC at an exterior point. Thus b{ is on extensions of AC¢ and Bal
on the same side of AB with CP.. So CP is inside AbL.Cb¢ on the other side of alb from C& and



CUBO

201 Trisectors like Bisectors with equilaterals instead of Points . .. 99
16, 2 (2014

Fig.25¢ (y < 30°%,B >v,ax>7v) Fig.25d (y <30°, B <7y, a <)

bt. Consequently alCZ intersects biCR between by and C%. Hence afal is inside AagCRbg.
Consequently af and B are inside Zaf.CRb¥. Therefore Zaf.CRbE encompasses ZalCEB and so
ZasCPbe > Zah.CPB.

However Corollary 3a asserts ZapCRB = (B +v)* . Deduce ZbgCRaf > 60°.
The case v < 30° with >y and « < 7y is similar and it is omitted.

Conclude that ACRagbg is not equilateral.

5.3.3 The Morley triangles with one distal and two mix vertices

These Morley triangles are denoted by ACagby, AbdChat and AaldciBE.

a. AC%a"Cb*&: Vertex Cg is the in-

tersection of the distal to AB trisectors ‘;\
AbP and Bal. Thus vertex af is deter- N p
OG> 4 o
mined by the intersection of the remain- e 300 >y

ing trisector CE , distal to BC, with CaE,
as proximal. Vertex b{, is determined by
the left trisectors ACE and Cb which are
distal and proximal to CA, respectively.

Vertex C& is determined iff y # 30°
with CP and CZ to be on the same side
of AB iff y > 30°.

Fig.26

Moreover af- is always located be-
tween B and CP while b{ is always lo-
cated between A and CP. Fig.39 depicts the case for Cf and CZ to be on the same side of AB.
Regardless the location of CZ, vertices af and b} are inside ZACEB. Thus ZatCabe < ZACEB.
Since ZACIdB =160° — 2y| < 60° then Zag:CabE < 60°.
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Conclude that ACdakbf is not equilateral.

b. AbdCtag: Vertex bd is the intersection of the distal to CA trisectors Cal and ACR.
Hence vertex Cg is determined by the intersection of the remaining trisector by, distal to AB,

with BCY, as proximal.

Vertex af. is determined by the intersection of the left trisectors CbZ and Baf which are
distal and proximal to BC, respectively.
Trisectors Cal. and AC} always intersect each other and so bg is located on the same side of AB
with CR. Also AbP and BCP always intersect each other and so C{ is located on the same side of
AB with C}. However af. is not always determined as Cb.//Baf iff ZbRCB + ZbRCal = 180°
& v = o In fact af is on the same side with b‘cl and C¢ iff o =y . It should also be noted that
30° < vy implies < y. See Fig.27a.

For establishing that Ab&afCg is not equilateral we will show that Z/b&agCt < 60°. Recall
that bd is inside AaRBCR.

Thus ZBagC{ encompasses Ab%a*& C¢. Hence for proving Abdca*CC*& < 60° it suffices to
show /BaiCg < 60°.

Notice that ZBagCe = ZBatad + ZadatCf and ZBatal = ZBa:C. From ABafC it is
calculated Z/Ba}C = |y — o regardless the location of af. Hence ZBagCt = [y — o+ Zada:Ck.

Moreover:

! i
g

s
o2

Fig.27a (30° <vy, a <) Fig.27b (ax <y < 30°)

> If @« < vy then af is on the other side of AB from al and Ci. See Fig.27a,b. Thus
/BadC is exterior angle in AadafCg. Hence ZadatCh < ZBadC. In ABadC it is calculated
ZCRalC =2« and so ZadafCh < 2a. Infer ZBatCe < (v — ) + 2o =y + o < 60°.

> If v < o then a- is on the same side of AB, with aé and C¢. See Fig.27c.
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Fig.27c (y < 30°, v < &)

Thus ZadbP Cf is exterior angle in AbPagCe. Hence ZblafCh < ZadbRCE. But
£adblCt = ZCbPA. In ACbRA it is calculated ZCbRA = B and so ZbRafCg < B.
Infer ZBafCt < (v —7vy) + B < 60°.

Conclude that AbdafCg is not equilateral.

c. AagB*Cc*C: It is shown as above that it is not equilateral.

5.4 Morley triangles by trisectors of one exterior and two interior angles

Eventually the non equilateral Morley triangles formed by trisectors of one exterior and two interior
angles are treated. Obviously these Morley triangles have one vertex in the interior and two in
the exterior of AABC . As previously we will consider only those formed by the trisectors of the
exterior ZA combined with the interior trisectors of /B and ZC as the other two cases are similar.

5.4.1 The Morley triangle of proximal vertices

This is denoted by AAPbhch . Vertex AP is
the intersection of the proximal to BC interior \
trisectors, vertex bf\ is the intersection of CBP |
with the exterior trisector of ZA proximal to AC, \
while vertex ch is the intersection of BCP with

\ S akde
the exterior trisector of ZA proximal to AB. B,
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Consider the companion equilateral AS A APKa relative to vertex A. In Fig.28 the case o« < 30°
is depicted for which Corollary 4 asserts that /BASA = ZCAKA = +v — « while SA and Ka
are outside of AABC . Consider the intersections of line APCP with the sides of Ab% Adch. Then
AP CP intersects side Adch at CP and so externally, while it intersects side A4b% at Sa internally
since ZBAbR = 2(B +v) and ZBASA = B +v — «. Thus, by Pasch’s axiom, APCP intersects
the third side bk ch internally. Similarly line APBP intersects b ch internally. Thus Zbh APch
encompasses ZSAAPKa and so ZSAAPKa < LbR APch.

But ZSAAPKA = 60° and so Zbh APch > 60°. Therefore for o« < 30° the AAPbBY ¢ is not
equilateral. The cases o« > 30° and o« = 30° are similar.

Conclude that AAPBE ch cannot be equilateral.

> Note that the non equilateral AAPYY ¢k fails the original statement of Morley’s theorem.

5.4.2 The Morley triangle of distal vertices

This is denoted by AA9b%cd. Vertex bd is the
intersection of CAP, the distal to CA trisector of the
interior ZC, and the distal to CA trisector of the
exterior ZA. Vertex cf\ is the intersection of BAP,
the remaining trisector of /B (distal to AB) with the
distal to AB trisector of the exterior ZA. Also it is
easily seen that bd and c4 are determined iff B # .
Hence, for B # v, A4 is inside ZAc4B and ZCb% A. A ;
From ACb4 A it is calculated that 4 < — C
ZCbd A =180°—3a—(B+Yy)—2y = 2B and similarly e -
from AAcSB, ZAcdB =2y. Since a+p+y =60°,
at least one of 3 and 7y is less than 30°. Thus either

/b%cdAd or ZcdbdAd s less than 60°.

Conclude that AA4b4dc4 is not equilateral.

Fig.29
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5.4.3 The Morley triangles with a proximal and two mix vertices

These triangles are denoted by AAPb% ¢, AbR A*ch and Ach A*b3 .

a. AAPbhch : Vertex AP is the inter-
section of the proximal to BC interior trisec-
tors. Hence b} and cj are the intersections
of the two remaining interior trisectors, CBP
and BCP, with the trisectors of the exterior
ZA. Since each of these interior trisectors is
proximal to the side it belongs, it must be
paired with the distal to the corresponding

side exterior trisector.

Consider the companion -equilateral
ASAAPKA relative to vertex AP. In Fig.30

o

the case o« > 30° is depicted for which Corol- "

lary 4 asserts that vertices SpA and Ka are Fig.30
inside AABC.

Consider the intersections of line APCP with the sides of AbR Adch. APCP intersects side
Adch at CP and so externally, while APCP intersects side A9b% at Sa and so internally. Thus,
by Pasch’s axiom, APCP intersects the third side Abj internally. Similarly APBP intersects
Ac’ internally. Hence Zbh APch encompasses ZSAAPKa and so ZSAAPKa < Zbh APch. But
ZSAAPKA = 60° and so Zbj APcj > 60°. Therefore for « > 30° AAPDb} ¢} is not equilateral.

The cases o < 30° and o = 30° are similar and they are omitted.

Conclude that AAPb? ¢’ is not equilateral.

b. Abh A*ci: Vertex bh is the intersection of the proximal to AC trisectors, which are CBP
and the corresponding trisector of the exterior ZA. Thus A* is the intersection of the remaining
interior trisector of ZC, CAP, which is proximal to BC, with BC? as distal to BC. Then c, is the
intersection of the left trisectors BAP, which is distal to AB, with the proximal to AB trisector of
the exterior ZA.

Notice that the last two trisectors are parallel iff 28 = B + v & B =y. Thus cj exists iff
B#Y.

Also if f >y then b% and c’ are on the same side of AC, while for B <y, bh and ¢} are on
different sides of AC.

Case B > y: We will show Zbh ci A* < 60°.
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Notice that A* is inside AABAP and so ¢} AP is a right bound for the right side ¢} A* of
ZbR ch A%,
In following we will find a left bound for the left side ¢ b’ of Zbk ci A*.

Let b% be the intersection of CAP with Ab} and note that the points A, AP,c%, and b’ are
cyclic, because from ABAPC it follows that by APcy = 4y and so b c} is seen from A and AP

with angle 3 + .

The extension of APCP meets the exterior trisector Ab} between A and b} . Then it crosses
the circle, say at T. We will show that a left bound for side ¢ bk of Zbhch A* is the bisector of
ZbiCchA.

Note that in a triangle the bisector of an angle crosses its opposite side at a point which is
between the side’s middle point and the side’s common vertex with the shortest of the other two
sides.

Let G be the intersection of the Zbj ¢ A bisector with Ab}. Also let M be the middle of
Ab%.
> Cbh is angle bisector in AACb%4 . It is easily calculated from AACb% that ZAb% C = B +7vy and
so ZAbR C < Zb3 AC. Thus CA < Cbj. Hence b% is between A and M.

> ¢’y G is angle bisector in AAb’ ¢ . Obviously Zbj Ach = B+vy. Also Zcj by A = Zci b C+

ZCbi A while Zci bR A = Zci b4 C + ZCbi A, But Zci b3 C = Zc4AAP = Zci AB + ZBAAP =

(B+v)+4£BAAP. So Lbj Ach < Zcj b A and thus bj ¢y < bj A. Hence G is between b} and M.

Therefore b} is on Ab% and it is between A and G. So ZGcj AP encompasses Zbh ¢ A* and thus
ZbR e A* < LGeh AP

In the sequel we calculate ZGcj AP. Notice that ZGc) AP = ZGc) A + LZAcj AP whereas
ZACRLAP =B —v and ZGch A = J/bhciA = L /bR APA = J[Zbi APT + ZTAPA
But
L5 APT = ZBAPCP — ZBAPA* =y —(B+vy)=a+Y
Also
LTAbY, = ZTAPb, = «+ v and ZAPTA = ZAC AP =3 —.
Then from ATAAP it is calculated
LTAPA = x+v— ZCPAAP
Thus
ZGCRA = a+y— JLTAPA
and so ZGcj AP = a+ B—%ACT’AAP where 0 < ZCPAAP < . Hence ZGcy AP < 60°. Therefore
ZbR e A* < 60°.

Conclude that for p >y AbRL A*c} is not equilateral.
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Fig.31a (B >v)

Case 3 <vy: We will show that LbE\A*cj‘\ >

60°.
Consider the intersections of Acj, with BCP and
CBP denoted by ch and b} respectively. Notice that

Lb}P\A*cj‘\ encompasses Zbj A*ch. So it suffices to

show that Zbj A*ch > 60°.
Observe that b%,A*, C and c} are cyclic, be-
P and C with angle y

cause side b3 A* is seen from cjy
as from AAchB it is calculated ZAck B =+y. Thus

Zbi A*ch = Zb5 Cch.
Moreover /b%Cch = ZA94Cck, since Cbj
passes through Ad. But N
ZAYCch = ZAYCA+ LACCh = v+ ZACch and so

/b Cch =y + ZACch. !
In adition A, A4, C and ch are also cyclic since ;
AAY is seen from C and c} with angle y.
Consequently ZACch = ZAA4ch and so
Zb% Cch =y + ZAAYCK.

Yet from AAA9IB infer
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ZAAYCh = ZABAY + ZAYAB.
However ZAYAB > ZCPAB and thus
ZAAYCH > ZABAY 4+ ZCPAB =B + «.
Therefore Zbj A*ch > v+ + o = 60°.

Conclude that for B <y, AbR A*c is not equilateral.

c. Ach A*bj : It is showed that it is not equilateral similarly as Abh A*ch .

5.4.4 The Morley triangles with one distal and two mix vertices

These triangles are denoted by AA4b% ¢k, AckA*by and Abd A*cy.

a. AA%b%ci: Obviously A4 is the intersection
of CBP and BCP. Then b}, is the intersection of the
remaining interior trisectors CAP (distal to AC) with
the proximal to AC exterior trisector of ZA. Notice

these two lines are parallel iff 3 +vy =2y & 3 =v.
Moreover ¢ is the intersection of the left trisectors, ;S\

the interior BCP (proximal) with the distal to AB

trisector of the exterior ZA. Notice these lines are | >
parallel iff B = y. Therefore AAdb%ch is deter-
mined iff § # y. From AAcj B and AAb}, C it fol-
lows ZAPb3 A = ZAPbL A = | —v| and so b, and : ‘
¢’ are on the same side of AC. o L

We will consider only the casey > {3 as the other

one is similar.
Notice that AP is inside ZBA4C. Thus
LAdcf\bj\ encompasses ZAPc, b, and so

ZAdeh by > ZAPChbY .

Also notice that A, AP,b% and cj are cyclic as AAP is seen from b3 and cj with angle y—f3.
Thus ZAPch by = ZAPAb, . But ZAPAb, = ZAPAC+ ZCAb), = ZAPAC+ (B +v). Moreover
ZAPAC > /BPAC = o and so ZAPAbY > o+ (B +v) = 60°. Therefore ZA%ch bk > 60°.

Conclude that AA%b% ¢ is not equilateral.

b. Ab%A*ch : Obviously bg is the intersection of CAP with the distal to AC exterior
trisector of ZA. Then A* is the intersection of the remaining trisector CBP (proximal to AB)
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hj, i

with the BAP (distal). Thus c} is the intersection of the left trisectors, BC? and the distal to AB
exterior trisector of ZA.

Notice that b% and cj exist iff § #vy. We will show that Ab%A*cf\ > 60°.

Note that BP is inside Ab%A*cf\ and so Abf\A*cﬁ\ encompasses Zbh A*c% . Thus it suffices
to prove Zbh A*ch > 60°.

For this we use a symmetric argument to the proof of Zbj A*ch > 60° (5.4.4.a case p < 7).

Let bR be the intersection of Acj with CA*. Notice that ci, A*, B, bh are cyclic as
ch A* is seen from B and bh with angle 3. Thus Zci A*bh = Zci Bbh. Moreover Zci A*bh =
ZA9YBbY, since Bch passes through A4, But ZA9Bbh = ZAYBA + ZABbR = B + ZABbY and
so Zch A*bh =B + LZABDY.

However A, A4, B, b} are cyclic as AA? is seen from B and b} with angle p. Consequently

ZABbY, = ZAAIDE, and so ZciA*bE = B + ZAALHY.

Yet from AAAYC infer ZAAYDR = ZACA? + ZAYAC. However ZAAC > ZBPAB and

thus ZAA4Ch > ZACAY + ZBPAB =y + a. Therefore Zci A*bh > B +7v + o = 60°.

Conclude that Ab% A*c% is not equilateral.

C. Acf}‘A*b*A: This case is similar to the above and it is omitted.
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6 Analogy between Bisectors and Trisectors in a triangle

The essence of the previous work is portrayed in the following two figures illustrating the analogy
between the (well understood) structure of angle bisectors and the (under study) structure of angle

trisectors in a triangle.

The structure of angle bisectors

Fig.34a

The interior angle bisectors pass through a

unique point (incenter).

The bisector of an interior angle and the bi-
sectors of the other two exterior angles pass

through a unique point (excenter).

The exterior bisectors pass through the vertices
of a unique triangle with orthocenter the interior

angle bisectors common point (incenter). *

The structrure of angle trisectors

The interior angle trisectors proximal to the tri-
angle sides pass through the vertices of a unique
equilateral (inner Morley equilateral).

The trisectors of an interior angle and the trisec-
tors of the other two exterior angles proxrimal to
the triangle sides pass through the vertices of a
unique equilateral (exterior Morley equilateral).

The exterior trisectors proximal to the triangle
sides pass through the vertices of a unique equi-
lateral (central Morley equilateral). *

* This fact follows from the previous one
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This structural similarity suggests that the triangle trisectors with the proper pairing meet

at equilaterals which correspond to the triangle bisectors common points. The perception that

trisectors behave like bisectors with equilaterals instead of points invites further exploration. New

results could be inspired from the vast variety of the angle bisectors’ point-line-circle theorems

revealing more exciting analogies between the two structures.

This work owes gratitude to John Conway, Gerry Ladas, George Metakides, Stanley Tennen-
baum, Thanasis Fokas, Fotis Fragos and foremost to Frank Morley. Its title is the instanta-
neous Ladas response to the showing of the last figure, when the project was trying to take off.

If it revealed any of the Morley triangles’ mystery hopefully it has left their charm untouched.

Received: January 2014. Revised: April 2014.
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