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ABSTRACT

This paper introduces the concept of square-mean piecewise almost periodic for im-
pulsive stochastic processes. The existence of square-mean piecewise almost periodic
solutions for linear and nonlinear impulsive stochastic differential equations is estab-
lished by using the theory of the semigroups of the operators and Schauder fixed point
theorem. The stability of the square-mean piecewise almost periodic solutions for non-
linear impulsive stochastic differential equations is investigated.

RESUMEN

Este articulo introduce el concepto de periodicidad cuadratica media por tramos casi
periédica para procesos estocasticos impulsivos. La existencia de soluciones de media
cuadratica casi periddicas para ecuaciones diferenciales estocasticas impulsivas lineales
vy no lineales se establece usando la teoria de semigrupos de los operadores y el teo-
rema de punto fijo de Schauder. Se estudia la estabilidad de las soluciones de media
cuadratica por tramos casi periédica para ecuaciones diferenciales estocdsticas impul-

sivas no lineales.
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1 Introduction

In recent years, stochastic differential systems have been extensively studied since stochastic mod-
eling plays an important role in physics, engineering, finance, social science and so on. Qual-
itative properties such as existence, uniqueness and stability for stochastic differential systems
have attracted more and more researchers’ attention. The existence of periodic, almost peri-
odic(automorphic), asymptotically almost periodic, pseudo almost periodic(automorphic) solutions
for stochastic differential equations was obtained. We refer the reader to [14) (6, [7, [I'7, 16, [0} [8], 1], [TT]

and references therein.

On the other hand, impulsive phenomenon arises from many different real processes and
phenomena which appeared in physics, chemical technology, population dynamics, biotechnology,
medicine and economics. There has been a significant development in the theory of impulsive
differential equations. For example, the existence of almost periodic (mild) solutions of abstract
impulsive differential equations have been considered in [23] 24] 25| 4], 18] [19].

In [26], the authors combined the two directions and derived firstly some sufficient conditions
for the existence and uniqueness of almost periodic solutions for a class of impulsive stochastic
differential equations with delay. However, these above results quoted concern the case where
the activation functions satisfy Lipschitz conditions. There are few authors have considered the
problem of almost periodic solutions of impulsive stochastic differential equations without Lipschitz
activation functions. On the basis of this, this article is devoted to the discussion of this problem.

Moreover, the stability analysis on impulsive stochastic differential equations has been an
important research topic (see [20] 22 27]). While, because the mild solutions don’t have stochastic
differentials, Ito’s formula fails to deal with the stability of mild solution to stochastic differential
equations (see [20, @ [15]). In [9], the authors gave some properties of the stochastic convolution
which ensure the exponential stability of mild solutions.

Motivated by the above discussion, we investigate the existence and stability of almost periodic
solutions for impulsive stochastic differential equations. The paper is organized as follows, in
Section 2 we recall some definitions, the related notations and some useful lemmas. In Sections 3
and 4, we present some criteria ensuring the existence of almost periodic solutions to some linear
and nonlinear impulsive stochastic differential equations, respectively. In Section 5, we discuss the
stability of almost periodic solutions to some impulsive stochastic differential equations.

2 Preliminaries

Throughout this paper, R denotes the set of real numbers, RT denotes the set of nonnegative real
numbers, Z denotes the set of integers, Z* denotes the set of nonnegative integers. (H,]|| - []) is
assumed to be a real and separable Hilbert space. Let (Q,F, P) be a complete probability space
and L?(P,H) be a space of the H-valued random variables x such that E||x||* = IQ IX||2dP < oo.
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L2(P,H) is a Hilbert space equipped with the norm |[x||; = (IQ IIx|[2dP)'/2.

Definition 2.1. A stochastic process x : Rt — L?(P,H) is said to be stochastically bounded if there
exists M > 0 such that E||x(t)]]>? <M for all t € R*.

Definition 2.2. A stochastic process x : RY — L2(P,H) is said to be stochastically continuous in
s € RY, if lim_,s El[x(t) — x(s)]]? = 0.

Let T be the set consisting of all real sequences {t;}icz+ such that vy = inficz+(tiy1 —ti) >
0, to = 0 and lim; oo t; = 0o0. x(tj") and x(t;") represent the right and left limits of x(t) at
ti,i € ZT, respectively. For {ti}icz+ € T, let PC(RT,L2(P,H)) be the space consisting of all
stochastically bounded functions ¢ : Rt — L2(P, H) such that ¢(-) is stochastically continuous at t
for any t & {ti}icz+ and ¢(ti) = $(t;) for all i € Z*; let PC(R* x L2(P,H),L2(P,H)) be the space
formed by all stochastic processes ¢ : RT x L?(P,H) — L2(P,H) such that for any x € L*(P,H),
¢ (-,x) is stochastically continuous at t for any t & {ti}icz+ and ¢(ti,x) = d(t;,x) forall i € Z+
and for any t € R*, ¢(t,-) is stochastically continuous at x € L?(P,H).

Definition 2.3. For {ti}icz+ € T, the function ¢ € PC(R*,L*(P,H)) is said to be square-mean
piecewise almost periodic if the following conditions are fulfilled:

(1) {t{ = tiyj — ti}, j € ZT, is equipotentially almost periodic, that is, for any € > 0, there
exists a relatively dense set Q¢ of R such that for each T € Q. there is an integer q € Z such that
ltivg —ti—Tl <€ forallic Z*.

(2) For any € > 0, there exists a positive number & = d(€) such that if the points t’ and t”
belong to a same interval of continuity of d and [t' —t”| < 8, then E||p(t’) — d(t")]]? < e.

(8) For every € > 0, there exists a relatively dense set Q(€) in R such that if T € Q(€), then
Ellb(t+1) — () <e

for all t € RY satisfying the condition [t —ti| > €, 1 € ZT. The number T is called e-translation
number of §.

We denote by APt(R*,L%(P,H)) the collection of all the square-mean piecewise almost periodic
processes, it thus is a Banach space with the norm [[xlleo = supcg+ lIx(t)ll2 = supt€R+(EHx(t)H2)%
for x € APt(R*,L2(P,H)).

Lemma 2.4. Let f € APt (RT,L2(P,H)), then, R(f), the range of f is a relatively compact set of
L2(P,H).

Refer to [I§] for the detailed proof of Lemma 241

Definition 2.5. For {ti}icz+ € T, the function f(t,x) € PC(R* x L%(P,H),L2(P,H)) is said to be
square-mean piecewise almost periodic in t € RY and uniform on compact subset of L2(P,H) if for
every € > 0 and every compact subset K C L2(P,H), there exists a relatively dense subset Q of R
such that

Ellf(t + T, x) — f(t, X)HZ <€,
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for all x € Kyt € Q,t € RT satisfying [t — ti| > €. The collection of all such processes is denoted
by APt (R* x L2(P,H),L?(P,H)).

Lemma 2.6. Suppose that f(t,x) € APt(R* xL?(P,H),L%(P,H)) and f(t, ) is uniformly continuous
on each compact subset K C L2(P,H) uniformly for t € R. That is, for all € > 0, there exists & > 0
such that x,y € K and E|[x —yl||> < & implies that E||f(t,x) — f(t,y)||?> < € for all t € R*. Then
f(-,x(-)) € AP (R*,L2(P,H)) for any x € APt(R*,L2(P,H)).

Proof. Since x € APt(R*,L%(P,H)), by Lemma24] R(x) is a relatively compact subset of L?(P, H).
Because f(t,-) is uniformly continuous on each compact subset K C L2(P,H) uniformly for t € R.
Then for any € > 0, there exists number 8 : 0 < 6 < 7, such that

Ellf(t,x1) =t x2)I” < 7, (1)

where x1,x2 € R(x) and El[x; —x2]|*> < &, t € R. By square-mean piecewise almost periodic of f
and x, there exists a relatively set Q of R such that the following conditions hold:

€
Ellf(t+7,x0) — flt, xo) 2 < 7, @)

Ellx(t +7) —x(t)| < 7, (3)
for every xo € R(x) and t € R*, [t—t;| > e, i € Z*, T € Q. Note that (a+b)? < 2(a? +b?) and
E[If(t + 7, x(t + 1)) — f(t,x(t))]]?
S2ENf(t + T, x(t 4+ 1)) — F(t 4+ 7, x(t)[1* + 2E|[f(t + 7, x(t)) — F(t,x(t))]]*.
Combing (), @) and @), it follows that
Elf(t+ 1, x(t+ 1) —f(t,x(t)|* <e, te R, [t—ti| >¢, iecZt, T€Q.

The proof is complete. O

We obtain the following corollary as an immediate consequence of Lemma

Corollary 2.7. Let f(t,x) € APt(RT xL2(P,H),L?(P,H)) and f is Lipschitz, i.e., there is a number
L > 0 such that
E[If(t, %) — f(t,y)II* < LEIx —yll?,

forallt € R* andx,y € L*(P,H), if for anyx € APt(RT,L%(P,H)), then f(-,x(-)) € APT(RT,L?(P,H)).

Definition 2.8. A sequence x : Z+ — L2(P,H) is called a square-mean almost periodic sequence if
the e-translation set of x

T(xe) ={re Z:Elx(n+1)—xt)|*> <€, foraline 2"}
is a relatively dense set in Z for all € > 0.

The collection of all square-mean almost periodic sequences x : Z+ — L*(P,H) will be denoted
by AP(Z*,L2(P,H)).
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Remark 2.9. If x(n) € APt(Z*,L2(P,H)), then {x(n) : n € Z*} is stochastically bounded, that
is, supyez+ Elx(n)|l?

< 00.

In order to obtain our main results, we introduce the following lemmas.
Let h: R™ — R be a continuous function such that h(t) > 1 for all t € Rt and h(t) — co as

t — co. We consider the space

(PC)L(RF, L2(P,H)) = {u € PORY, L2(PH) ¢ lim w _ 0}_

Efju(t)l?
h

Endowed with the norm |lully, = sup cg+ ©

Lemma 2.10. A set B C (PC)®(R*,L2(P,H)) is a relatively compact set if and only if

, it is a Banach space.

: Ellx(t)1* _ ;
(1) im0 o = 0 uniformly for x € B.
(2) B(t) = {x(t) : x € B} is relatively compact in L?(P,H) for every t € R*.
(8) The set B is equicontinuous on each interval (ti,ti1)(i € Z1).

Lemma 2.11. Assume that f € APt(RT,L2(P,H)), the sequence {x; : i € Z*} is almost periodic
in L2(P,H) and {t}}, j € Z", is equipotentially almost periodic. Then for each € > 0 there are
relatively dense sets Qe ¢ x, of R and Qe r,x, of Z such that the following conditions hold:

(i) Ellf(t+ 1) — f(t)|I*> < € for all t eRT, [t—ti| > €, TE Qe rx, andie Z7.
(ii) Ellxitq — xill> < € for all € Qe ¢ x, andi€ Z*.
(iii) For every T € Qe ¢ x,, there exists at least one number q € Qe fx, such that
It —tl<e ieZ".
Lemma 210 and Lemma P.17] are stochastic generalized versions of Lemma 4.1 in [12] and

Lemma 35 in [23], respectively, and one may refer to [23] 18, 19} 26, 2] 13| 12] for more details.
Here we omit the proofs.

Lemma 2.12. ([9]) For any v > 1 and for arbitrary L*(P,H)-valued process $(-) such that

J () dw(w)

0

sup E’
s€[0,t]

where C. = (r(2r—1))".

2r t T
< c(J (E|¢(s)||2f)1ds> L t>0,
0

3 Almost periodic solutions for linear impulsive stochastic
differential equations

To begin, consider the following linear impulsive stochastic differential equation:

dx(t)  =I[Ax(t) + f(t)ldt + g(t)dw(t), t > O,t # t;,ie ZT,
Ax(t)  =x(t]) —x(ty) =pi,i € Z7,
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where A is an infinitesimal generator which generates a Cp-semigroup {T(t) : t > 0} such that
for all t > 0, [[T(t)]] < Me® with M,d > 0 and {T(t) : t > 0} is compact. Furthermore,
f,g: R — L?(P,H) are two stochastic processes, B; is a square-mean almost periodic sequence and

w(t) is a two-sided standard one-dimensional Brownian motion, which is defined on the filtered
probability space (Q,F, P, Fy) with Fy = ofw(u) —w(v) :u,v < t}.

Definition 3.1. An Fy-progressive process x(t) is called a mild solution of system (4)) if it satisfies

the following stochastic integral equation

t t

T(t—s)f(s)ds—l—J T(t—s)g(s)dw(s) + DY T(t—ti)Bs.

0 o<ti<t

x(t) = T(t)xo + Jo

for allt > 0.

Theorem 3.2. Assume f,g € APt(R*,L?(P,H)), {Bi,i € ZT} is a square-mean almost periodic

sequence, then system [{@) has a square-mean piecewise almost periodic mild solution.

Proof. From semigroup theory, we know

t t

T(t —s)f(s)ds +J T(t—s)g(s)dw(s),t >0,

x(t) = T(t)xo + J
0

0

is a mild solution to
dx(t) = [Ax(t) + f(t)]ldt + g(t)dw(t),t > 0.

So for system (), if t € [to,t1),

x(t) =T(t)xo + J

T(t—s)f(s)ds +J T(t—s)g(s)dw(s),
0

which implies

t t

T(t; —s)f(s)ds —l—J T(ty —s)g(s)dw(s),

MﬂJZTHﬂm+J
0

0
by using x(t]) = x(t7) + B1, for t € (t1,t2), we get

t t

T(t—s)f(s)ds + J T(t—s)g(s)dw(s)

t

x(t) =T(t —t1)x(t]) + J

ty

:Tu—tnhu7y+ﬁﬂ+J

t

t t

T(t —s)f(s)ds —I—J T(t—s)g(s)dw(s)

t t

ﬂh—ﬂﬂw%+J T(ty — s)g(s)dw(s) + B1]

:ﬂt—hnﬂhho+J
0

0
+J T(t—s)f(s)ds —|—J T(t—s)g(s)dw(s)

t t

T(t—s)f(s)ds +J T(t—s)g(s)dw(s) + T(t —t1)pB1,

=T(t)xo —|—J ,

0
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reiterating this procedure, we can prove that

t t

T(t—s)f(s)derJ T(t—s)g( )+ Z T(t—ti)Bi, (5)

0 o<ti<t

x(t) = T(t)xo + L

and by Definition Bl (@) is a mild solution of system (@), to finish the proof, we need to prove the
above process () is a square-mean piecewise almost periodic process.

Since f,g € APt(R*,L?(P,H)), from Lemma 31 in [23], for the two almost periodic functions
f, g, there exists a relatively dense set of their common e-translation number. Moreover, {fi,1 €
Z7"} is a square-mean almost periodic sequence, then by Lemma 2IT] for each € > 0, there exist
relatively dense sets Q¢ r g,x; of R and Qe r,g,x; of Z such that the following relations hold:

(D) Ef(t+1) —f)IP < et eRF It —til > e,i€ Z7,T € Qe g -

(2)

( ) EHlerq _X1|| <€, ie Z+) q S Qe,f,g Xi®
)

(4
We write x(t) of (&) as

Ellglt+71)—gt)? <e,t eR, It —til > €,1 € ZT,T € Qe p,g,x: -

For each T € Q¢ f g,xiy 39 € Qe fg,xis St [tigg —ti—TI<e, i€ Z.

x(t) = T(t)xo +x1(t) +x2(t) +x3(t)

where

x1(t) _JtT(t—s)f(s)ds, X2 (t) _JtT(t—s)g( )dw(s), = > Tt-t)

0 o<ti<t

(i) x1 € APr(R",L?(P,H)). By (1), for T € Q¢ f,g,x;»t € RT, [t —ti| > €,1 € Z*, one obtains

2

Ellxi(t+1)—x1 (D)])? = ‘ J T(t—s)[f(s + 1) —f(s)]ds

t 2
SEH Me3(=9)||f(s + 1) f(S)dS}
0
t t
<e[ [ e st | eé“S)Ilf(s+T)—f(s)||2dS}
0 0
M2 [t
STJ e SUSIE|If(s + 1) — f(s)l|*ds
0
2 rt 2
S& e st-s)egs < M
5 Jo 5

(i) x2 € APt(RT,L%(P,H)). Let w(s) = w(s 4+ 1) —w(t) for each s € R*. Note that W is also
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a Brownian motion and has the same distribution as w. By Lemma 212 and (2), we have

t t 2
Ellxa2 (t + 1) — x2 (1)|I? :E‘ J T(t—s)g(s+7)dw(s + 1) —J T(t—s)g(s)dw(s)

0

2

=E J T(t—s)lg(s+1) — g(s)ldw(s)

0

rt

< | ElT(t—s)lg(s +7) —g(s)llI*ds

Jo

ot
< Mze*ZMt*S)EHg(s—I—T)—g(S)szS
Jo

[\ r225(t—s) §
<| M7e =" %eds = .
<), e eds 75 €

(iii) x3 € APT(R*,L?(P,H)). Define
() =T(t—t)Bs, ti <t <tipr,ieZt.
For t; <t <tiy1, [t—til>€, t—tip1l>€,i€ZT, by (4), we can get
t+t>tit+te+T>ti4g,

and

tivgr1 >timntT—e>t+m

that is, ti;q41 >t + T > tiyq. Since (a+ b)? < 2(a? + b?), one has

Elr(t+ 1) — r(1)II?
=E[IT(t + T — tiyq)Birq — T(t—t)Bsll*
=Ef[T(t+T—tisq) — T(t—t)]Bisq + T(t — t:)[Bisq — Billl?
S2ENT(t+T—tisq) — Tt —t)IBisqll® + 2EIT(t — t) [Bitq — Billl®
<2UT(t+T—tivg) — T(t — t)IIFEBisqlI* + 2Tt — to)I[ENRi1q — Bill®
2Tt +7T—tivg) — Tt — t)IPElIB s gll* +2M?e,

since {T(t) : t > 0} is a Co-semigroup (see [211, B]), for the above €, there exists 0 < p < € < 1 such
that 0 <'s < p implies |[T(t —t; +s) — T(t —t1)l| < e. Note that My = sup;cz ElIB:ll? < o0, so

Ellr(t + 1) — r(t)]]* < 2Moe? + 2M2e.

Next we will prove that t is uniformly continuous on each interval (ti,ti;1)(i € Z*). Let
t,h € R such that t; < t,t +h < tiy1, then

Elr(t +h) — r(0)I* < IT(t+h—t:) — T(t— to)IPElIBsl1*.
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Since {T(t) : t > 0} is a Co-semigroup and Mo = sup;cz+ ElIRill?> < oo, we conclude that E|r(t +
h) — (1) — 0 as h — 0 independent of t and 1.

Finally, by Cauchy-Schwarz inequality and (3),

Ell D> Th+r—t)pi— )  Tt—t)p
o<ti<t+T o<ti<t
r 2
<E| > IIT(t—ti)[Bwq—Bﬂll]
S0<ti<t
r 2
<l ¥ Me““”nrswq—rsi@
S0<ti<t
§E< Z Mze_é(t_ti)) Z e SR g — Ball?
- 0<ti<t o<ti<t
- —5(t—ty) a2
Sy D € EllBis+q — Bill
o<ti<t
M2 5
—8(t—ty)
STew O © e
o<ti<t
MZ

= 0—ev2®

In view of the above, it is clear that x3 € APt(R*,L%(P,H)).

Furthermore, since {T(t) : t > 0} is a bounded Cy-semigroup and {T(t) : t > 0} is compact,
by Theorem 2.1 in [5], T(-)xo € APt(RT,L?(P,H)). By combing (i), (ii) and (iii), it follows that
(@) is a square-mean piecewise almost periodic process, so system (@) has a square-mean piecewise
almost periodic solution. The proof is complete. O

4 Almost periodic solutions for nonlinear impulsive stochas-
tic differential equations

Consider the following nonlinear impulsive stochastic differential equation

{ dx(t) = [Ax(t) + f(t,x(t))]dt + g(t,x(t))dw(t), t = 0,t # ti,i € Z, (©)

Ax(ty)  =x(tf) —x(ty) = Li(x(t)),1 € Z¥,

where f,g : RT x L?(P,H) — L?(P,H), I; : L2(P,H) — L2(P,H),i € Z* and w(t) is a two-sided
standard one dimensional Brownian motion defined on the filtered probability space (Q,F, P, Fq)
with Fy = o{w(u) —w(v) :u,v < t}.

Definition 4.1. An F-progressive process x(t) is called a mild solution of system (@) if it satisfies
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the corresponding stochastic integral equation

t t

T(t—s)f(s,x(s))ds—l—J' T(t—s)g(s,x(s))dw(s) + Z T(t—t)L(x(te)). (7)

0 o<ti<t

x(t) =T(t)xo + Jo

for all t > 0.

In order to obtain the existence of square-mean piecewise almost periodic solution to system
([6), we introduce the following assumptions:

(A1) The operator A : D(A) C L?(P,H) — L?(P,H) is the infinitesimal generator of an
exponentially stable Co-semigroup {T(t) : t > 0} on L2(P, H), i.e., [[T(t)]| < Me %t t > 0, M, 5 > 0.
Moreover, T(t) is compact for t > 0.

(A2) f,g € APt(R* x L?(P,H),L?(P,H)), for each compact set K C L%(P,H), g(t,-), f(t,-)
are uniformly continuous in each compact set K C L?(P,H) uniformly for t € R*. I;(x) is almost
periodic in 1 € Z* uniformly in x € K and is a uniformly continuous function defined on the set
K C L2(P,H) for alliec Z*.

(A?)) F[_ = Sup{tGRJr’ Ellx]|2<L} EHf(t, X)Hz < 00, G[_ = sup{t€R+’ Ellx||2<L} EHg(t,X)HZ < 00, I]_ =

SUD[icz+, E”XHZSL}EHIi(X(ti))Hz < 00, where L is an arbitrary positive number. Moreover, there
exist a number Ly > 0 such that 4M?Ly + 42/}2 F, + %GLO + %ILO < Lo.

Theorem 4.2. Assume that the conditions (A1)-(A3) are satisfied, then the impulsive stochastic
differential equation (@) admits at least one square-mean piecewise almost periodic solution.

Proof. Let

B ={x € APt(R",L*(P,H)) : ElIx|I* < Lo}.

Obviously, B is a closed set of APt(R*,L?(P,H)). Define I' on (PC)? (R™,L2(P,H)),

t t

T(t —s)f(s,x(s))ds + J T(t—s)g(s,x(s))dw(s) + Z Tt —to)Ti(x(tq)).

0 o<ti<t

Ix(t) = T(t)xo + J
0

In order to show that the impulsive stochastic differential equation (@) has a square-mean piecewise
almost periodic solution, we only need to prove the operator I' has a fixed point in B.

First we show I'x € B,x € B. For x € B, by Lemma 2.6l and (A2), we have f(-,x(-)), g(-,x(-)) €
AP (RT,L%(P,H)), by (A2) and Lemma 37 in [23], I;(x(t{)) is a square-mean almost periodic
sequence, analogous to the proof of Theorem 3.2l we can show I’x € APt(R*,L%(P,H)).

Since (a4+b+c+d)? < 4(a?+b?+c?+d?), by using Cauchy-Schwarz inequality and Lemma
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2.12] we obtain
E|IMx(t)]?
t 2 t 2
§4E|T(t)xollz+4E‘ J. T(t—s)f(s,x(s))ds +4E' J T(t—s)g(s,x(s))dw(s)
0 0
2
+4E Z T(t—t)Ti(x(t1))

2 t
§4M2EIIXOIIZ+4EH Meé“s)lf(s,X(S))lldS} +4J E[T(t—s)g(s,x(s))l*ds
0 0

2
rae[ ¥ Me L]

o<ti<t

t t
<4M?L, +4EU Mze*“t*s)dsj eé(ts]lf(s,x(s))lzds]
0 0

t
4| Mo 2 TElg(s,xls)) s 4 (3 MPe ) Y e a2
0 O<ti<t o<ti<t
AM2 [t ‘
§4M2L°+TJ e*S(t*s)Ellf(s,x(s))llzds+4J MZe 25| |g(s, x(s))[1*ds
0 0

4M? S (t—t
+m Z e ST (x ()12

o<ti<t

4M2 t o t B - 4M2 .
<AMZLo + — J e o S)FLods+4J MZe 200G ds + o — 5 ) e I
0 0 o<ti<t
4M? 2m2 4Mm?
2
<4M“Ly + 52 Fr, + 5 Gr, + (e )2 Li,,

since 4 2’},42 Gr, + (]“WILO < Lo, then E||Ix||? < Lo, that is, 'x € B,x € B.

Next we show B(t) ={Ix(t) : x € B}is a relatively compact subset of L?(P, H) for each t € R*.
For each t € RT, 0 < e < 1, x € B, define

t—e

Fex(t) =T (t)xo + J h T(t—s)f(s,x(s))ds + J T(t—s)g(s,x(s))dw(s)
0

0
+ Z T(t—t)Li(x(ti))

o<ti<t—e

“T(e) [T(t —e)xo + Jte T(t— e — s)f(s, x(s))ds
0

H] T emoglsxishan(sl Y Tl e thix(t)

0 o<ti<t—e

=T(e)x(t — ¢€).

Since {x(t — €) : x € B} is bounded and T(e) is compact, {T¢x(t) : x € B} is a relatively compact
subset of L%(P, H). Moreover, for € is small enough and the points t and t — e belong to the same
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interval of continuity of x, then

x(t) —T¢x(t) = Jt T(t—s)f(s,x(s))ds + Jt T(t—s)g(s,x(s))dw(s),

t—e t—e

since (a +b)? < 2(a? 4+ b?), by using Cauchy-Schwarz inequality and Lemma 212 one has

]
t 2 t
<z*e“ Me—w—“nf(s,x(s))ds} +2J ElIT(t — s)g(s, x(s))IPds

t—e t—e

ElPx(t) — ex(t)]?
t 2
J T(t—s)f(s,x(s))ds

t—e

<2 lE‘

r T(t — s)g(s, x(s))dw(s)

t—e

+E

t t
§2EH Mze’é(t’s)dsj
t—e

t—e

t
e“fS)nf(s,x(s))nzds}uj M2e-20(=50Elg(s, x(s))|2ds
t—e

t t

Enf(s,x(s))nzdwzmzj Ellg(s, x(s))|ds

t—e

<2MZ?e J

t—e
<2MZ%e?Fr, +2M?eGy,,
so B(t) ={Ix(t) : x € B} is a relatively compact subset of L?(P,H) for each t € R*.

Finally we show {I’x : x € B} is equicontinuous at each interval (ti,ti;1)(i € Z'). Let
. " / . : + :
xE€B, t; <t’ <t/ <tiy1,i€Z", and p<m1n{36M€2FLO,36M§GLO,1},

Ix(t') — Ix(t")
' Tt —s)f(s,x(s))ds + r T(t' —s)g(s,x(s))dw(s)

=T(t")xo -l—J \

0
+ ) T(t/_ti)li(x(ti))_T(t//)XO_Jt T(t" —s)f(s,x(s))ds

o<ti<t’ 0

= | T =gt xisnawts = T —nede)
o<ti<t”
' T(t's)f(s,x(s))derJt T(t' —s)g(s,x(s))dw(s)

1

=[T(t") = T(t")xo + J
+ J [T(t" —s) —T(t" —s)]f(s,x(s))ds + J [T(t' —s) —T(t" —s)lg(s,x(s))dw(s)
0 0

+ ) T =) = Tt — t)IT(x(t:)).

o<ti<t’

Since {T(t) : t > 0} is a Co-semigroup, there exists i < p such that t’ —t” < p implies that

2 _ =072
|T(t)—1||2§min{ €s s e(l—e®) }

€
36M2Ly’ 36M2F(, ' 18M2Gr,’ 36MZ2I,
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By using Cauchy-Schwarz inequality and Lemma 2.T2] we have
E[T(t") — T(t")xoll* = EIIT(t' —t") — IT(t")xoll*
< IT(t" —t") = IIPMZElxoll?

€ €
<— My = —
= 36M21, T
and,

t’ 2
J T(t' — s)f(s,x(s))ds

€

i

t

t/ 2
SEH Meé“'s)llf(s,x(s))llds]

t’ t’
<E ” Mzef‘s(t’*s)dsl[ e 2SI, x(s))]2 ds

t// t//

t/

gMz(t'—t”)J eSS E|If(s, x(s))[2ds
SMZFLO (t/ . J[//)2

€ €

<My = 5=
= TR 36M2ZFL, T 36’

and
t/ 2
J Tt — s)g(s, x(s))dw(s)

t/
E’ sj EIIT(t' — s)g(s, x(s)) 2 ds
.t// t”

1"

SMZGLO (t/ o t/l)
€

€
<M?G[ ——— = —
=M GL°36M2GLO 36’

and

Jt Tt —s) —T(t"” —s)If(s,x(s))ds

" 2
J Tt —t”) —OT(t" — s)f(s,x(s))ds

t/l 2
gEU |T(t'—t”)—1|Me5<t”SJf(s,x(s))nds}

1/

t//
<e[ [ - S amte s e e s xR

0

MZ ! .
ST ) PR e S T, () s
0
Mz ! .
SHT(t’—t”)—IHZTJ e P SIF ds
0
es?  M? €

<—— " F,=—
“36M2F, 52 W 36

t/
<J MZe 28(t'=S)E||g(s, x(s))[[2ds
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and

2

E J T(t —s) — T(t” — s)]g(s, x(s))dw(s)

t//
gJ EIT( — ") — OT(t" — s)g(s, x(s))7ds
0

t//
sj IT(E — ) — I2M2e 250" ~9)Elf(s, x(s))|Pds
0
t// ,
SIT(E — ) — R | M2 6 s
0
ed M2 €

< G, =
“18M2Gp, 25 36

and

2
Ell ) [T —t) = T(t" — t)]L(x(t))
o<ti<t”
2
=E|| > [Tt —t") = IT(t" —t)L(x(t)
o<ti<t’
2
<e| 3T ) T~ et
o<ti<t’

SE[( DT =) Qe ) Y e S x4 2
o<ti<t’” o<ti<t’
e — vy e M Y e TR (x ()P

- 1—e %y
o<ti<t’

/ " 2 M? 5(t”
< T —t") =1 T_eov Z e ot 7ti)ILo
o<ti<t’
e(1—e )2 M? €

< I = —
= 36M2I, (1—e ®v)2 - 36
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so that, forx e Band t' —t" <, t/,t” € (ti,ti41),1 € Z,

ElMx(t”) — x(t”)]?
t’ 2
J T(t' — s)f(s,x(s))ds

£/

<6E[I[T(t)) — T(t")xoll? + 6E’

t! 2
+6E J T(t' —s)g(s,x(s))dw(s)

/!

6t

0
/! 2
L 6E J T(t' — ) — T(t” — s)]g(s, x(s))dw(s)

0

2
+6E|| Y [Tt —t) = T(t" — t)]Lil(x(t:)

o<ti<t’

<e€

= b

J Tt —s)=T(t" —

s)If(s,x(s))ds

which shows that {Tx : x € B} is equicontinuous at each interval (ti,ti 1)(i € Z™).

Since {Tx : x € B} C (PC)?(R*,L?(P,H)) and {Ix : x € B} satisfies the conditions of Lemma

2

BI0 {Tx : x € B} is a relatively compact set, moreover, the Lebesgue dominated convergence

theorem and our assumptions on f, g and I; imply that I' is continuous, then I' is a compact

operator. It follows from Schauder fixed point theorem that I" has a fixed point in B. Thus x is a

square-mean piecewise almost periodic solution of system ([@). The proof is complete.

O

Note that the uniformly continuous is weaker than the Lipschitz continuous, if (A2) is replaced

by the following condition:

(A2') f,g € APT(R*,L%(P,H)), I;(x) is almost periodic in i € Z* uniformly for x € L?(P,H),

and there exists positive numbers L, L,, L such that
E|If(t,x) — f(t,y)I> < LiElx —ylI?,
Ellg(t,x) — g(t,y)lI* < L2Elx —yl%,

El[li(x) — Li(y)lI* < LE[x —yli%,
for all x,y € L?(P,H),t € R,

then by Lemma 27 and Theorem B.2] we can also get the almost periodic solution of system (@).

Corollary 4.3. Suppose that the conditions (A1), (A2’) and (A3) are satisfied, then the impulsive
stochastic differential equation (@) has a square-mean piecewise almost periodic solution.

5 Stability

In this section we consider the stability of square-mean piecewise almost periodic solution to system

() with Lipschitz activation function. In the sequel, we will need the following lemma.
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Lemma 5.1. ([23]) Let a nonnegative piecewise continuous function u(t) satisfy for t > to the

imequality

uu)gc+J viou(mdr+ ) Buu(m),

to to<Ti<t

where C >0, B3 >0, v(1) >0, and /s are discontinuity points of first type of the function u(t).
Then the following estimate holds for the function u(t),

u(t) <C H (1+ Bi)eﬁo V(T)dT.

to<Ti<t

Theorem 5.2. Assume the conditions of Corollary[{.3 are fulfilled. Assume further that %lnﬂ +

147]\;25%) + 4M52L‘ +4M?2L, < 0. Then system @) has an exponentially stable almost periodic

solution.

Proof. By Corollary 3] system (@) has a mild square-mean piecewise almost periodic solution
u(t),

t t

T(t—s)f(s,u(s))ds—l—J T(t—s)g(s,u(s))dw(s) + Z T(t —t)Ti(u(t)).

0 o<ti<t

u(t) =T(t)up + L

Let u(t) = u(t,0, @) and v(t) =v(t,0,1V) be two solutions of equation (@), then

t t

T(t—s)f(s,u(s))ds + J T(t—s)g(s,u(s))dw(s) + > T(t—t)Li(u(t)),

0 o<ti<t

MH:TMQ+L

t t

Tl = $)f(s,v(s))ds + | T(t=s)gls,vishdwls) + 3 Tle— toLlv(to)

0 o<ti<t

wu:me+J

0

Since (a+b+c+d)? <4(a? +b? +c? + d?), by (A2’), Cauchy-Schwarz inequality and Lemma
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2121 we have

Elfu(t) —v(t)|I?

ZE‘ ‘T(tkp — Tt + J T(t—s)[f(s,uls)) — f(s,v(s))lds

0

+J T(t—s)g(s,uls)) — gls,v(s)ldw(s) + > T(t—t)[Li(u(ts)) — L(v(t:))]
0 o<ti<t
2

<4E|T(t)[<p—1b}|2+4E‘ J T(t — 8)[f(s, u(s)) — (s, v(s))]ds
0

t 2
+4E‘ J T(t — 5)lg(s, u(s)) — gls,v(s))dw(s)
0
2
HAE] Y Tt — ) Li(u(t) — L(v(t)]
o<ti<t

t 2
<4MZe 23E|l@ — |? +4EH Me2=3)|If(s,u(s)) — f(s,v(S))ldS}

0

+4J EIIT(t — s)lg(s, u(s)) — g(s, v(s))]|Pds

0
2
+4E| 3 Me )~ L(v(s)]
o<ti<t

t t
<4MZe **'Ello — ylI? +4EH Mze‘f’“‘s)dsJ e Y f(s, uls)) —f(S,V(S))IIZdS}
0 0

t
+4J M2e25(-5)E |l (s, u(s)) — g(s, v(s))||ds
0

+4E[( MZed(t—ti ) St L (u(t ))_Ii("(ti))||2:|
o<ti<t o<ti<t
<4MZe O'E|l@ — ¢|2+45MZF€ (=sJE|If(s, u(s)) — f(s,v(s))l[*ds

0

+4M? JO e Elg(s, uls) — gls, v(s))I*ds

4M?2
sy 2 € I (u(t) — Lv(t)I?
o<ti<t

4M?2L,

<4MZe 'E|lo — > + ( 5

t
+4M2Lz) J ~8(t-5)E[ju(s) — v(s)|Pds
0

AM2L L S(t—t
+ m Z e s(t tl)EHu(ti) _v(ti)Hz-
o<ti<t
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Then,
ot _ 2 2 w2 o (ML 2 " oss _ 2
e Elfu(t) —v(t)lI* <4MZEllo — I~ + 5 TAML2 ) | e Elluls) —v(s)[I"ds
0
4M?L ,
pp—=y D e MElu(t) —v(t)lI%.

o<ti<t

Let Y(t) = e®*E[ju(t) — v(t)||%, then

am2L : AMEL
T(6) < AMPY(0) + LaM2 ) | Yisdds + e S Yt

0 1—e %y

o<ti<t
By Lemma 5], we have
4AMZ2L ¢ (aM21, 5
2 “L1 L aM2L, ) ds
Y(t) <4m (o) ] (1 +]_8y>efo( 2)

o<ti<t

2 2
:4MZ’Y‘(O) H <]+-|4]\AE.Y>€(4M‘>LI+4MZLZ)J[
o<ti<t —¢€

2 L
<AMZY/(0) (1 + 1‘”\4;) Y (ML a2, )¢
J— e_

1 am2L aM2 1Ly 2
:4sz(0)e(71n(1+m)+f+4zvl Lz)t’

that is,
1 am2L am2L 2
Ellu(t) — v(t)[* < 4M?Elle —1|)|\2e(71““+17c75v L AMP L )

Since 1?ln(] + 14}21% )+ 4M52 L1 1 4M?L, < 0. The square-mean piecewise almost periodic solution
of system ([]) is exponentially stable. This completes the proof. O

Received: December 2012. Revised: February 2013.
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