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ABSTRACT

This paper deals with discrete almost periodic linear operators in the space of bounded

sequences. We study the invertibility of such operators in that space, as well as in the

space of almost periodic sequences. One of main results is a discrete version of well-

known First Favard Theorem, and is based on the notion of the envelope of an almost

periodic operator. Another result is restricted to finite order operators. It characterizes

the invertibility in therms of the operator in question only.

RESUMEN

Este trabajo trata de operadores lineales discretos casi periódicos en el espacio de las

secuencias acotadas. Estudiamos la invertibilidad de dichos operadores en ese espacio,

aśı como en el espacio de secuencias casi periódicas. Uno de los resultados principales es

una versión discreta del conocido Primer Teorema de Favard, y se basa en la noción de

la envolvente de un operador casi periódico. Otro resultado se restringe a los operadores

de orden finito. Se caracteriza la invertibilidad solamente en términos del operador en

cuestión.
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1 Introduction

The theory of almost periodic differential equations has been initiated by J. Favard in his pioneering

work [5]. Today the theory is well-developed not only for ordinary differential equations, but also

for abstract evolution equations and partial differential equations. Contemporary presentations of

the theory can be found in many monographs and survey articles (see, e.g., [1, 3, 7, 9, 11, 13, 14]

and references therein).

Difference equations constitute a natural counterpart of the theory of differential equations.

We refer to [4] for a contemporary introductory presentation of the theory of difference equa-

tions. There is a number of papers that deal with almost periodic difference equations. Most of

them concern either special equations (see, e.g. [17]), or first order systems [6, 12]. In particu-

lar [12] contains certain discrete versions of First and Second Favard Theorems. To the best of

our knowledge, there are only few papers dedicated to general almost periodic linear difference

equations, or, equivalently, almost periodic discrete linear operators (see [2, 15, 16] and references

therein). In particular, in [15] certain discrete version of the First Favard Theorem is obtained (see

Corollary 5.2). This version requires coercivity estimate (10) and is not similar to typical Favard

type assumptions. Thus, at the moment the theory of almost periodic difference equations is not

completely parallel to the theory of almost periodic differential equations.

The aim of the present paper is to fill, at list partially, the gap mentioned above. We accept

the functional analytic point of view. This means that we study almost periodic operators in the

space l∞ of bounded sequences with values in a finite dimensional space and their restrictions

to the space ap of almost periodic sequences. We obtain certain criteria for such an operator

A to have a bounded inverse operator. Equivalently, the invertibility means that the equation

Ax = y has a unique solution x ∈ l∞ for every right hand side y ∈ l∞. One of our main result,

Theorem 5.1, is an exact analogue of the version of First Favard Theorem for differential equations

obtained by E. Mukhamadiev in [10] (see also [14]). The second result, Theorem 6.2, is, in a sense

, dual to Theorem 5.1, but it holds for operators of finite order. This is an analogue of a result by

M. Krasnosel’skii, V. Burd and Y. Kolesov [7].

The paper is organized as follows. Section 2 is a quick reminder of basic facts about almost

periodicity. In Section 3 we discuss bounded linear operators in the space l∞. In particular, we

introduce important concepts of c-convergence and c-continuity. The main result of the section

is Proposition 3.1 which shows that any c-continuous operator is of the form (1) (this is a result

by V. Slyusrchuk [16]). Almost periodic operators are introduced in Section 4. Sections 5 and 6

contain our main results.

In what follows, we consider elements of sequence spaces as functions on the set of integers Z.

We use the notation [·] to list the values of such a function. On the other hand, the notation {·}

stands for the lists of elements of a set .
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2 Almost Periodic Functions and Sequences

Let E be a Banach space, with the norm ‖ · ‖E, over real or complex numbers. We denote by Cb(E)

the space of bounded continuous functions on R with values in E. This is a Banach space with the

norm

‖f‖Cb
= sup

t∈R

‖f(t)‖E .

A function f ∈ Cb(E) is almost periodic if the family {f(· + τ)}τ∈R of shifts is a precompact set in

Cb(E). Almost periodic functions form a closed subspace AP(E) of Cb(E), hence, a Banach space.

By l∞(E) we denote the space of all bounded two-sided sequences x = [x(n)]n∈Z with values

in E. This is a Banach space endowed with the norm

‖x‖l∞ = sup
n∈Z

‖x(n)‖E .

In what follows we also need the space of E-valued sequences l1(E), with the norm

‖x‖l1 =
∑

n∈Z

‖x(n)‖E .

In this paper we do not use other spaces lp.

A sequence x = [x(n)]n∈Z ∈ l∞(E) is almost periodic if the set of its shifts {[x(· + q)]}q∈Z is

a precompact set in l∞(E). The set of all almost periodic sequences is a closed subspace ap(E) ⊂

l∞(E). Hence, ap(E) is a Banach space.

It is convenient to introduce operators of translation Tq, q ∈ Z, acting in the space l∞(E) by

the formula

(Tqx)(n) = x(n+ q) , n ∈ Z .

These are linear bounded operators. Moreover, they are isometric operators, i.e.,

‖Tqx‖l∞ = ‖x‖l∞ , q ∈ Z .

The operators Tq form a one-parameter discrete group of operators, i.e.,

(i) Tq1+q2
= Tq1

Tq2
, q1, q2 ∈ Z,

(ii) T0 = I,

(iii) T−q = T−1
q , q ∈ Z,

where I stands for the identity operator. In terms of these operators the almost periodicity of a

sequence x ∈ l∞ means that the set {Tqx}q∈Z is precompact in l∞(E).

The following simple statement is well-known (see, e.g., [3, Theorem 1.27]) and clarifies a

relation between almost periodic sequences and functions.
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Proposition 2.1. The restriction operator R : Cb(E) → l∞(E) defined by f 7→ [f(n)]n∈Z maps

AP(E) onto ap(E). Furthermore, there exists a linear operator J : E → Cb(E), an extension

operator, such that (Jx)(n) = x(n) for all n ∈ Z, ‖Jx‖Cb
= ‖x‖l∞ for all x ∈ l∞(E), and J(ap(E)) ⊂

AP(E).

Making use of Proposition 2.1, one can transfer many results about almost periodic functions

to almost periodic sequences.

Finally, we introduce a simple, but important, notion of periodization. Given a positive integer

j, let

Qj = {n ∈ Z | j− 1 ≤ n ≤ j} .

For any x ∈ l∞(E), its 2j-periodization is a 2j-periodic sequence, say xj = [xj(n)]n∈Z, such that

xj(n) = x(n) for all n ∈ Qj. Obviously, xj
c
→ x and, hence, the space ap(E) is c-dense in l∞(E).

3 Linear Operators in l∞

In the rest of the paper E stands for a finite dimensional Banach space. For sequences in the

space l∞(E) one can introduces several kinds of convergence. In this paper we use the standard

convergence with respect to the norm of l∞(E) and the so-called c-convergence. A sequence

xk ∈ l∞(E) c-converges to x ∈ l∞(E) (in symbols xk
c
→ x) if the sequence xk is bounded in l∞(E)

and xk(n) → x(n) for all n ∈ Z. In this case we also write x = c- lim xk.

By L(l∞(E)) we denote the Banach algebra of all bounded linear operators in l∞(E). An

operator A ∈ L(l∞(E)) is c-continuous if for any sequence xk ∈ l∞(E) such that xk
c
→ x we have

that Axk
c
→ Ax. The set of all c-continuous operators is a closed subalgebra of the Banach algebra

L(l∞(E)) (see [2, Proposition 1]). We denote this subalgebra by Lc(l
∞(E)).

We consider operators of the form

(Ax)(n) =
∑

m∈Z

A(n,m)x(m) , n ∈ Z , (1)

where A(n,m) ∈ L(E). The double sequence A = [A(n,m)]n,m∈Z is called the kernel of A. Given

such a kernel A, we set

‖A‖ = sup
n∈Z

∑

m∈Z

‖A(n,m)‖L(E) . (2)

An alternative representation of operator (1) is

(Ax)(n) =
∑

k∈Z

a(n, k)x(n+ k) , n ∈ Z , (3)

where a(n, k) = A(n,n + k) are called the coefficients of A. It is easily seen that, for double

sequences A and a = [a(n,m)]n,m∈Z, we have ‖A‖ = ‖a‖. Such sequences can be considered as
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sequences indexed by n with values in the space of sequences indexed by m. From this point of

view the norm defined by (2) is exactly the l∞(l1(L(E)))-norm.

The nontrivial part of the next result goes back to [16]. Since this paper is not available in

English, we preset the proof here.

Proposition 3.1. A linear operator A in l∞(E) is a bounded c-continuous operator if and only if

A is of the form (1) with ‖A‖ < ∞. Moreover, in this case

‖A‖L(l∞(E)) = ‖A‖ .

Proof . Suppose that ‖A‖ < ∞. Then it is well-known, and easily seen, that

‖A‖L(l∞(E)) ≤ ‖A‖ .

Hence, A ∈ L(l∞(E)).

To prove that A is c-continuous, suppose that xk
c
→ 0. Obviously, the sequence Axk is

bounded in l∞(E), and we need to show that (Axk)(n) → 0 in E for every n ∈ Z. For any positive

N ∈ Z

‖(Axk)(n)‖E ≤





∑

|m|≤N

+
∑

|m|>N



 ‖A(n,m)‖L(E)‖xk(m)‖E .

Since the sequence xk is bounded in l∞(E) and ‖A‖ < ∞, choosing N large enough we can make

the second sum in the right-hand side sufficiently small. Next, since xk
c
→ 0, the first sum is

sufficiently small provided k is large enough. This proves the first statement.

Suppose that A ∈ Lc(l
∞(E)). First, we define its kernel as follows. Denote by Jm : E → l∞(E),

m ∈ Z, the operator defined by

(Jmu)(n) =

{
u if n = m

0 otherwise .

The operator Pn : l∞(E) → E, n ∈ Z, is defined by Pnx = x(n). For all n,m ∈ Z, we set

A(n,m) = PnAJm .

Obviously, A(n,m) ∈ L(E).

Now we prove (1), where the right-hand side converges in l∞(E) for each n ∈ Z. Indeed, given

x ∈ l∞(E), we set

xk(n) =

{
x(n) if |n| ≤ k

0 otherwise .

It is easily seen that xk
c
→ x. Since A is c-continuous, then for every n ∈ Z

(Axk)(n) =
∑

|m|≤k

A(n,m)x(m) → (Ax)(n)
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as required.

Let us prove that

‖A‖ ≤ ‖A‖L(l∞(E)) .

For each k ∈ Z, we consider an element xk ∈ l∞(E) such that ‖xk(n)‖E = 1 and

‖A(k, n)xk(n)‖E = ‖A(k, n)‖L(E)

for all n ∈ Z. Since dimE < ∞, such a sequence exists. Then

∑

m∈Z

‖A(k,m)‖L(E) = ‖(Axk)(k)‖E ≤ ‖Axk‖l∞ ≤ ‖A‖L(l∞)

because ‖xk‖l∞(E) = 1. This implies the required.

2

Proposition 3.1 and [2, Proposition 3] imply immediately

Corollary 3.2. Suppose that A ∈ Lc(l
∞(E)) has a bounded inverse operator. Then the inverse

operator is c-continuous and, hence, is of the form

(A−1x)(n) =
∑

m∈Z

G(n,m)x(n) , n ∈ Z ,

with ‖G‖ = ‖A−1‖L(l∞(E)) < ∞.

The kernel G in Corollary 3.2 is often called the Green function of the operator A−1.

Remark 3.3. Under the assumption of Corollary 3.2, suppose in addition that the kernel A sat-

isfies

‖A(m,n)‖L(E) ≤
c

(1+ |n−m|)α
, m, n ∈ Z , (4)

with c > 0 and α > 2. Then for every θ > 0 small enough there exists cθ > 0 such that the Green

function satisfies

‖G(m,n)‖L(E) ≤
cθ

(1+ |n−m|)α−1−θ
, m, n ∈ Z . (5)

Furthermore, if

‖A(m,n)‖L(E) ≤ c exp(−δ|n−m|) , m, n ∈ Z , (6)

with c > 0 and δ > 0, then there exist c1 > 0 and ε > 0 such that

‖G(m,n)‖L(E) ≤ c1 exp(−ε|n−m|) , m, n ∈ Z , (7)

(see [2] and [14]).
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4 Almost Periodic Operators

We say that A ∈ L(l∞(E)) is an almost periodic operator if the sequence of operators [TqAT−q]q∈Z

is an almost periodic sequence with values in L(l∞(E)).

Proposition 4.1. An operator A ∈ L(l∞(E)) is almost periodic if and only if the set {TqAT−q}q∈Z

is precompact in L(l∞(E)).

For the proof we refer to [2, Proposition 6].

The envelope, or hull, H(A) of an almost periodic operator A ∈ L(l∞(E)) is the closure of the

set {TqAT−q}q∈Z in the space L(l∞(E)). This is a compact set.

Now we collect some properties of almost periodic operators obtained in [2].

Proposition 4.2. Suppose that A ∈ L(l∞(E)) is almost periodic operator. Then the following

statements hold:

(a) A(ap(E)) ⊂ ap(E).

(b) If A has a bounded inverse operator, then A−1 is an almost periodic operator and, hence,

A|ap(E) has a bounded inverse operator in L(ap(E)). Moreover, all operators in the envelope

H(A) are invertible and

H(A−1) = {Ã−1 : Ã ∈ H(A)} .

(c) If, in addition, A is of the form (1), the kernel A satisfies (4) with c > 0 and α > 2, and

if A|ap(E) has a bounded inverse operator in L(ap(E)), then the operator A has a bounded

inverse operator in L(l∞(E)).

Remark 4.3. Actually, under the assumptions of Proposition 4.2(c) the operator A is c-continuous.

Proposition 4.4. Suppose that A ∈ L(l∞(E)) is a c-continuous operator of the form (1). The

following statements are equivalent:

(i) The operator A is almost periodic.

(ii) The kernel A is almost periodic along the diagonal with respect to norm (2), i.e., the sequence

of kernels [A(· + q, · + q)]q∈Z is an almost periodic sequence in with values in the space of

kernels endowed with the norm ‖ · ‖.

(iii) The sequence [a(n, ·)]n∈Z of coefficients is an almost periodic sequence with values in l1(L(E)).

Proof . A straightforward verification shows that [A(n+q,m+q)] is the kernel of the operator

TqAT−q. Now the required follows immediately from Proposition 3.1 and remarks after equation

(3).

2
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Remark 4.5. If an almost periodic operator A ∈ L(l∞(E)) is of the form (1), then every operator

Ã ∈ H(A) is of the same form. The kernel of Ã is a limit point of the set {A(· + q, · + q)}q∈Z in

the space of kernels with respect to the norm ‖ · ‖, while the collection of the coefficients is the limit

point of the set {a(·+ q, ·)}q∈Z in the space l1(L(E)).

5 Favard Type Theorem

In this section we prove the following result of Favard type for almost periodic operators in l∞(E).

Theorem 5.1. An almost periodic operator A ∈ Lc(l
∞(E)) has a bounded inverse operator if and

only if the following condition is satisfied:

(F) every operator in the envelope H(A) is injective.

Proof . If A ∈ Lc(l
∞(E)) is invertible, then, by Proposition 4.2(b), all operators in the envelope

are invertible, and (F) follows.

Now suppose that (F) is satisfied. To prove that the operator A has a bounded inverse, it is

enough to show that for any y ∈ l∞(E) there exists x ∈ l∞(E) such that

Ax = y . (8)

For any positive integer j, denote by xj = [xj(n)]n∈Z the 2j-periodization of x. Similarly,

we denote by aj = [aj(n, k)]n,k∈Z the 2j-periodization of a = [a(n, k)]n,k∈Z with respect to the

variable n. According to equation (3), aj generates an operator Aj that belongs to Lc(E). Notice

that 2j-periodic sequences form a finite dimensional subspace of l∞(E), and Aj leaves that subspace

invariant.

We solve the equation

Ajxj = yj (9)

in the subspace of 2j-periodic sequences provided j is large enough. Since the problem is finite

dimensional, it is sufficient to show that the associated homogeneous problem has only zero solution.

Assuming the contrary, one can find a sequence jl → ∞ such that Ajlxjl = 0 for some xjl ∈ l∞(E)

with ‖xjl‖l∞ = 1. Then there exists ql ∈ Qjl such that ‖xjl(ql)‖E = 1. We put x̃l = Tql
xjl and

Ãl = Tql
AjlT−ql

. Then ‖x̃l‖l∞ = 1, ‖x̃l(0)‖E = 1 and Ãlx̃l = 0. Passing to a subsequence, we

can assume that x̃l
c
→ x̃ and

Al = Tql
AT−ql

→ Ã

in L(l∞(E)). Obviously, ‖x̃(0)‖E = 1 and Ã ∈ H(A). Given n ∈ Z we have

(Ãx̃)(n) = [(Ãx̃)(n) − (Ãx̃l)(n)] + [(Ãx̃l)(n) − (Alx̃l)(n)] + (Alx̃l)(n) .
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Here the first term in the right-hand side tends to 0 since the operator Ã is c-continuous,

‖(Ãx̃l)(n) − (Alx̃l)(n)‖E ≤ ‖Ã−Al‖L(l∞(E)) → 0 ,

and

(Alx̃l)(n) = [(Tql
AT−ql

)Tql
xl)](n) = (Tql

Axjl)(n) = (Tql
Ajlxjl)(n) = 0

provided |ql| ≥ |n|. Hence, Ãx̃ = 0, which contradicts to condition (F). Thus, equation (9) has a

unique 2j-periodic solution xj for all sufficiently large j.

The sequence xj is bounded in the space l∞(E). For if this is not so, we can find a subsequence

xjl such that ‖xjl‖l∞ → ∞. Set

zl = xjl/‖xjl‖l∞ .

Then

Allzl = yjl/‖xjl‖l∞ .

Arguing exactly as above, we obtain that there is a nonzero x ∈ l∞(E) such that Ãx = 0, and we

arrive at contradiction to condition (F).

Now since the sequence xj is bounded in l∞(E), then xj
c
→ x along a subsequence. It is easy

to see that Ax = y.

2

The following result is obtained in [15].

Corollary 5.2. Let A ∈ Lc(l
∞(E)) be an almost periodic operator. If there exists a constant

c0 > 0 such that

‖Ax‖l∞ ≥ c0‖x‖l∞ (10)

for all x ∈ l∞(E), then the operator A is invertible in l∞(E).

Proof . Since the operators Tq are isometric, then, by the definition of the envelope, all

operators in E(A) satisfy inequality (10). This implies condition (F), and we conclude.

2

By Proposition 4.2(b), we obtain the following

Corollary 5.3. If an almost periodic operator A ∈ Lc(l
∞(E)) satisfies condition (F), then the

operator A|ap(E) has a bounded inverse operator in the space ap(E).

Furthermore, Proposition 4.2(c) implies

Corollary 5.4. Suppose that the kernel A of an almost periodic operator A ∈ Lc(l
∞(E)) satisfies

satisfies inequality (4) with c > 0 and α > 2. Then the following statements are equivalent:

(i) The operator A satisfies condition (F);
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(ii) The operator A has a bounded inverse operator in the space l∞(E);

(iii) The operator A|ap(E) has a bounded inverse operator in the space ap(E).

6 Operators of Finite Order

Now, under certain additional assumptions, we obtain yet another criterion for an almost periodic

operator to be invertible. This result is, in a sense, dual to Theorem 5.1.

In this section we consider operators of finite order. These are of the form

(Ax)(n) =

k2∑

k=k1

a(n, k)x(n+ k) , n ∈ Z , (11)

where a(n, k1) and a(n, k2) are non-zero operators in E. The number k2 − k1 is called the order

of A. In what follows we always suppose that the order of A is greater than zero. The kernel

[A(n,m)] of A vanishes outside the strip {(n,m) : k1 ≤ m− n ≤ k2}.

We impose the following assumptions:

(A1) sup{‖a(n, k)‖L(E) : n ∈ Z , k1 ≤ k ≤ k2} < ∞;

(A2) For all n ∈ Z the operators a(n, k1) and a(n, k2) are invertible in L(E), and there exists a

constant C > 0 independent of n such that

‖a−1(n, k1)‖L(E) ≤ C

and

‖a−1(n, k2)‖L(E) ≤ C .

Assumption (A1) is necessary and sufficient for an operator A of the form (11) to be a bounded

linear operator in l∞(E). In this case, A is c-continuous automatically. Assumption (A2) is natural

because it is necessary for the existence of bounded inverse operator A−1. Let us also mention that

the operator A is almost periodic if and only if for any k, k1 ≤ k ≤ k2, the sequence [a(n, k)]n∈Z

is almost periodic. Furthermore, the envelope H(A) of any almost periodic operator of finite order

consists of operators of finite order.

The following simple, but important, property is well-known.

Proposition 6.1. Assume that an operator A of finite order ≥ 1 satisfies (A1) and (A2). Then

its null space

{x ∈ l∞(E) |Ax = 0}

is finite dimensional.
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Proof . Let d ≥ 1 be the order of A. Assumption (A2) implies immediately that the linear

mapping from the null space into the space Ed defined by

x = [x(n)]n∈Z 7→ (x(k1), x(k1 + 1), . . . , x(k2 − 1))

is one-to-one.

2

The main result of the section is the following.

Theorem 6.2. Suppose that an operator A of the form (11) is almost periodic, of order d ≥ 1,

and satisfies assumptions (A1) and (A2). Then the following statements are equivalent:

(i) The range of operator A contains ap(E);

(ii) The operator A has an inverse operator in L(l∞(E));

(iii) The operator A|ap(E) has an inverse operator in L(ap(E)).

Proof . The equivalence of (ii) and (iii) follows from Proposition 4.2. Obviously, (ii) implies

(i).

Now we prove that (i) implies (ii). Assuming (i), we have to show that the equation

Ax = y (12)

has a unique solution x ∈ l∞(E) for any y ∈ l∞(E).

Claim 1. For any y ∈ ap(E) there exists a solution x ∈ ap(E) of equation (12) such that

‖x‖l∞ ≤ C‖y‖l∞ , (13)

with some constant C > 0 independent of y.

Denote by V the preimage of ap(U) under the operator A. Since ap(E) is a closed subspace

of l∞(E) and A is a bounded operator, V is a closed subspace as well, hence, a Banach space. The

operator A|V maps V onto ap(E). Now the required is a particular case of a well-known result

about linear operators from a Banach space onto a Banach space (for an excellent presentation see

[8]).

Claim 2. For any y ∈ l∞(E) there exists a solution x ∈ l∞(E) of equation (12) that satisfies

estimate (13).

Let yj be the 2j-periodization of y. Obviously, ‖yj‖l∞ ≤ ‖y‖l∞ . By Claim 1, there exists an

almost periodic solution xj of equation (12), with y replaced by yj, and

‖xj‖l∞ ≤ C‖yj‖l∞ ≤ C‖y‖l∞ .
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Hence, along a subsequence, xjk
c
→ x, and x is a solution of (12) that satisfies (13).

Claim 3. Each operator Ã ∈ H(A) maps l∞(E) onto l∞(E).

Let

Ã = lim Tqj
AT−qj

∈ H(A) .

By Claim 2, given y ∈ l∞(E) there exists xj ∈ l∞(E) such that Axj = T−qj
y and

‖xj‖l∞ ≤ C‖T−qj
y‖l∞ = C‖y‖l∞ .

Setting x̃j = Tqj
xj, we have that

Tqj
AT−qj

x̃j = y . (14)

Passing to a subsequence, we can suppose that there exists x ∈ l∞ such that x̃j
c
→ x. Passing to

the limit in equation (14), we see that Ãx = y.

Claim 4. If y ∈ ap(E), then every solution x ∈ l∞(E) of equation (12) is almost periodic.

Due to Claim 1, it is enough to show that every solution of the homogeneous equation, i.e.,

with y = 0, is almost periodic. Assume the contrary. Then there exists x ∈ l∞ such that Ax = 0

and x is not almost periodic, i.e., the family of shifts {Tqx}q∈Z is not precompact. Then there exist

ε0 > 0 and an infinite set of integers {qj} such that

‖xj − xi‖l∞ ≥ ε0 (15)

for i 6= j, where xj = Tqj
x. Without loss of generality, we can suppose that

Tqj
AT−qj

→ Ã ∈ H(A)

in the space L(l∞(E)). Since

‖Ãxj‖l∞ = ‖(Ã− Tqj
AT−qj

)xj‖l∞ ≤ ‖Ã− Tqj
AT−qj

‖L(l∞(E))‖x‖l∞ ,

then

Ãxj → 0 (16)

in l∞(E) as j → ∞.

Let Ṽ0 be the null space of the operator Ã. By Proposition 6.1, this is a finite dimensional

subspace in l∞(E). Hence, there exists a bounded projector P̃0 in l∞(E) onto Ṽ0. Set P̃1 = I− P̃0

and Ṽ1 = P̃1(l
∞(E)). Obviously, ÃP̃0xj = 0. Hence, by (16),

ÃP̃1xj → 0 (17)

in l∞(E) as j → ∞.
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The restriction Ã|Ṽ1
is one-to-one and, by Claim 3, maps Ṽ1 onto l∞(E). Hence, by (17),

P̃1xj → 0 (18)

in l∞(E) as j → ∞. By the triangle inequality,

‖P̃0xj − P̃0xi‖l∞ ≥ ‖xj − xi‖l∞ − ‖P̃1xj‖l∞ − ‖P̃1xi‖l∞ .

Now (15) and (18) imply that for any ε1 ∈ (0, ε0)

‖P̃0xj − P̃0xi‖l∞ ≥ ε1 ,

whenever both j and i are large enough. Hence, the set {P̃0xj} is not a precompact set.

On the other side, {P̃0xj} is a bounded subset of a finite dimensional space Ṽ0. Hence, it is

precompact, and we arrive at a contradiction.

Claim 5. The null space V0 of the operator A is trivial .

Without loss of generality, we can assume that k2 = 1. The restriction operator R : l∞(E) →

Ed is defined by

R : x = [x(n)]n∈Z 7→ (x(k1), x(k1 + 1), . . . , x(0)) .

As we have mentioned in the proof of Proposition 6.1, R maps V0 into Ed in one-to-one manner.

We set V0 = R(V0). This is a linear subspace of Ed. Choose any direct complement V1 to V0 in

Ed and set

V1 = {x ∈ l∞(E) : Rx ∈ V1} .

Then V0 ⊕ V1 = l∞(E) and A(V1) = l∞(E). The operator

A|V1
: V1 → l∞(E)

is one-to-one and onto and, hence, has a bounded inverse denoted by

B : l∞(E) → V1 .

Now we prove that V0 = {0}. Suppose that Ax = 0, and x 6= 0. By Claim 4, x is an almost

periodic sequence. Let θj = [θj(n)]n∈Z be a (scalar valued) sequence defined by

θj(n) =






0 if n ≤ 0

n if 1 ≤ n ≤ j

j if n > j .

Consider the sequence

xj = θj · x = [θj(n)x(n)]n∈Z .
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Obviously, xj ∈ l∞(E). Moreover, xj ∈ V1 because xj(n) = 0 if n ≤ 0.

We have

Axj = θj · Ax+ zj = zj , (19)

where zj = [zj(n)]n∈Z with

zj(n) =

1∑

k=k1

(θj(n+ k) − θj(n))a(n, k)x(n+ k) , n ∈ Z .

It is easily seen that

|θj(n+ k) − θj(n)| ≤ d

for all n ∈ Z and integer k ∈ [k1, 1]. Hence, ‖zj‖l∞ is bounded above by a constant independent

of j. Since xj ∈ V1, we have that xj = Bzj and, hence, ‖xj‖l∞ ≤ C, where C > 0 is independent on

j. In particular,

j‖x(j)‖E ≤ ‖xj‖l∞ ≤ C .

Hence, x(j) → 0 as j → ∞, which implies that x = 0 because, by Claim 3, x is almost periodic.

This completes the proof of the theorem.

2

Combining Theorem 6.2 and Corollary 5.4, we obtain

Corollary 6.3. Under the assumptions of Theorem 6.2 the following statements are equivalent:

(i) The operator A satisfies condition (F) of Theorem 5.1;

(ii) The operator A has a bounded inverse in L(l∞(E));

(iii) The operator A maps l∞(E) onto l∞(E);

(iv) The restriction A|ap(E) has a bounded inverse in L(ap(E));

(v) The restriction A|ap(E) maps ap(E) onto ap(E).

Received: November 2012. Revised: December 2012.
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