CUBO A Mathematical Journal
Vol. 10, N202, (01-14). July 2008

Semi-Classical Dispersive Estimates for the
Wave and Schrodinger Equations with a
Potential in Dimensions n > 4

F. CARDOSO
Universidade Federal de Pernambuco, Departamento de Matemdtica,
Av. Prof. Luiz Freire, S/N, Cid. Universitdria,
CEP. 50.540-740 — Recife-Pe, Brazil
email: fernando@dmat.ufpe.br
and
G. VODEV
Université de Nantes, Département de Mathématiques,
UMR 6629 du CNRS, 2, rue de la Houssiniére, BP 92208,
44332 Nantes Cedex 03, France
email: georgi.vodev@math.univ-nantes. fr

ABSTRACT

We expand the operators |[t|("=1/2eitV=2+V o (hy/“AFV) and |[t|*/2et(-A+V)
P(h?(=A +V)), 0 < h < 1, modulo operators whose L' — L* norm is Ox(h),
VN > 1, where ¢,9 € C§°((0,400)) and V € L>®(R"), n > 4, is a real-valued po-
tential satisfying V(z) = O ((z)7%), § > (n + 1)/2 in the case of the wave equation
and 6 > (n + 2)/2 in the case of the Schrodinger equation. As a consequence, we give
sufficent conditions in order that the wave and the Schrédinger groups satisfy dispersive
estimates with a loss of v derivatives, 0 < v < (n — 3)/2. Roughly speaking, we reduce
this problem to estimating the L' — L* norms of a finite number of operators with
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almost explicit kernels. These kernels are completely explicit when 4 < n < 7 in the

case of the wave group, and when n = 4,5 in the case of the Schrédinger group.

RESUMEN

En este trabajo son expandidos los operadores [t|("~1/2eiV=2+V,(h/“A ¥ V) y
|t|7/2ei(=A+V)eh(h?2 (= A+V)), 0 < h < 1, modulo operadores cuja L' — L> norma es
On(hN), VN > 1, donde ¢,v € C§°((0,+00)) y V € L>®(R™), n > 4, es un potencial
real satisfaziendo V(z) = O ((z)7%), § > (n+ 1)/2 en el caso de la ecuacién de la
onda y 6 > (n+2)/2 en el caso de la ecuacién de Schrodinger. Como consequencia
presentamos condiciones suficientes a fin de que los grupos de la onda y Schrodinger
cumplan estimativas dispersivas con una perdida de v derivadas 0 < v < (n — 3)/2.
Rigurosamente hablando, reduzimos este problema a estimar las normas L' — L™ de
un numero finito de operadores con nucleos casi explicitos. Estos nucleos son comple-
tamente explicitos cuando 4 < n < 7 en el caso del grupo de la onda y cuandon = 4,5
en el caso del grupo de Schrédinger.
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1 Introduction and statement of results

Denote by G the self-adjoint realization of the operator —A + V on L?(R"), n >4, where V €
L>(R"™) is a real-valued potential satisfying

|V (z)] < Clz)™%, VzeR", (1.1)

with constants C' > 0, 6 > (n + 1)/2. It is well known that G has no strictly positive eigenvalues
and resonances. We will also denote by Gg the self-adjoint realization of the operator —A on
L?(R™). It is well known that the free wave group satisfies the following semi-classical dispersive

eV (h/Go)|

where ¢ € C§°((0, +00)). The natural question is to find the bigest possible class of potentials for

estimate
Ch=(D/2=(=1/2 £ 0 >0, (1.2)

<
Ll — L

which we have an analogue of (1.2) for the perturbed wave group. It is proved in [16] that under
the assumption (1.1) only, we have such an estimate but with a significant loss in h for 0 < h < 1,

namely

1 < Ch™" |~ =D/2 0y £0,0< h <1, (1.3)
Ll—Lo°e

eitﬁ(p(h\/é)‘
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and this seems hard to improve without extra assumptions on the potential. This estimate is then
used in [16] to obtain dispersive estimates with a loss of (n — 3)/2 derivatives for e*VGy,(VG),
Va > 0, where x, € C®((—00,4+00)), Xa(A) =0 for A < a, x4(A) =1 for A > 2a.

In the present work we will expand e“‘/ago(h\/@) modulo remainders whose L' — L norm
is upper bounded by C'mhm_"‘H|t|_("_1)/27 0 < h < hy < 1, for every integer m > 0. In order to
state the precise result we need to introduce some notations. Let @1 € C§°((0,+00)) be such that
1 = 1 on supp g, and set p(\) = Adp(N), $1(A) = A"1p1(A). Under (1.1) there exists a constant
ho > 0 so that for 0 < h < hg, the operator

T(h) = (Idﬂﬁl (hV/Go) — ¢ h\/_) = Id+ O(h?)

is uniformely bounded on L?, 1 < p < +o0, as well as on weighted L? spaces (see Lemma 2.3 of
[16] and Lemma A.1 of [11]). Set

Uo(t, h) = G1(hy/Go)sin(ty/Go),  Eg(t.h) = eV p(hy/Go),
Eo( = ¢ ( h\/_ ) cos( t\/— h\/_ + 1o ( h\/_ ) sin( t\/_

Furthermore, given any integer j > 1, define the operators

Ej(t,h) = —h/t Uo(t — 7, h)VT(R)Ej—1(r, h)dr,
0

t
E)(t,h) = —h/o Uo(t — 7, h)VE]_| (7, h)dr.

Theorem 1.1 LetV satisfy (1.1). Then, there exists a constant hy > 0 so that for all 0 < h < hyg,
t # 0, we have the estimate

e™VCo(hG) —T(h) Y E;(t,h) < Cpph™ g~ (=1)/2, (1.4)

J=0 L1 Lo

for every integer m > 0 with a constant C,, > 0 independent of t and h. Moreover, the operators
E; satisfy the estimates

1Eo(t, m) | 1 g < CRZCHD (07072, (1.5)

1E5(E W)l e LN S § (1.6)

— L

HEJ(t,h EO t h HLl < O hj+27n|t|7(n71)/2

i < . i1 (1.7)

It follows from this theorem that to improve the estimate (1.3) in h, it suffices to improve the
estimate (1.6). We also have the following
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Corollary 1.2 Let V satisfy (1.1) and suppose in addition that there exists 0 < k < (n — 3)/2
such that the operators E; satisfy the estimate

1B, (t, Bl 1 oo < CRFZ |t~ 02D/2, (1.8)

— Lo°

for all integers 1 < j < k+ 1. Then, for every a >0, 0 < € < 1, we have the estimate

eit\/E(\/a)kan—eXa(\/@)} I < Ct|~ D2 e £, (1.9)
while for every 0 < q¢<(n—3)/2—k,2<p< 2(:_;1:722‘1:22:), we have
e“ﬁ(\/é)*a“”*”/”%(\/6)‘ o, SO e, (1.10)

where 1/p+1/p' =1, a =1—2/p. Moreover, when 4 <n <7 the estimates (1.9) and (1.10) hold
true if we suppose (1.8) fulfilled with E; replaced by E?.

The estimate (1.8) with k > 0 seems hard to establish (even if we replace E; by EY) and the
proof would probably require some regularity condition on the potential. Note that when n = 2
and n = 3 the estimates (1.9) and (1.10) (with k = (n —3)/2, ¢ = 0) are proved in [2] under (1.1)
only. In the case of n = 2 these estimates are proved (for a large enough) in [10] for a much larger
class of potentials satisfying

V(x)|d
sup / L)llxz < C < Ho0. (1.11)
yer2 Jrz2 |z —y|'/

When n = 3 these estimates are proved in [4] for a quite large subclass of potentials satisfying

V(x)|d
sup / [Viz)ldz < C < 4o0. (1.12)
yeR3 JR3 |z — yl

When n > 4 optimal dispersive estimates (that is, without loss of derivatives) are proved in [1] for
potentials belonging to the Schwartz class. When n > 4, as mentioned above, the estimates (1.9)
and (1.10) with & = 0 are proved in [16] under (1.1) only. The proof of Theorem 1.1 and Corollary
1.2, which will be given in Section 2, is based very much on the analysis developed in [16].

A similar analysis as above can be carried out for the Schrédinger group as well. The free one

satisfies the following dispersive estimate

e 0w (B2 Go)| 1y < CIIT"2, E£0, B> 0, (1.13)

where ¢ € C§°((0,+00)). On the other hand, it is proved in [15] that under the assumption (1.1)
with § > (n 4 2)/2 only, the perturbed Schrédinger group satisfies

e CYR>G)[| 1 o < CHZTI2 T2 V£ 0,0 < B < 1L (1.14)

This estimate is used in [15] to obtain dispersive estimates with a loss of (n — 3)/2 derivatives for
e"Cxa(@), Ya > 0.
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In this work we will also expand €% (h?G) modulo remainders whose L' — L° norm is
upper bounded by C,,, k"~ (=2)/2=¢|¢|=7/2 () < h < hy < 1, for every integer m > 0, similarly
to the wave group above. To this end, choose a function ¥; € C§°((0,400)) such that ¢; =1 on

supp ¥, and set
T(h) := (Id + 1 (h*Go) — 1 (h2G)) " = Id + O(h?),

FQ(t, h) = e"C0p(h*Go),  Folt,h) =1 (h*Go)e™p(h*G),  Wo(t, h) = €%y (h*Gy),

t
Fj(t,h)zl/ Wo(t—T,h)VT(h)ijl(T,h,)dT, jZl,
0
t
Ff(t,h) —i/o Wo(t — T, h)VFJQ_l(T, h)dr, j > 1.

Theorem 1.3 Let V satisfy (1.1) with 6 > (n + 2)/2. Then, there exists a constant hg > 0 so
that for all 0 < h < hg, t #0, 0 < € < 1, we have the estimate

e"Gup(h*G) — T(h) > Fy(t, h) < Cpphm=(=2)/2=€)g|=n/2, (1.15)
3=0 L1—L

for every integer m > 0 with a constant C,, > 0 independent of t and h. Moreover, the operators

F} satisfy the estimates

IFo(t, h)l 1y < CIE[T/2, (1.16)
1E5(t Bl 1 oo < G772, G > 1, (1.17)

|75t h) = Fj (¢, b e I ER S ¥ (1.18)

)

)||L1~>L°c

Thus, to improve the estimate (1.14) in h, it suffices to improve the estimate (1.17). We also
have the following

Corollary 1.4 Let V satisfy (1.1) with 6 > (n + 2)/2 and suppose in addition that there exists
0 <k < (n—3)/2 such that the operators F; satisfy the estimate

1E5 (t Bl 1, poe < CRFZ D270/, (1.19)

for all integers 1 < j < k4 3/2. Then, for every a >0, 0 < ¢ < 1, we have the estimate

e”GG’“/Q_("_3)/4_6Xa(G)‘ LSO v, (1.20)
while for every 0 < g¢< (n—3)/2—-k,2<p< 2(7171:31:722;:22,?, we have
e“GG—ana(G)‘ L SCHTR o, (1.21)

where 1/p+1/p' =1, a =1—2/p. Moreover, if there exists an operator Fi(t), independent of h,
such that the following estimates hold

H]_‘k(t)GIOC/2*(n73)/4‘ S C|t|_n/2, (122)

L1 — L~
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| Fyt, h) — Fr(t)p(h*Go)|| 1 o < CRE-(8)/2He g m0/2, (1.23)
IEj(t )] 1 poe < CRF=(=3/20e ) =m/2, (1.24)

— Lo —

for 2 < j < k+3/2 with some ¢ > 0, then we have

< Clt|™™?%, Yt #0. (1.25)
LY —L°

eitGGk/2—(n—3)/4xa(G)‘

Furthermore, when n = 4,5 the estimates (1.20), (1.21) and (1.25) hold true if we suppose (1.19),
(1.23) and (1.24) fulfilled with F; replaced by FJQ.

As in the case of the wave group above, the estimates (1.19), (1.22), (1.23) and (1.24) with
k > 0 seem hard to establish (even if we replace F; by F' JQ) and the proof would certainly require
some regularity condition on the potential. Indeed, it follows from the results in [5] that there
exist compactly supported potentials V- € C*(R"™), Vv < (n—3)/2, for which these estimates with
k = (n — 3)/2 fail to hold. Therefore, it is naural to expect that they hold true for potentials
V € C(n=3)/2=k(R™). We also conjecture that the statements of Theorem 1.3 and Corollary 1.4
hold true for potentials satisfying (1.1) with ¢ > (n 4+ 1)/2 as for the wave group above. Note
that when n = 2 the estimate (1.25) without loss of derivatives (that is, with k = (n — 3)/2) is
proved in [12] under (1.1) with § > 2. In this case this estimate is proved (for a large enough)
in [10] for potentials satisfying (1.11). When n = 3 this estimate is proved in [6] for potentials
V € L3/?7¢NL3/2%¢ 0 < e < 1, and in particular for potentials satisfying (1.1) with > 2. In this
case it is also proved in [13] for potentials satisfying (1.12) with C < 47. When n > 4 the optimal
dispersive estimate (that is, without loss of derivatives) is proved in [9] for potentials satisfying
(1.1) with & > n as well as V € L'. This result has been recently extended in [11] to potentials
satisfying (1.1) with § > n — 1 as well as Ve L'. When n > 4, as mentioned above, the estimates
(1.21) and (1.25) with k& = 0 are proved in [15] under (1.1) with § > (n + 2)/2 only. The proof of
Theorem 1.3 and Corollary 1.4, which will be given in Section 3, relies very much on the analysis
developed in [15].

Acknowledgements. A part of this work was carried out while F. C. was visiting the
University of Nantes in May 2007 with the support of the agreement Brazil-France in Mathematics
- Proc. 69.0014/01-5. The first author has also been partially supported by the CNPq-Brazil.

2 Semi-classical expansion of ¢"VC(hy/G)

We keep the same notations as in the introduction. Our starting point is the following identity
which can be derived easily from Duhamel’s formula (see [16])

(Id—i—gol (hv/Go) — 1 h\/—) eVCu(hV/G)

_Eo(t,h)—h/OtUo(t—Th) VG (WG dr (2.1)
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We rewrite (2.1) as follows

where

7
e™VGu(hWG) = Eo(t,h) + / Uo(t — 7, W) Ve™Cop(h/G)dr (2.2)
0
Eo(t,h) = T(h)Eo(t,h), Up(t,h) = —hT(h)Uo(t, h).
Tterating (2.2) m times leads to the identity
¢VCp(hWG) = 3" Ej(t,h) + Ry (£, h), (2.3)
7=0

where the operators Ej, j > 1, are defined by

t
By(t,h) = / Tolt — 7, W)V B, (v, h)dr,
0

while the operators R,,, m > 0, are defined as follows

Ro(t,h) = e"™VOp(hVG),

t
Ry (t,h) = / Uo(t — 7, h)V Ry (1, h)dr.
0

It is clear from (2.3) that the estimate (1.4) follows from the following

Proposition 2.1 Under the assumptions of Theorem 1.1, for all0 < h < hg, t #0, 1/2 —¢/4 <

s<(n—-1)/2,0<e< 1, we have the estimates
1R (8 D)1 e < O™ [t =72,

H< > s— ERm-i—l t h ||L1 Lo < thm—n/2+l|t|—s’

for every integer m > 0.

Proof. For m = 0 the estimate (2.4) is proved in [16] (see (4.10)). We will now derive (2.4)

for m > 1 from (2.5) and the following estimate proved in [16] (see (2.4)):

o0
/ |t|25
— 00

for0<s<(n—1)/2,0<e< 1. By (2.5) and (2.6), we have

1072 (Rysr (£, 1) £, )]

t
<C [ D2 (@) <Dl - by
t/2

L2

. 2
() 2o (n/Goy ||t < h I, WS e L,

(@)~ Ry (r ) || dr

(2.6)
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t
+C [ Jrl ey Doty | (@) Rt = mong|
t/2

5 / 1/2
’L2d7>

% _ 2 12 s poo 2
+O</ |7'|n1H<I>"/QEUO(T,h)*gHL2dT> (/ H<x>1/2€Rm(7-’,h)fHL2dr’>

< CR™ 7 fllza gl

<o 2 sl ([ ot g

1/2

We will now prove (2.5) by induction in m. For m = 0 it is proved in [16] (see (4.6)) with
s = (n —1)/2 but the proof for general s is the same. We will show that (2.5) for R,,1 follows
from (2.5) for R,, and the following estimate proved in [16] (see (2.1)):

()<Y /Go) )

Consider first the case 1 < s < (n — 1)/2. We have

<O, VL0<h<1. (2.7)
L2—L?

[t* [[(2) ™ R (8 B) | 1,

L2
t ~
s —s5—¢ —1—¢ s—e¢
S I o L e TN [ e O P
t
—S—€TT —s—e€ —1—¢
+C 12 <£L‘> UO(Tu h)<$> L2512 H<‘T> Rm(t_Ta h)HLIHL2 dr
< Chm+1—"/2/ <T'>—1—de’+0h/ [(2) = Run (7" B[ 1, o d” < R,

Let now 1/2 — e/4 < s < 1. We have

[t]* [[(2) ™ R (£, B) |,

—L2
t 0 / /
—5—¢€ —1/2—€ —s—1/2—¢
<c | it Dot = mmy e Rp(rh)|  dr
t
+C <x>_S_EUO(7-7 h)<‘r>_s_€ L2512 H<‘T>_1_€Rm(t - T, h)HL1~>L2 dr

t/2

0o 1/2 0o 2 1/2

+Ch/ (@) R (7', )| 1, o dr’ < CHHIT2,

O

To prove (1.6) observe first that in the same way as in the proof of (2.5) one can show that

the operator E; satisfies the estimate

[ ) =By ( <SG TRT j2, (2.8)

Wl pa
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for 1/2—¢€/4<s<(n—-1)/2,0 < e < 1. On the other hand, proceeding as in the proof of (2.4),
one can easily see that (2.8) implies (1.6). To prove (1.7) we decompose E; — EY as follows

Ej(t,h) — Ej(t,h) = —h/t Uo(t — 7, R)V(T(h) — Id)E;_1 (7, h)dr
0

¢
+h/0 Uo(t — 7, h)V(Ej—1(7, h) — EJ_ (7, h))dr := E[(t,h) + E}(t, h). (2.9)
Using (2.8), in the same way as in the proof of (1.6), one gets
1€}t )| o < GBI 27070002, (2.10)

On the other hand, it is easy to see from (2.9) by induction in j that we have the estimate

||<I>757€(Ej(ta h) - E?(ta h S thj+27n/2|t|7sa .] Z 07 (211)

))HLli,LQ

for 1/2—€/4 < s < (n—1)/2,0 < e < 1. It follows from (2.11) that the operator £ satisfies the
estimate

€3t W[ oo < T F277 70002, (2.12)

— L[> —

Now (1.7) follows from (2.9), (2.10) and (2.12).

Proof of Corollary 1.2. Following [16] we set
d(t, h) = €VO(hVG) — VG (hn/Gy).
It follows from (1.4) and (1.8) that the operator ® satisfies the estimate
[0t )1 < CHEZH1 g 00/2, (2.13)
On the other hand, we have (see Theorem 3.1 of [16])
|, h)|l 22 < Ch, Vit (2.14)
By interpolation between (2.13) and (2.14) we conclude
18t )l g < CHI-OO—R)|g|=an=D/2, (2.15)

for every 2 < p < 400, where 1/p+1/p' =1, a =1 — 2/p. Now we will make use of the identity

1
ol )/240) () = / H(00)0 (/201 g
0

where ¢(0) = ot=((r+)/2+a)\/ (5) € C5°((0,+00)). By (2.15) we get

VG (VG (/240 (VT — itVGo((/Gg) (D /24a)y /_Go)’

Lr' —Lp
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1
S/O Bt 0) Ly, pp O FD/2HD=1 g

1
< C|t|7a(n71)/2/ p=o((n=1)/2=k=0) gy < C|t|~e(=1)/2, (2.16)
0

provided a((n —1)/2 — k — ¢) < 1, that is, for 2 < p < 2(7?__31__722(1‘1__;@. Now (1.10) follows from
(2.16) and the fact that it holds for the free operator. Similarly, by (2.13) we get

YOG, (VB) = VO (G (V)|

LY —L
1
< [ IO g a0
0
1
< C|t|-<"—1>/2/ 6-1<dp < C.|t|~ =172, (2.17)
0
Now (1.9) follows from (2.17) and the fact that it holds for the free operator. O

3 Semi-classical expansion of €%y (hQ)

We keep the same notations as in the introduction. We will make use of the following identity
which can be derived easily from Duhamel’s formula (see [15])

(Id + 1 (R*Go) — 1 (R2G)) €Yy (h*G)
= Fy(t,h) +i /Ot Wo(t — 7, h)Ve ™Sy (h2G)dr. (3.1)
We rewrite (3.1) as follows
e"Cy(h2G) = Fy(t, h) + /O t Wo(t — 7, h)Ve ™ Sp(h2Q)dr, (3.2)

where

Fo(t,h) = T(h)Fo(t,h), Wolt,h) = iT(R)Wo(t,h).

Tterating (3.2) m times leads to the identity

" CY(h*G) =D F(t,h) + Rmia(t h), (3.3)
j=0

where the operators ﬁj, j > 1, are defined by
t
Fj(t, h) = / Wo(t - T, h)Vijl(T, h,)dT,
0

while the operators R,,, m > 0, are defined as follows

Ro(t, h) = e"“y(h*Q),
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t
Rm+1(t,h) = / Wo(t — 7, h)V Ry (7, h)dr.
0

It is clear from (3.3) that the estimate (1.15) follows from the following

Proposition 3.1 Under the assumptions of Theorem 1.2, for all0 < h < hg, t #0, 1/2 —¢/4 <
s<(n—-1)/2,0< e <1, we have the estimates

IRm1 (6, )l 1o < Conh™= =Dt 7272, (3.4)

(@) 2 R 1) ||

for every integer m > 0.

- < thm+57(n73)/275/6|t|7571/2’ (35)

Proof. For m = 0 these estimates are proved in Section 4 of [15]. We will now derive (3.4) for
m > 1 from (3.5) and the following estimate proved in [15] (see (2.1)):

Gy (h2Go) (x) ~ /25 < Chs== D2y =s=1/2 0 1 L0, 0< h <1, (3.6)

L2—L>

for0<s<(n—1)/2,0<e< 1. We have

"2 R (8 D) 1 g

t —~
<c | |2 HWo(t I dr

t/2

@2 Ron (7, )|

L2—][ L1 L2

(@) " Ron(t = 7, 0)|| 1 0 dT

t L2—[>

t
+C [ R [ Wor b )2
/2

dr'’

<Chm—f/6/oo [Wotr hya) =1
< N o(7', h)(z) .

+C/ H<x>71*57€m(7_/7 h)HLlﬁLz dr’ < Cpm—(n=2)/2=¢/3

We will now show that (3.5) for R, 41 follows from (3.5) for R,, and the following estimate proved
in [15] (see (2.2)):

[(z) ™o (h*Go) (x <C{/h)™%, Y, 0<h<1. (3.7)

>_S HL2~>L2

We have
|t|s+1/2 H<I>71/27575Rm+1(t’ h)‘

L'—12

t
<C s+1/2H —1/2=s—€[7 (4 — 7 B){(z) L€ “1/2-s—ea h‘ d
<o [ w e ot - @, | ] -
t —_—
+C [ rl @) W ) | @) Rt = )| dr

t/2
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< Chm+s—(n—l)/2—e/6 /OO <T//h>—1—e/2d7_/

— 00

4O [ ) R )1 ' < O

— 00

O

To prove (1.17) observe that in the same way as in the proof of (3.5) one can show that the

operator Fj satisfies the estimate

[@ 2 eryem| | < ottt ia (3:5)

—L

for 1/2—¢/4<s<(n—-1)/2,0 < e < 1. On the other hand, proceeding as in the proof of (3.4),
one can easily see that (3.8) implies (1.17). To prove (1.18) we decompose F; — F} as follows

Fj(t,h) — FO(t,h) = i/t Wo(t — 7, W)V(T(h) — Id)F;_y (7, h)dr
0

¢
—i/ Wo(t — 7, )V (Fj_1(1,h) — F)_ (1, h))dr := N} (t,h) + N (t,h). (3.9)
0
Using (3.8), in the same way as in the proof of (1.17), one gets
1G (& )| e < CyhT P22 702, (3.10)

On the other hand, it is easy to see from (3.9) by induction in j that we have the estimate

< thj+2+sf(n71)/275/6|t|7571/27 j>o0, (3.11)

L'—L2

(@) =2 () = FD(8 1)

for 1/2—¢/4 <s<(n—1)/2,0 <e< 1. It follows from (3.11) that the operator N7 satisfies the
estimate

| N?(t, h < C pI+E/ 274 7n/2, (3.12)

Mg
Now (1.18) follows from (3.9), (3.10) and (3.12).
Proof of Corollary 1.4. Following [15] we set
U(t, h) = e"Cep(h2G) — e p(h2Gy).
It follows from (1.15) and (1.19) that the operator ¥ satisfies the estimate
1Ot 7)o oo < CREZ(=2 g 70/2, (3.13)
On the other hand, we have (see Theorem 3.1 of [15])

|9 (t, Bl ys < Ch, V. (3.14)
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By interpolation between (3.13) and (3.14) we conclude

IO (R < ORI 2R g a2, (3.15)
for every 2 < p < 400, where 1/p+1/p' =1, a =1 — 2/p. Now we will make use of the identity
1
7 a(o) = [ ol s,
0

where ¢(0) = o' 721/2y/ (o) € C§°((0,+00)). By (3.15) we get

eitGG—OﬂZ/zxa (G) — eitGO Gaaq/QXa(GO)’

L —Lp

< [ ool

9(1(1/2—1 do
e —[Lp

1
< O|t|—om/2/ 9—1/2—a((n—1)/2—k—q)/2d9 < C«|t|—om/27 (316)
0

provided 1/2+ a((n —1)/2 —k — q)/2 < 1, that is, for 2 < p < 2(7?_}1:722;:22,?. Now (1.21) follows

from (3.16) and the fact that it holds for the free operator. Similarly, by (3.13) we get

eitGGk/zf(n73)/4feXa(G) _ eitGoGg/Z—(n—3)/4—eXa(GO)‘

L —Le

9—k/2+(n—3)/4—1+ed9
L1 — Lo

< [ Jsea)
0

1
< C|t|*”/2/ O-1Fedh < C |t~/ (3.17)
0

Now (1.20) follows from (3.17) and the fact that it holds for the free operator. By (1.15), (1.19),
(1.23) and (1.24), we have

| W (t, h) — Fr(t)b(h*Go < Chk=(n=38)/2%e g |=n/2, (3.18)

)HLIHL”

Proceeding as above with a suitably chosen function v, we obtain from (3.18)

eitGGk/Z—(n—3)/4Xa(G) . eitGOGS/Q*(n73)/4Xa(GO) _ ]_-k(t)Glg/Zf(nf@/Al‘

LY'—L
1
< / qu(t7 \/5) _]_-k(t)w(eGo)‘ L g—k/2+(n=3)/4=1 49
0 — L=
1
< O|t|_"/2/ O~1+</2d0 < C|t|7v2. (3.19)
0
Now (1.25) follows from (3.19), (1.22) and the fact that it holds for the free operator. O

Received: October 2007. Revised: December 2007.
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