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ABSTRACT

A dynamical system of the form

utt − ∆u −∇ ln ρ · ∇u = 0, in R
n

+ × (0, T )

u|t=0 = ut|t=0 = 0, in R
n

+

uxn = f on ∂R
n

+ × [0, T ],

is considered, where R
n

+ :=
{
x = {x1, . . . , xn}| xn > 0

}
; ρ = ρ(x) is a smooth positive

function (density) such that ρ, 1
ρ

are bounded in Rn

+; f is a (Neumann) boundary control

of the class L2(∂R
n

+ × [0, T ]); u = uf
(x, t) is a solution (wave). With the system one

associates a response operator RT : f 7→ uf |∂R
n

+
×[0,T ]. A dynamical inverse problem is

to determine the density from the given response operator.

Fix an open subset σ ⊂ ∂R
n

+; let L2(σ× [0, T ]) be the subspace of controls supported on

σ. A partial response operator RT

σ
acts in this subspace by the rule RT

σ
f = uf |σ×[0,T ];

let R2T

σ
be the operator corresponding to the same system considered on the doubled

time interval [0, 2T ]. Denote BT

σ
:=

{
x ∈ R

n

+| {x
1, . . . , xn−1, 0} ∈ σ, 0 < xn < T

}
and

assume ρ|σ to be known. We show that R2T

σ
determines ρ|BT

σ

and propose an efficient
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procedure recovering the density. The procedure is available for constructing numerical

algorithms.

The instrument for solving the problem is the boundary control method which is an

approach to inverse problems based on their relations with control theory (Belishev,

1986). Our presentation is elementary and can serve as introduction to the BC method.

RESUMEN

Consideramos el sistema dinámico

utt − ∆u −∇ ln ρ · ∇u = 0, en R
n

+ × (0, T )

u|t=0 = ut|t=0 = 0, en Rn

+

uxn = f sobre ∂R
n

+ × [0, T ],

donde R
n

+ :=
{
x = {x1, . . . , xn}| xn > 0

}
; ρ = ρ(x) es una función positiva suave

(densidad) tal que ρ, 1
ρ

son limitada en R
n

+; f es un control en la frontera (Neumann)

de clase L2(∂R
n

+ × [0, T ]); u = uf (x, t) es la solución (Onda). Con el sistema asociamos

un operador respuesta RT : f 7→ uf |∂R
n

+
×[0,T ]. Un problema dinámico inverso consiste

en determinar la densidad desde el operador respuesta.

Fije un subconjunto abierto σ ⊂ ∂R
n

+; sea L2(σ × [0, T ]) el subespacio de los controles

soportados em σ. Un operador respuesta parcial RT

σ
actua en este subespacio mediante

la regla RT

σ
f = uf |σ×[0,T ]; sea R2T

σ
el operador correspondiente al mismo sistema consid-

erado en el intervalo de tiempo [0, 2T ]. Denote BT

σ
:= {x ∈ R

n

+| {x
1, . . . , xn−1, 0} ∈ σ,

0 < xn < T } y suponga que ρ|σ es conocido. Nosotros mostramos que R2T

σ
determina

ρ|BT
σ

y es propuesto un procedimento eficiente de recuperar la densidad. El proced-

imiento es encontrado por construción de algoritmos númericos.

El instrumento de resolver el problema es el método de control en la frontera este es

un abordage para problemas inversos basado en sus relaciones con teoria de control

(Belishev, 1986). Nuestra presentación es elemental y puede servir como introducción

al método BC.

Key words and phrases: Dynamical inverse problem, response operator, determination of den-

sity, boundary control method.

Math. Subj. Class.: 35Bxx, 35R30
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1 About the paper

The problem under consideration comes from geophysics. We deal with a dynamical system of the

form

utt − ∆u −∇ ln ρ · ∇u = 0 in R
n

+ × (0, T ) (1)

u|t=0 = ut|t=0 = 0 in R
n

+ (2)

uxn = f on Γ × [0, T ], (3)

where R
n

+ :=
{
x = {x1, . . . , xn}| xn > 0

}
simulates the Earth, Γ := ∂R

n

+ is the Earth surface,

ρ = ρ(x) is a smooth function (density) satisfying 0 < ρ∗ ≤ ρ(·) ≤ ρ∗, f is a (Neumann) boundary

control of the class L2(Γ× [0, T ]), u = uf (x, t) is a solution. The solution describes a wave initiated

by the control and propagating into the Earth from the surface. With the system one associates

a response operator RT : f 7→ uf |∂R
n

+
×[0,T ]. From the physical viewpoint, f is a force applied at

the surface, whereas uf |∂R
n

+
×[0,T ] is a displacement measured at the same surface. Thus, RT is an

”input 7→ output” map representing the measurements, which the external observer implements

at the surface. The dynamical inverse problem, which the paper deals with, is to determine the

density from the given response operator.

2 Results

Begin with certain of the notations. With a point x ∈ Rn

+ we associate a pair (γ, τ) : γ :=

{x1, . . . , xn−1, 0} ∈ Γ, τ := xn ≥ 0 of its semigeodesic coordinates and write x = x(γ, τ). Fix ξ > 0,

let σ ⊂ Γ be an open subset at the surface; the set Bξ

σ
:= {x ∈ R

n

+| x = x(γ, τ), γ ∈ σ, τ ∈ (0, ξ)} is

called a tube with a bottom σ and a top σξ = {x(γ, τ)| γ ∈ σ, τ = ξ}. Also, introduce a subdomain

Ωξ

σ
:= {x ∈ Rn

+| dist (x, σ) < ξ} 1 (contoured with cdef on Fig 1). The tube (shadowed on Fig 1)

is the part of the subdomain illuminated with rays emanating from σ in normal direction to the

surface.

Figure 1: The tube Bξ

σ
and the subdomain Ω

ξ

σ

1dist is the standard Euclidean distance in R
n
+
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Let σ ⊂ Γ and T > 0 be fixed. Consider system (1)–(3) with the final moment t = 2T

and introduce a partial response operator R2T

σ
acting in the (sub)space L2(σ × [0, 2T ]) of controls

supported on σ by the rule R2T

σ
f := uf |σ×[0,2T ]

2. As is well-known, the waves in system (1)–(3)

propagate with the unit velocity. By this, the response operator depends on the density locally:

R2T

σ
is determined by the behavior of ρ in the subdomain ΩT

σ
only 3. Such a locality motivates the

setup of the inverse problem: given operator R2T

σ
to recover ρ|ΩT

σ

. However, since the substitution

ρ → cρ with a constant c > 0 does not change system (1)–(2), the unique determination of density

is impossible. Avoiding such a nonuniqueness, it is natural to assume the boundary values of ρ to

be known. The main result of the paper is

Theorem 1 Let T > 0 be fixed, the operator R2T

σ
given, and the function ρ|σ known. Then these

data uniquely determine ρ|BT

σ

.

The proof is constructive: we propose an efficient procedure recovering the density in the tube.

Moreover, the procedure is provided with an additional option that is visualization of waves: given

f we recover uf |BT
σ
.

3 Motivation and comments

There are two reasons to deal namely with the version (1) of the general wave equation with variable

coefficients. First, the interest is motivated by possible applications in geophysics (see, e.g., [6]).

The second reason is the following. The instrument for solving the problem is the boundary control

method (BCm), which is an approach to inverse problems based on their relations with control

theory (Belishev, 1986). In comparison with another versions (see [1] – [4]), the variant of the

BCm available for equation (1) is the simplest one. As such, it has good chances for numerical

realization. Our presentation is elementary: along with the paper [3], this one can serve as an

introduction to the BCm. The plan of the paper is as follows:

• in section 4, the basic notions and objects (spaces, operators etc) are introduced

• in section 5, we present the so-called amplitude formula (AF) which solves the inverse prob-

lem: it recovers ρ|BT

σ

via R2T

σ

• sections 6–10 are devoted to the derivation of the AF

• in section 11, a certain additional option of the BCm is described: the AF enables one to

recover the solutions uf
in the tube BT

σ
that is what we call a wave visualization

• section 12 contains the concluding remarks; also, the extension of our results is shortly

discussed.

2this operator represents the measurements implemented at the part of the Earth surface
3in other words, R2T

σ does not depend on ρ|
Rn

+
\ΩT

σ
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Simplifying the notations, we accept the convention: unless the otherwise is specified, the

subset σ ⊂ Γ is assumed fixed and we write R2T
instead of R2T

σ
, Ω

ξ
instead of Ω

ξ

σ
, Bξ

instead of

Bξ

σ
, etc. Also, without loss of generality, we assume σ to be bounded and ∂σ smooth.

4 Dynamical system

With system (1)–(3) one associates

(i) an outer space FT := {f ∈ L2, ρ0
(Γ × [0, T ])| supp f ⊂ σ × [0, T ]} of controls acting from

σ with the inner product

(f, g)
F

T =

∫

σ×[0,T ]

f(γ, t) g(γ, t) ρ0(γ)dΓdt ,

where ρ0 := ρ|Γ, dΓ is the Euclidean surface element on ∂R
n

+. In FT we single out a family of

subspaces

FT, ξ
:=

{
f ∈ FT | supp f ⊂ σ × [T − ξ, T ]

}
, ξ ∈ [0, T ]

consisting of the delayed controls (T − ξ is the value of delay, ξ is the action time; FT, 0 =

{0}, FT, T = FT );

(ii) an inner space of states (waves) HT := L2, ρ(Ω
T ) with the product

(y, w)
H

T =

∫

ΩT

y(x)w(x) ρ(x)dx

and the family of its subspaces
4

Hξ
:=

{
y ∈ HT | supp y ⊂ Ωξ

}
, ξ ∈ [0, T ] .

Since the waves described by a hyperbolic system (1)–(3) propagate (from σ into R
n

+) with the

speed 1, the inclusion supp uf
(·, t) ⊂ Ωt holds for all t ∈ [0, T ], whereas Ω

T
is the subdomain filled

with waves at the final moment t = T . Correspondingly, we consider the waves as time depended

elements of the space HT ;

(iii) a control operator WT : FT → FT , WT f := uf(·, T ). This operator is continuous [7]

and injective for any T > 0 [1]. By the above-mentioned hyperbolicity, for f ∈ FT, ξ one has

supp uf (·, T ) ⊂ Ωξ that yields the embedding WTFT, ξ ⊂ Hξ;

(iv) a response operator RT :FT → FT , RT f :=uf |σ×[0,T ], which is also a continuous map 5;

(v) a connecting operator CT : FT → FT , CT := (WT )∗WT . For f, g ∈ FT , one has

(
uf

(·, T ), ug
(·, T )

)
H

T
= (WT f, WT g)

H
T = (CT f, g)

F
T , (4)

4recall that Ωξ = {x ∈ Rn
+

| dist (x, σ) < ξ}
5moreover, RT is a compact operator [7]
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so that CT connects the metrics of the outer and inner spaces. By injectivity of WT , the operator

CT
is also injective.

One of central points of the BCm is an explicit relation between the response and connecting

operators. Denote by ST
: FT → F2T

the operator extending controls from σ× [0, T ] to σ× [0, 2T ]

as odd (with respect to t = T ) functions of time; let J2T : F2T → F2T be the integration:

(J2T f)(·, t) :=
∫

t

0
f(·, s) ds; R2T : F2T → F2T the response operator of system (1)–(3) with the

final moment t = 2T .

Lemma 1 The relation

CT
=

1

2
(ST

)
∗J2T R2T ST

(5)

holds.

Proof Choose f, g ∈ FT and denote f− := ST f . Assume f , g to be such that uf
− , ug are the

classical solutions. Blagoveschenskii’s function

b(s, t) :=

∫

R
n

+

uf
−(·, s)ug

(·, t) ρdx s, t ∈ [0, 2T ]× [0, T ]

is well defined and satisfies

btt(s, t) − bss(s, t) =

∫

Ω

[
uf

−(·, s)u
g

tt
(·, t) − uf

−

ss
(·, s)ug

(·, t)
]

ρdx =

∫

Ω

[
uf

−(·, s) divρ∇ug
(·, t) − divρ∇uf

−(·, s)ug
(·, t)

]
dx =

∫

Γ

[
−uf

−(·, s)u
g

xn(·, t) + u
f
−

xn (·, s)ug
(·, t)

]
ρ0dΓ =

−

∫

Γ

[
(R2T f−)(·, s) g(·, t) − f−(·, s) (RT g)(·, t)

]
ρ0dΓ =: F (s, t)

(in the second equality we have used equation (1) in the form ρutt = div(ρ∇u). Finding b by the

D’Alembert formula (with regard to the initial conditions b(·, 0) = bt(·, 0) = 0), putting t = T , and

taking into account the oddness of f−, we get

b(T, T ) =
1

2

∫
T

0

dt

∫ 2T−t

t

F (s, t) ds =

−
1

2

∫
T

0

dt

∫ 2T−t

t

ds

∫

Γ

(R2T f−)(·, s) g(·, t) ρ0dΓ :=

∫

Γ×[0,T ]

1

2

{∫
t

0

(R2T f−)(·, s) ds −

∫ 2T−t

0

(R2T f−)(·, s) ds

}
g(·, t) ρ0dΓdt

that can be easily transformed to

b(T, T ) =

(
1

2
(ST

)
∗J2T R2T ST f, g

)

F
T

. (6)
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On the other hand, we have

b(T, T ) =
(
uf

−(·, T ), ug
(·, T )

)
H

T
=

(
uf

(·, T ), ug
(·, T )

)
H

T
= 〈see (4)〉 = (CT f, g)

F
T . (7)

Comparing (6) with (7) and taking into account the density (in FT ) of f, g used, we arrive at (5).

�

5 Amplitude formula

Here we present a relation that determines the density from the response operator. Recall that

x(γ, τ) denotes the point in R
n

+ with the semigeodesic coordinates γ and τ , the subset σ ∋ γ is

fixed, ρ0 = ρ|Γ.

Fix ξ ∈ (0, T ); let f̌ ξ
:= {f

ξ

k
}∞

k=1 ⊂ FT, ξ
be a linearly independent complete system

6
of

delayed controls acting from σ and such that the corresponding solutions uf
ξ

k are classical. With

the system we associate its Gram matrix {Gik}
∞

i,k=1 :

Gik := (CT f
ξ

i
, f

ξ

k
)
F

T =

∫

σ×[T−ξ,T ]

(CT f
ξ

i
)(γ, t) f

ξ

k
(γ, t) ρ0(γ)dΓdt (8)

and a sequence of numbers {βi}
∞

i=1 :

βi := − (κ
T , f

ξ

i
)
F

T = −

∫

σ×[T−ξ,T ]

(T − t) f
ξ

i
(γ, t) ρ0(γ)dΓdt , (9)

where κ
T = κ

T (γ, t) := T − t. For any integer N ≥ 1, a linear algebraic system

N∑

k=1

Gik αN

k
= βi, i = 1, . . . , N (10)

is uniquely solvable (w.r.t. αN

1 , . . . , αN

N
) by injectivity of the operator CT .

Lemma 2 For a fixed (γ, ξ) ∈ σ × (0, T ), the relation

ρ (x(γ, ξ)) = ρ0(γ)

{[
∂

∂t
lim

N→∞

N∑

k=1

αN

k

(
CT f

ξ

k

)]
(γ, t)

∣∣∣∣
t=T−ξ+0

t=T−ξ−0

}2

(11)

holds.

Relation (11) is a relevant version of the so-called amplitude formula (AF), which is one of the

main tools for solving inverse problems by the BCm: see [1], [2], [3]. The assertion of Theorem 1

easily follows from the AF. Indeed, if ρ0 is known and R2T is given, then one can find CT by (5)

and, choosing a system f̌ ξ
, determine the r.h.s. of (11). As (γ, ξ) runs over σ × (0, T ), the points

x(γ, ξ) exhaust the tube BT . Hence, ρ|BT is determined by R2T . In sections 6–10 we derive the

AF.

6the completeness means that closFT span f̌ξ = FT, ξ
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6 Propagation of jumps

The well-known and typical for hyperbolic problems fact is that discontinuity of a control f in

system (1)–(3) implies discontinuity of the corresponding wave uf
, the latter discontinuity (singu-

larity) propagating along the space-time rays and being supported on the characteristic surfaces.

Below we recall certain details.

Let θ0(t) :=
1
2 [1 + sign t], t ∈ R be the Heavyside function; the sequence {θk(·)}k=∞

k=−∞
:

dθk

dt
=

θk−1 is usually referred to as a smoothness scale 7.

Choose a smooth control f ∈ FT and fix ξ ∈ (0, T ); by fξ(γ, t) := f(γ, t)θ0 (t − (T − ξ)) we

denote its cut-off function on σ × [T − ξ, T ], so that fξ is an element of the subspace FT, ξ. In the

generic case, the control fξ has a jump at the cross-section σ × {t = T − ξ} (see ab on Fig 2), the

value (amplitude) of the jump being equal to fξ( · , t)|
t=T−ξ+0
t=T−ξ−0 = f( · , T − ξ) − 0 = f( · , T − ξ).

t=0

t=T

t=T-x

Figure 2: Jumps in system (1)–(3)

Jumps of a Neumann control induce jumps of a wave velocity. Namely, the velocity u
fξ

t
turns

out to be discontinuous; its jump is supported on the characteristic surface {(x, t)| t = (T − ξ)+

dist (x, σ)}. This surface consists of the plane part abde and two conic parts bcd and aef (see

Fig 2; the arrows pick up the space-time rays, which the discontinuity propagates along). The

jump on the conic parts is weaker than the one on the plane part and plays no role in the further

considerations. The jump on the plane part is described as follows. In a (space-time) neighborhood

of abde, the solution is sought in the form

ufξ = Ap + wp , Ap(x, t) :=

p∑

k=1

Ak(γ, τ) θk (t − (T − ξ) − τ) , (12)

where x in the l.h.s. is x(γ, τ); Ap is an ansatz, which is a function of the class C
p−1
loc ; Ak are the so-

called amplitude functions; wp ∈ C
p

loc is a smoother reminder. Substituting such a representation

in (1)–(3), one derives a recurrent system of ODE’s 8 for the amplitude functions. As result, one

7θk with negative k’s are understood in the sense of distributions
8the so-called transport equations
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arrives at the representation (for p = 1) of the form

ufξ(x, t) = −

(
ρ (x(γ, τ))

ρ0(γ, τ)

)
−

1

2

f(γ, T − ξ) θ1 (t − (T − ξ) − τ) +

w(x, t) θ2 (t − (T − ξ) − τ) , (13)

where x = x(γ, τ) in the l.h.s. and w is a smooth function. For details of this technique see, e.g.,

[5].

At the final moment t = T , the wave ufξ(· , T ) is supported in the subdomain Ωξ contoured

with cdef on Fig 2. The surface cdef coincides with the forward front of the wave. By (13), in a

neighborhood of the plane part ed of the front, the representation

ufξ(x, T ) = (WT fξ)(x) =

−

(
ρ (x(γ, τ))

ρ0(γ, τ)

)
−

1

2

f(γ, T − ξ) θ1 (ξ − τ) + w(x) θ2(ξ − τ) (14)

holds with a smooth w. Correspondingly, the velocity of the wave has a jump at ed:

u
fξ

t
(x(γ, τ), T )

∣∣∣∣
τ=ξ+0

τ=ξ−0

= 0 − u
fξ

t
(x(γ, ξ − 0)) = 〈see (13)〉 =

−

(
ρ (x(γ, ξ))

ρ0(γ, ξ)

)
−

1

2

f(γ, T − ξ) , γ ∈ σ . (15)

So, up to the factor −(
ρ

ρ0

)
−

1

2 , the shape of the velocity jump reproduces the shape of the control

jump.

7 Dual system

A dynamical system

vtt − ∆v −∇ ln ρ · ∇v = 0, in R
n

+ × (0, T ) (16)

v|t=0 = 0, vt|t=0 = y, in Rn

+ (17)

vxn = 0 on Γ × [0, T ], (18)

is said to be dual to system (1)–(3); its solution v = vy(x, t) describes a wave initiated by a velocity

perturbation y and propagating (in the reversed time) into R
n

+. The term ’dual’ is motivated by

the following relation between solutions of these systems.

Lemma 3 For any square summable f and y compactly supported in Γ×[0, T ] and R
n

+ respectively,

the equality ∫

R
n

+

uf
(· , T ) y ρdx =

∫

Γ×[0,T ]

f vy ρ0dΓdt (19)

is valid.
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Proof Let f and y be compactly supported and such that the solutions uf and vy are classical.

The relations

0 =

∫

R
n

+
×[0,T ]

[
u

f

tt
− ∆uf −∇ρ · ∇uf

]
vy ρdx dt =

∫

R
n

+
×[0,T ]

[
ρu

f

tt
− div ρ∇uf

]
vy ρdx dt =

∫

R
n

+

[
u

f

t
vy − uf v

y

t

] ∣∣∣∣
t=T

t=0

ρdx +

∫
T

0

dt

∫

Γ

[
u

f

xn vy − uf v
y

xn

]
ρ0dΓ +

∫

R
n

+
×[0,T ]

uf
[v

y

tt
− ∆vy

−∇ρ · ∇vy
] ρdx dt = 〈 see (2), (17) 〉 =

−

∫

R
n

+

uf
(·, T ) y ρdx +

∫

Γ×[0,T ]

f vy ρ0dΓdt

imply (19). By the density of the chosen f ’s and y’s in the corresponding L2- spaces, the passage

to the limit in the proper sense leads to the assertion of the lemma. �

Taking in (17) y ∈ HT , introduce an observation operator OT : HT → FT , OT y := vy|σ×[0,T ].

For f ∈ FT , relation (19) can be written in the form (WT f, y)
H

T = (f, OT y)
F

T , which yields

OT
=

(
WT

)
∗

(20)

and clarifies the duality of the systems.

8 Jumps in dual system

Here we consider the dual system provided with the specific Cauchy data (17): the velocity per-

turbation y is assumed to be discontinuous. Recall the notations: Ωξ = {x ∈ R
n

+| dist (x, σ) < ξ},

Bξ
= {x ∈ R

n

+| x = x(γ, τ), γ ∈ σ, τ ∈ (0, ξ)}, ξ > 0.

Fix ξ ∈ (0, T ) and take a function y ∈ C∞(ΩT ) ⊂ HT ; denote by

yξ :=

{
y in Ωξ

0 in ΩT \ Ωξ

its cut-off function onto the subdomain Ω
ξ
. In the generic case, the function yξ has a jump at a

surface ∂Ωξ ∩ R
n

+ (see cdef on Fig 3).
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t=0

t=T

t=T-x

Figure 3: Jumps in the dual system (16)-(18)

Return to the dual system and replace y by yξ in (17). The well-known fact is that discontin-

uous data produce discontinuous waves. Namely, the jump of the data at cdef implies the jump

of the wave velocity, the latter one being supported on the characteristic surfaces. In particular,

these surfaces contain the plane parts abde and ednm consisting of the space-time rays (see the

arrows) emanating from the set σξ × {t = T } (see ed). The amplitude of the jumps at these parts

can be found by standard geometrical optics technique, i.e., by the use of the relevant analog of

representation (12) for the solution vyξ . Omitting the details, the result is as follows.

For a point (x0, t0) ∈ abde such that x0 = x(γ, τ), γ ∈ σ, 0 < τ < ξ and t0 = T − (τ − ξ), one

has

v
yξ

t
(x0, t)

∣∣∣∣
t=t0+0

t=t0−0

=
1

2

(
ρ (x(γ, ξ))

ρ (x(γ, τ))

) 1

2

y (x(γ, ξ)) . (21)

The meaning of this formula is quite transparent: the jump of data at the point x(γ, ξ) initiates

the jump of velocity, which propagates (in the reversed time) along the ray {(x(γ, τ), t) | t =

T − (τ − ξ), τ ∈ [0, ξ]}, its amplitude being proportional to the jump of data up to the factor

1
2

(
ρ

ρ

) 1

2

.9

Further, at the moment t = T − ξ the jump reaches the boundary Γ and is reflected back into

R
n

+ (see the rays constituting the part ablk). As result, a trace of the velocity v
yξ

t
on σ × [0, T ]

turns out to be discontinuous, its jump being supported at the cross-section σ × {t = T − ξ} (see

ab). The amplitude of this jump can be found from (21): the equality

v
yξ

t
(γ, t)

∣∣∣∣
t=T−ξ+0

t=T−ξ−0

=

(
ρ (x(γ, ξ))

ρ (x(γ, 0))

) 1

2

y (x(γ, ξ))

9the part ednm also supports the jump moving into R
n
+ in opposite direction. This jump plays no role in the

further considerations.
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holds 10. By the definition of the observation operator, this equality can be written as

(
∂

∂t
OT yξ

)
(γ, t)

∣∣∣∣
t=T−ξ+0

t=T−ξ−0

=

(
ρ (x(γ, ξ))

ρ0(γ)

) 1

2

y (x(γ, ξ)) . (22)

At last, putting y = 1 (so that 1ξ is an indicator of the subdomain Ωξ), we obtain the important

auxiliary relation

(
ρ (x(γ, ξ))

ρ0(γ)

) 1

2

=

(
∂

∂t
OT

1ξ

)
(γ, t)

∣∣∣∣
t=T−ξ+0

t=T−ξ−0

, (γ, ξ) ∈ σ × (0, T ) . (23)

Completing the derivation of (11) in the next two sections, we show how to express the r.h.s.

of (23) through the inverse data (operator R2T ).

9 Controllability. Wave basis

Fix ξ ∈ (0, T ). In control theory, the set Uξ := Ran WT = {uf(·, T )| f ∈ FT, ξ} of waves produced

by controls acting from σ (the action time is ξ) is said to be reachable (at the moment t = ξ). Since

the wave propagation speed is equal to 1, the waves constituting Uξ
are supported in the metric

neighborhood Ωξ of σ; as result, the embedding Uξ ⊂ Hξ holds. The property of system (1)–(3),

which plays the key role in solving inverse problems, is that for any σ and ξ this embedding is dense:

clos Uξ = Hξ. Control theory interprets this fact as a local approximate boundary controllability
11

of the system. Roughly speaking, it means that the reachable set is rich enough: any function

supported in the subdomain Ωξ filled with waves, can be approximated (in L2- metric) by a wave

uf (·, T ) ∈ Uξ with the properly chosen control f ∈ FT, ξ. The proof of this property relays on the

fundamental Holmgren–John–Tataru uniqueness theorem (see [1] for detail).

Let f̌ ξ = {f
ξ

k
}∞

k=1 ⊂ FT, ξ be a linearly independent complete system of controls acting from

σ; denote by ǔξ = {u
ξ

k
}∞

k=1 ⊂ Hξ, u
ξ

k
:= uf

ξ

k (·, T ) = WT f
ξ

k
a system of the corresponding waves.

By the controllability, the latter system is also complete: clos span ǔξ = Hξ. With a slight abuse

of terms, we call ǔξ a wave basis.

Denote by P
ξ

N
the orthogonal projection in HT onto span {u

ξ

k
}N

k=1. Since the waves form a

complete system, one has s-limN→∞ P
ξ

N
= P ξ

, where P ξ
projects in HT

onto Hξ
, i.e., cuts off

functions supported in ΩT onto Ωξ. Recall that 1ξ denotes the indicator of Ωξ. Representing

1ξ = P ξ
1T = lim

N→∞

P
ξ

N
1T , P

ξ

N
1T =

N∑

k=1

αN

k
u

ξ

k
, (24)

10this equality can be also derived from (14), (15) by the use of duality relation (19). The factor 1

2
is doubled

owing to the contribution of the reflected rays
11this motivates the name ”boundary control method”



CUBO
10, 2 (2008)

Dynamical Inverse Problem for the Equation ... 27

one can find the coefficients α
ξ

N
as follows. Multiplying the last equality in (24) by u

ξ

i
, one gets

N∑

k=1

Gik αN

k
= βi, i = 1, . . . , N , (25)

where

Gik := (u
ξ

i
, u

ξ

k
)
H

T = (WT f
ξ

i
, WT f

ξ

k
)
H

T = 〈see (4)〉 =

(CT f
ξ

i
, f

ξ

k
)
F

T =

∫

σ×[T−ξ,T ]

(CT f
ξ

i
)(γ, t) f

ξ

k
(γ, t) ρ0(γ)dΓdt (26)

and

βi := (P
ξ

N
1T , u

ξ

i
)
H

T = (1T , P
ξ

N
u

ξ

i
)
H

T = (1T , u
ξ

i
)
H

T =

∫

ΩT

uf
ξ

i (·, T ) ρdx = 〈see (2)〉 =

∫

ΩT

ρdx

∫
T

0

(T − t)u
f

ξ

i

tt
(·, T ) dt =

∫
T

0

dt (T − t)

∫

ΩT

divρ∇uf
ξ

i (·, T ) dx = −

∫

Γ×[0,T ]

(T − t)u
f

ξ

i

xn(·, T ) ρ0dΓdt =

〈see (3)〉 = −

∫

σ×[T−ξ,T ]

(T − t) f
ξ

i
(γ, t) ρ0dΓdt = − (κ

T , f
ξ

i
)
F

T (27)

with κ
T (γ, t) := T − t. In the course of integration by parts, the integral over ∂ΩT ∩ R

n

+ vanishes

because the wave uf
ξ

i (·, T ) is supported into the smaller subdomain Ωξ. Also, note that the linear

independence of the system f̌ ξ and the injectivity of the of the operator WT provide the linear

independence of the system ǔξ in Hξ. By the latter, the Gram matrix G is invertible and, hence,

system (25) is uniquely solvable w.r.t. αN

1 , . . . , αN

N
.

10 Completing the proof.

Applying OT to the both sides of (24), with regard to u
ξ

k
= WT f

ξ

k
, we have

OT
1ξ = lim

N→∞

N∑

k=1

αN

k
OT WT f

ξ

k
= 〈see (20)〉 = lim

N→∞

N∑

k=1

αN

k
CT f

ξ

k
. (28)

At last, substituting (28) into (23), we arrive at (11). The amplitude formula is derived and

Theorem 1 is proven. �

The obtained results can be presented in the form of a procedure recovering the density. If

the values of ρ0|σ are known and the response operator R2T is given (as result of measurements

on the part σ of the Earth surface), the external observer can determine the density ρ in the tube

BT as follows:

Step 1 Find the operator CT
by (5). Fix ξ ∈ (0, T ) and choose a complete system of controls

f̌ ξ ⊂ FT, ξ. Find the Gram matrix {Gik} and the numbers βi by (26), (27).
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Step 2 Solve system (25) and find αN

1 , . . . , αN

N
for N = 1, 2, . . . . Fixing a γ ∈ σ, determine

ρ (x(γ, ξ)) by the AF (11).

Step 3 Varying (γ, ξ) ∈ σ × (0, T ), recover ρ|BT .

11 Visualization of waves

The amplitude formula enables one to recover not only the density but the waves themselves.

Choose a control f ∈ FT providing the wave uf to be a classical solution of (1)–(3). For a fixed

(γ, ξ) ∈ σ × (0, T ), the representation

uf
(x(γ, ξ), T ) =

(
ρ (x(γ, ξ))

ρ0(γ)

)
−

1

2

{[
∂

∂t
lim

N→∞

N∑

k=1

ηN

k
CT f

ξ

k

]
(γ, t)

∣∣∣∣
t=T−ξ+0

t=T−ξ−0

}
(29)

holds, where the coefficients ηN

1 , . . . , ηN

N
satisfy the system

N∑

k=1

Gik ηN

k
= θi, i = 1, . . . , N

with θi := (CT f, f
ξ

i
)
F

T .

Indeed, putting y = uf(·, T ) in (22), we have

(
ρ (x(γ, ξ))

ρ0(γ)

) 1

2

uf
(x(γ, ξ), T ) =

[
∂

∂t
OT

(
uf

(·, T )
)
ξ

]
(γ, t)

∣∣∣∣
t=T−ξ+0

t=T−ξ−0

. (30)

Using the wave basis by analogy with (24), we can represent

(
uf

(·, T )
)
ξ

= P ξuf
(·, T ) = lim

N→∞

P
ξ

N
uf

(·, T ) ,

P
ξ

N
uf

(·, T ) =

N∑

k=1

ηN

k
u

ξ

k
(31)

and find the coefficients ηN

1 , . . . , ηN

N
from the Gram system

N∑

k=1

GikηN

k
= θi , i = 1, . . . , N

with the r.h.s.

θi :=

(
uf

(·, T ), u
ξ

i

)
H

T

= 〈see (4)〉 = (CT f, f
ξ

i
)
F

T .

Then, substituting

OT
(
uf

(·, T )
)
ξ

= 〈see (31)〉 = lim
N→∞

N∑

k=1

ηN

k
OT u

ξ

k
= lim

N→∞

N∑

k=1

ηN

k
CT f

ξ

k
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in (30), we arrive at (29).

Thus, the external observer with the knowledge of the response operator R2T can make the

waves visible in the tube BT under the part σ of the Earth surface. This is what we call a

visualization (see [1]–[3]).

12 Comments

• As regards the numerical realization of the procedure outlined in section 10, the most prob-

lematic point is Step 2, which consists of solving system (25) for large N ’s. Namely, since CT

is a compact operator, the condition number of the matrix {Gik} grows as N → ∞, so that

(25) turns out to be an ill-posed system. The second problem is that the passage to the limit

and the differentiation w.r.t. to t in (11) do not commute. Actually, the difficulties of this

type are unavoidable: they reflect the well-known strong ill-posedness of multidimensional

inverse problems. However, certain affirmative results in numerical testing do exist and show

that elaboration of workable BC-algorithms is not a hopeless endeavor [2], [6].

• For numerical realization, an important issue is the proper choice of the system f̌ ξ. For many

reasons, the controls producing the waves with sharp forward front are preferable. In the

problem with Neumann boundary controls (2), it looks reasonable to simulate a complete

system by the set {f ξ

qp
}

M,N

p=1, q=1:

f ξ

qp
(γ, t) = δ′

ε

(
t −

[
(T − ξ) + p

ξ

M + 1

])
fq(γ) ,

where δ′
ε
(t) is a relevant regularization of the first derivative of the Dirac function δ(t),

{fq}
∞

q=1 is an orthonormal basis in L2(σ), M and N are large integers. Also, note that in

applications one deals as a rule with a certain prescribed set of ’standard’ controls. Therefore,

it is important to develop the algorithms with controls simulating the real sources.

• The amplitude formulae (11) and (29) can be easily extended to the case of a curved boundary

Γ. Namely, assume that σ ⊂ Γ and T > 0 are such that the field of the normal rays, which

form the tube BT , is regular. Then, the only correction required is to replace ρ0 by
ρ0

J
, where

J = J(γ, τ) is the Jacobian of the passage from the semideodesic coordinates in BT

σ
to the

Cartesian coordinates (see [3]).
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