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Avenida Angamos 0610, Casilla 1280

Antofagasta – Chile

email: vayala@ucn.cl
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ABSTRACT

A graphic study of wave front sets of exponential sub-Riemannian maps is performed for

homogeneous three dimensional sub-Riemannian manifolds. We verify that depending

on dimension of the sub-Riemannian isometry group of the manifold, the first singular-

ities of wave front sets are of two types. If the group is four dimensional, the singularity

is a conjugate point. If the group is three dimensional, there are two conjugate points

and the wave front set intersects along a segment which connects both points.
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RESUMEN

Un estudio gráfico del conjunto fuente de ondas de la aplicación exponencial sub-

Riemanniana es presentada para variedades sub-Riemannianas tri-dimensionales ho-

mogéneas. Verificamos que, dependiendo del grupo de isometria subRiemanniano de la

variedad, las primeras singularidades de los conjuntos frente de onda son de dos tipos.

Si el grupo es de dimensión cuatro la singularidad es un punto conjugado. Si el grupo

es tri-dimensional, hay dos puntos conjugados y el conjunto frente de ondas intercepta

a lo largo un segmento que une ambos puntos.

Key words and phrases: sub-Riemannian geometry, exponential map, wave front sets, singu-

larities, three dimensional manifolds.

Math. Subj. Class.: 53C17

1 Introduction

A Sub-Riemannian (SR) manifold is a smooth manifold M with a distribution D ⊂ TM and a

smooth fiber inner product 〈 , 〉 on D. We will restrict the study to the three dimensional case M

and when D is a two dimensional contact distribution. We define the notion of a homogeneous SR

manifold, and describe the classification of simply connected homogeneous manifolds of dimension

three obtained by Diniz in [3]. Depending on G = Isom(M), the group of SR isometries of M ,

there are two classes: dim G = 4 or dim G = 3. In the first case the manifolds are the Heisenberg

group H3, the sphere S3
r

and the quadric Q3
r
. The second case contains several Lie subgroups of

the Lie group GL(2,C) of the complex matrices of order 2. In fact, this class includes the special

unitary group SU(2), the universal covering Ẽ(2) of the affine group E(2), the universal covering

S̃U(1, 1), of SU(1, 1), and two special groups G1 and G2 which we describe later. The classification

of contact homogeneous three dimensional subRiemanian manifolds depend on a sub-Riemannian

connection introduced in [5], through 4 parameters: λ ≥ 0, the curvature K and W1 ≥ 0 and W2

the torsion components of the connection.

The SR geodesics are minimizing curves tangent to D. This fact allows to define the SR

exponential map notion. Unlike the Riemannian case, the SR exponential map is singular at the

origin. We determine the SR geodesic equations and apply the equations to SR homogeneous

manifolds to obtain graphics of wave front sets (wfs) of SR exponential maps by using software

MATHEMATICA. It turns out that wfs are images of two dimensional cylinders, and they have

infinite auto intersections. Furthermore, conjugate points are points where the differential of a wfs

of SR exponential maps is singular. Generic results about wave front sets in three-dimensional

contact SR-manifolds can be found in [1] , [2] , and [4].

If dim G = 4 there is only one point at the first auto intersection of wfs and this point is

conjugate, as in Figure 1. If dimG = 3 the set of the first auto intersection is a segment, and the
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extremals of this segment are conjugate points, as in Figure 2. It is a conjecture that all wfs of SR

exponential maps are as Figure 1 or Figure 2.

2 Exponential Map

Definition 2.1 A sub-Riemannian three dimensional contact manifold consists of a manifold M ,

together with a two dimensional contact distribution D (a vector sub-bundle D ⊂ TM of the tangent

bundle of M) endowed with a fiber inner product 〈 , 〉.

As D is contact, we have D + [D, D] = TM .

Definition 2.2 An adapted basis (e11, e12, e21) is a basis of TM such that (e11, e12) is an or-

thonormal basis of D. A coreferential θ11, θ12, θ21 is adapted if its dual basis is adapted.

Proposition 2.1 There exists a unique form θ21, unless of sign, defined on M such that ker θ21 =

D and dθ21 is the volume form on D.

The hypothesis that D is a contact distribution implies by the well known Chow’s theorem,

that any two points belonging to the same connected component of M can be joined by an horizontal

curve. That is to say there exists an absolutely continuous curve c(t) such that ċ(t) ∈ Dc(t), for all

t where ċ(t) exists.

The length of a smooth horizontal curve c : [a, b] → M is defined by

l(c) =

∫
b

a

√
〈ċ(t), ċ(t)〉dt.

The distance between two points is given by the infimum of the horizontal curves lengths joining

these two points.

A sub-Riemannian geodesic is an horizontal curve that locally realize the distance between its

points. They are solutions of the Hamilton-Jacobi equations.

We start by given a description of the geodesics in terms of a local adapted frame. Let us

write

dθ11 = a11
(11)(12) θ11 ∧ θ12 + a11

(11)(21) θ11 ∧ θ21 + a11
(12)(21) θ12 ∧ θ21

dθ12 = a12
(11)(12) θ11 ∧ θ12 + a12

(11)(21) θ11 ∧ θ21 + a12
(12)(21) θ12 ∧ θ21

dθ21 = a21
(11)(12) θ11 ∧ θ12 + a21

(11)(21) θ11 ∧ θ21 + a21
(12)(21) θ12 ∧ θ21.

It follows from Proposition 2.1 that

a21
(11)(21) = 1.

Let µ ∈ T ∗

p
M determined by

µ = µ11 θ11
p

+ µ12 θ12
p

+ µ21 θ21
p

.
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Given λ ∈ T ∗

p
M we can associate canonically a vector g(λ) ∈ Dp by 〈g(λ), v〉 = λ(v), for every

v ∈ Dp. If we write µ1 = g(µ), then we have

µ1 = µ11 e11 + µ12 e12.

In the sequel we denote by (M, D, g) a sub-Riemannian manifold (M, D) with its associated ap-

plication g.

Next we get the equations for the geodesics. We follow [6] and [7]. Let π : T ∗M → M the

canonical projection and dπ : T (T ∗M) → TM its differential. Define a one form ω on T ∗M by

ι(v)ωλ = ι(dπ(v))λ where λ ∈ T ∗M and v ∈ Tλ(T ∗M). The canonical sympletic form on T ∗M is

the two-form Ω = dω.

If H is a Hamiltonian function on T ∗M , we define the Hamiltonian vector field
−→
H on T ∗M

by Ω(v,
−→
H ) = ι(v)dH . The bicharacteristics of

−→
H are the absolutely continuous curves C(t) on

T ∗M such that Ċ(t) =
−→
H (C(t)) for almost every t. A curve c(t) is say to be characteristic if

c(t) = π(C(t)) on M , for some bicharacteristic curve C(t) on T ∗M.

Take a coordinate system (xj) on a neighborhood of p ∈ M . Given a vector λ ∈ T ∗M we can

write λ = Σλαiθ
αi, where αi = 11, 12, 21. Then (xj , λαi) is a coordinate system for T ∗M , and the

vector fields (
∂

∂xj , ∂

∂λαi

) form a basis of T (T ∗M). In particular, it is possible to suspend the vector

fields eαi to T ∗M , and we denote them by the same symbols. In the same way, we denote by θαi

the one-forms π∗(θαi). With this notation, we obtain

ω =

∑

αi

λαiθ
αi and Ω =

∑

αi

(
dλαi ∧ θαi

+ λαidθαi
)
.

The Hamiltonian function associated to the sub-Riemannian manifold M is given by

H(x, λ) = H(xj , λαi) =
1

2
(λ2

11 + λ2
12),

and it is a straightforward calculus to show that

−→
H (x, λ) =

2∑

i=1

λ1i(e1i −
∑

αj

∑

βl

a
βl

(1i)(αj)λβl

∂

∂λαj

).

Taking account that the geodesics are the characteristics curves, we get the following results:

Proposition 2.2 Given a point p ∈ M and µ ∈ T ∗

p
M \ D⊥

p
, the normal geodesic with initial

conditions (p, µ) is the curve c, solution of the ordinary differential system:





ċ = Σ2
i=1λ1ie1i

λ̇αj + Σ2
i=1λ1i Σβlλβl a

βl

(1i)(αj) = 0

c(0) = p

λαj(0) = µαj ,

(1)

for all (αj), where µ = Σαiµαiθ
αi

p
.
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The stablished formulation of the normal geodesic equations are already in a desirable form for

our purposes.

The adapted referential (e11, e12, e21) writing in coordinates (x1, x2, x3) read as





e11 = E1
11

∂

∂x1
+ E2

11

∂

∂x2
+ E3

11

∂

∂x3

e12 = E1
12

∂

∂x1
+ E2

12

∂

∂x2
+ E3

12

∂

∂x3

e21 = E1
21

∂

∂x1
+ E2

21

∂

∂x2
+ E3

21

∂

∂x3
.

In our case the geodesic equations in 1 are given by the following system:





ẋ1 = λ11E
1
11 + λ12E

1
12

ẋ2 = λ11E
2
11 + λ12E

2
12

ẋ3 = λ11E
3
11 + λ12E

3
12

λ̇11 + λ12 (λ1,1 a11
(12)(11) + λ12 a12

(12)(11) + λ21 a21
(12)(11)) = 0

λ̇12 + λ11 (λ1,1 a11
(11)(12) + λ12 a12

(11)(12) + λ21 a21
(11)(12)) = 0

λ̇21 + λ11 (λ1,1 a11
(11)(21) + λ12 a12

(11)(21) + λ21 a21
(11)(21))+

+λ12 (λ1,1 a11
(12)(21) + λ12 a12

(12)(21) + λ21 a21
(12)(21)) = 0

xj(0) = xj(p)

λαj(0) = µαj .

(2)

It is an easy verification that for any positive constant a, c(t, p, aµ) = c(at, p, µ). On the other

hand, at each point p ∈ M there exists a neighborhood V of 0 ∈ T ∗

p
M such that

c(1, p, · ) : U = V \ D⊥

p
→ M

given by c(1, p, µ), µ ∈ U, is well defined.

Definition 2.3 Let p ∈ M and U as above.

1. The exponential map at the point p is the map exp
p
: U → M given by

exp
p
(µ) = c(1, p, µ).

2. Let ǫ > 0, the wave front set of radius ǫ at p is defined by the cylinder image under the

exponential map: expp{µ ∈ U : µ2
11 + µ2

12 = ǫ2}

3. A vector ν ∈ U is a conjugate point if dν(exp
p
) : TνU → Texp

p
(ν)M is degenerated.

Our goal is to give information about the wave front set and the first conjugate point of

the homogeneous three dimensional SR-manifolds, through computational graphic images of the

exponential map.
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3 Homogeneous Sub-Riemannian Three Dimensional

Contact Manifolds

We start the section with the notion of sub-Riemannian isometry.

Definition 3.1 If f : M → N is a (local) diffeomorphism between two sub-Riemannian manifolds

(M, D, g) and (N, D′, g′) such that for every X, Y ∈ TpM , and p ∈ M

i) dfp(Dp) = D′

f(p);

ii) g′(dfp(X), dfp(Y )) = g(X, Y )

then we say that f is a (local) sub-Riemannian isometry between M and N . Furthermore, is f is

a bijection, we say that f is a sub-Riemannian isometry.

Definition 3.2 A sub-Riemannian manifold M is homogeneous if the group

Isom(M) = {f : M → M |f is a sub-Riemannian isometry}

acts transitively on M .

Diniz in [3] obtained a classification of contact homogeneous three dimensional sub-Riemannian

manifolds, which we describe next. In terms of the sub-Riemannian connection introduced in [5],

it is possible to choose vector fields e11, e12, e21 generating a Lie algebra as below:

[e11, e12] = −Γ1e11 − Γ2e12 − 2e21

[e12, e21] = Γe11 + λe12 (3)

[e21, e11] = λe11 + Γe12

where λ, Γ1, Γ2, Γ are constants and λ ≥ 0, such that:





K = −(2Γ + Γ2
1 + Γ2

2)

W1 = 2Γ2Γ = 2λΓ1

W2 = −2Γ1Γ = −2λΓ2

W1 = ±W2 .

Here, K is the curvature and W1 and W2 are the components of the torsion, with W1 ≥ 0. There

are two possibilities for the dimension of Isom(M): 3 or 4. In the case of dim Isom(M) = 4 we

have λ = 0 and W1 = W2 = 0. On the other hand, if dim Isom(M) = 3, we get λ > 0 and

[e11, e12] = −W1

2λ
e1,1 +

W2

2λ
− 2e21

[e12, e21] = Γe11 + λe12

[e21, e11] = λe11 + Γe12.

(4)
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3.1 The case λ = 0 and W1 = W2 = 0.

Under the condition λ = 0 and W1 = W2 = 0, we have three different situations.

1. The first one is K = 0. In this case we get

[e11, e12] = −2e21

[e12, e21] = 0

[e21, e11] = 0 .

(5)

These relations corresponding to the Lie algebra of the three dimensional Heinsenberg Lie group

H3. Furthermore, H3 is diffeomorphics to R3. We consider the vector fields





e11 =
∂

∂x1
− x2 ∂

∂x3

e12 =
∂

∂x2
+ x1 ∂

∂x3

e21 = −
∂

∂x3
.

(6)

2. The second possibility is K > 0. It turns out that for any r > 0, the associated Lie algebra

[e11, e12] = −2e21

[e12, e21] = −2e11

[e21, e11] = −2e12 .

(7)

can be represented on the r-sphere of dimension three

S3
r

= {(y1, y2, y3, y4) ∈ R4
: y2

1 + y2
2 + y2

3 + y2
4 = r2}

by the vector fields





e11 = −y3
∂

∂y1
+ y4

∂

∂y2
+ y1

∂

∂y3
− y2

∂

∂y4

e12 = −y4
∂

∂y1
− y3

∂

∂y2
+ y2

∂

∂y3
+ y1

∂

∂y4

e21 = −y2
∂

∂y1
+ y1

∂

∂y2
− y4

∂

∂y3
+ y3

∂

∂y4
.

(8)

3. For the third possibility K < 0, we consider the manifold

Q3
r

= {(y1, y2, y3, y4) ∈ R4
: y2

1 + y2
2 − y2

3 − y2
4 = r2}
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and the vector fields tangent to Q3
r

determined by





e11 = y3
∂

∂y1
− y4

∂

∂y2
+ y1

∂

∂y3
− y2

∂

∂y4

e12 = y4
∂

∂y1
+ y3

∂

∂y2
+ y2

∂

∂y3
+ y1

∂

∂y4

e21 = y2
∂

∂y1
− y1

∂

∂y2
+ y4

∂

∂y3
− y3

∂

∂y4

(9)

which generate the associated Lie algebra

[e11, e12] = −2e21

[e12, e21] = 2e11

[e21, e11] = 2e12.

3.2 The Case λ > 0, W1 = W2 = 0.

Let us assume that λ > 0 and W1 = W2 = 0. In this case, Γ1 = Γ2 = 0 and Γ = −K

2 in (4).

Therefore, we get

[e11, e12] = −2e21

[e12, e21] = −
K

2
e11 + λe12 (10)

[e21, e11] = λe11 −
K

2
e12.

In the sequel we will describe the different possibilities depending on the parameters K and λ and

its relative positions as real numbers. It turns out that five classical Lie groups appears. In each

case, we mention the Lie group G and a basis (f1, f2, f3) for the corresponding Lie algebra g. To

obtain the structure equations (10), we explicity introduce the adapted vector fields (e11, e12, e21).

On the other hand, in order to write down the associated ordinary differential equations system for

the sub-Riemannian geodesics, we use a local coordinate system for the Lie group at the identity

element.

(1) Case K > 2λ.

It turns out that the group is

G ∼= SU(2) = {A ∈ GL(2,C) : AA
t

= I and detA = 1}.
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Here we consider,

f1 =

[
i 0

0 −i

]
, e11 =

1
2

(√
K

2 + λ f2 −

√
K

2 − λ f1

)

f2 =

[
0 1

−1 0

]
, e12 =

1
2

(√
K

2 + λ f2 +

√
K

2 − λ f1

)

f3 =

[
0 i

i 0

]
, e21 =

1
4

(√
K2 − 4λ2

)
f3

(11)

where

[f1, f2] = 2f3

[f2, f3] = 2f1

[f3, f1] = 2f2 .

(12)

(2) Case K = 2λ.

The group is G = Ẽ(2), i. e., the universal covering of the Lie group E(2) defined by

E(2) =








1 0 0

x1 cosx3 − sinx3

x2 sinx3 cosx3


 : x1, x2, x3 ∈ R



 . (13)

A basis of the corresponding Lie algebra and its adapted vector fields are as follows:

f1 =




0 0 0

1 0 0

0 0 0


 , e11 =

√
2λf2 − f1

f2 =




0 0 0

0 0 1

0 −1 0


 , e12 =

√
2λf2 + f1

f3 =




0 0 0

0 0 0

1 0 0


 , e21 =

√
2λf3

(14)

(3) Case −2λ < K < 2λ.

Here, the Lie group is G ∼= S̃U(1, 1), the universal covering of SU(1, 1) defined by

SU(1, 1) = {A ∈ GL(2,C) : AJA
t

= J and det A = 1}, (15)
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where J =

[
1 0

0 −1

]
. Analagously

f1 =

[
0 i

−i 0

]
, e11 =

1
2

(√
λ +

K

2 f2 −

√
λ − K

2 f1

)

f2 =

[
i 0

0 −i

]
, e12 =

1
2

(√
λ +

K

2 f2 +

√
λ − K

2 f1

)

f3 =

[
0 1

1 0

]
, e21 =

1
4

(√
4λ2 − K2

)
f3

(16)

(4) K = −2λ

In this case the group G is given by

E(1, 1) =








1 0 0

x1

x2
A(x3)


 : x1, x2, x3 ∈ R and A(x3) =

[
coshx3 sinh x3

sinh x3 coshxt

]

 (17)

and the Lie algebra basis and its adapted vector field are:

f1 =




0 0 0

0 0 1

0 1 0


 , e11 = f2 −

√
2λf1

f2 =




0 0 0

1 0 0

0 0 0


 , e12 = f2 −

√
2λf1

f3 =




0 0 0

0 0 0

1 0 0


 , e21 =

√
2λf3

(18)

(5) Case K < −2λ.

In this particular situation, G ∼= S̃U(1, 1), (f1, f2, f3) are as defined in (16) and

e11 =
1
2

(√
−(λ +

K

2 ) f1 −

√
λ − K

2 f3

)

e12 =
1
2

(√
−(λ +

K

2 ) f1 +

√
λ − K

2 f3

)

e21 =
1
4

√
K2 − 4λ2f2.

(19)
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3.3 Case W1 = ±W2 6= 0

Assume W2 = W1 > 0. Thus, Γ = −λ and K = 2λ − 2
(

W1

2λ

)2
. In particular, K < 2λ and

W1

2λ
=

√
λ − K

2 . So, the structure equations are

[e11, e12] = −

√
λ −

K

2
e11 +

√
λ −

K

2
e12 − 2e21

[e12, e21] = −λe11 + λe12 (20)

[e21, e11] = λe11 − λe12.

We introduce the notation

g1 = e12 − e11, g2 = −e12, g3 = e21,

to get

[g1, g2] =

√
λ −

K

2
g1 − 2g3

[g2, g3] = −λg1 (21)

[g3, g1] = 0.

It follows that h = Span{g1, g3} is an Abelian Lie algebra of some Abelian Lie subgroup H of G.

If H is simply connected, we get H ∼= R2
. Let S ∼= R be the corresponding simply connected Lie

subgroup associated to the Lie subalgebra generated by g2 and denote by s its Lie algebra. Under

these condition the map

σ : s → gl(h),

defined by

σ(X)(Y ) = [Y, X ],

X ∈ s and Y ∈ h is well defined. Since R is a simply connected Lie group, associated with the Lie

algebra homomorphism σ there exists an unique Lie group homomorphism σ̃ : S ∼= R → GL(H)

such that the diagram below commutes, [8]

R
σ

−→ gl(R2
)

exp ↓ ↓ exp

R
σ̃

−→ GL(R2
) .

Since exp : R → R is the identity then σ̃ is explicity determined by the equation

σ̃(t) = exp σ(tg2)) = exp(t

[ √
λ − K/2 λ

−2 0

]
).

On the other hand, the group G is given by the semi-direct product of R × R2
, relative to σ̃.
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We must determine eA, where A =

[
a b

c 0

]
, with a, b, c non zero complex numbers. The

characteristic polynomial roots are

λ1 =
a +

√
∆

2
, λ2 =

a −
√

∆

2

where ∆ = a2
+ 4bc. In particular, ∆ 6= 0 implies that A é diagonalizable over C. Then

A = T

[
λ1 0

0 λ2

]
T−1

where

T =

[
−b −b

λ2 λ1
.

]

Thus

eA
= exp(T

[
λ1 0

0 λ2

]
T−1

) = T

[
eλ1 0

0 eλ2

]
T−1

therefore

eA
= e

a

2

{
sinh(

√

∆
2 )

(

√

∆
2 )

[
a/2 b

c −a/2

]
+ cosh

√
∆

2
I

}
.

If ∆ < 0, we obtain

sinh(

√

∆
2 )

(

√

∆
2 )

=
sin(

√

−∆
2 )

(

√

−∆
2 )

cosh(

√
∆

2
) = cos(

√
−∆

2
).

In the case ∆ = 0, if we take T =

[
−b −b

0
a

2

]
, then A = TDT−1, where D =

a

2

[
1 0

1 1

]
. So

eD
=

∞∑

n=0

Dn

n!
= ea/2

[
1 0
a

2 1

]

and

eA
= TeDT−1

= ea/2

{[
a

2 b

c −a

2

]
+ I

}
.

In resume, we have

eA
=





e
a

2

[
2

√

∆
sinh(

√

∆
2 )B + cosh(

√

∆
2 )I

]
, if ∆ > 0

e
a

2 [B + I] , if ∆ = 0

e
a

2

[
2

√

−∆
sin(

√

−∆
2 )B + cos(

√

−∆
2 )I

]
, if ∆ < 0
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where A =

[
a b

c 0

]
, B =

[
a/2 b

c −a/2

]
and ∆ = a2 + 4bc.

To obtain σ̃ we do a = t

√
λ − K

2 , b = λt and c = −2t, to get

σ̃(t) =





eαt

[
sinh(βt)

β
B + cosh(βt)I

]
, if K < −14λ,

eαt[tB + I] , if K = −14λ,

eαt

[
sin(β′

t)
β′

B + cos(β′t)I
]

, if − 14λ < K < 2λ,

where α =
1
2

√
λ − K

2 , β =
1

2
√

2

√
−K − 14λ, β′ =

1
2
√

2

√
K + 14λ and B =

[
α λ

−2 −α

]
.

It is an easy verificaton that σ̃ is one to one, so we get the following representation:

G1
∼=








0 0 0

x

y
σ̃(t)


 : x, y, t ∈ R



 .

In any case,

g1 = −




0 0 0

1 0 0

0 0 0


 , g2 = −




0 0 0

0 2α λ

0 −2 0


 , g3 = −




0 0 0

0 0 0

1 0 0




is a basis of the Lie algebra of G1 that satisfies (21). Therefore,

e11 = −(g1 + g2), e12 = −g2, e21 = g3

is the basis that satisfies (20).

The case −W2 = W1 > 0 is similar, so K < −2λ and we otain

G2
∼=








1 0 0

x

y
ϕ(t)


 : x, y, t ∈ R



 ,

where

ϕ(t) = eαt

[
sinh βt

β
B + cosh αt.I

]
, α =

1

2

√
−λ −

K

2
, β =

1

2
√

2

√
14λ − K and B =

[
α λ

2 −α

]
.

A basis of the Lie algebra as in (20) is given by

e11 =




0 0 0

1 −a −λ

0 −2 0


 , e12 =




0 0 0

0 a λ

0 2 0


 , e21 = −




0 0 0

0 0 0

1 0 0


 .

We can resume our classification as:
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Group λ K W1 W2

H3 0

S3
r

0 K = 4/r2 0 0

Q̃3
r

K = −4/r2

SU(2) K > 2λ

Ẽ(2) K = 2λ

S̃U(1, 1) λ > 0 −2λ < K < 2λ 0 0

E(1, 1) K = −2λ

S̃U(1, 1) K < −2λ

G1 λ > 0 K = 2λ −
W

2

1

2λ2 W1 > 0 W2 = W1

G2 K = −2λ −
W

2

1

2λ2 W1 > 0 W2 − W1

Observe that S3
r
∼= SU(2) and Q3

r
∼= SU(1, 1).

4 Singularities of the Exponential Map

In order to show some details of the graphs of wfs and the singularities at the first conjugate points,

we use a specific computational programme (see Apendice A).

4.1 Heinseberg group H3

From (5) and (6) we know that the no null terms in the geodesics equations (2) are

E1
11 = 1, E3

11 = −x2, E2
12 = 1, E3

12 = x1, a
(21)
(11)(12) = −2,

then we get the differential system





ẋ1 = λ11

ẋ2 = λ12

ẋ3
= −x2λ11 + x1λ12

λ̇11 + 2λ12 λ21 = 0

λ̇12 − 2λ11 λ21 = 0

λ̇21 = 0.

(22)

In Appendix A, we have a programme which allows to show the graphics of the wave front set

and some details of the singularity at the first conjugate point. In particular, for the Heinsenberg

model we get Figure 1 .
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(a) Half of wave front set with ǫ = 1
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Figure 1: Type with circular symetry: Heisenberg group.

4.2 S3

In (8) we showed the associated vector fields on S3 ⊂ R
4
. To write down the differential equations

for geodesics, we write these vector fields in the coordinate system

y1 = cosx1 cosx2 cosx3

y2 = cosx1 cosx2 sin x3

y3 = cosx1 sinx2

y4 = sin x1

(23)

to obtain the correspondent vector fields ẽ11, ẽ12, ẽ21 on R3
. The components of these vector fields

in the coordinate basis are





E1
11 = − cos(x2

) sin(x3
)

E2
11 = cos(x3

) − sin(x2
) sin(x3

) tan(x1
)

E3
11 = sec(x2

) sec(x3
) tan(x1

)+

+ sin(x3
)(tan(x2

) − cos(x2
) tan(x1

) tan(x3
) − sin(x2

) tan(x1
) tan(x2

) tan(x3
))

E1
12 = cos(x2

) cos(x3
)

E2
12 = sin(x3

) + cos(x3
) sin(x2

) tan(x1
)

E3
12 = cos(x2

) sin(x3
) tan(x1

) + tan(x2
)(− sec(x3

) + sin(x3
)(sin(x2

) tan(x1
) + tan(x3

))) .

From equations (7) we know that

a21
(11)(12) = a11

(12)(21) = a12
(21)(11) = −2,

and all others coefficients are 0. So replacing these terms in (2) we obtain the differential equations

for the geodesics. Applying the commands in Appendix A we get Figure 3 that shows half of the

wave front set with the singularity at the first conjugate point, which is similar to the Heisenberg

case.
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4.3 Q̃3

In (9) we determined the vector fields on Q3 ⊂ R4
generating the associated Lie algebra (10). By

using the coordinate system

y1 = coshx1 cosh x2 cosx3

y2 = coshx1 cosh x2 sin x3

y3 = coshx1 sinh x2

y4 = sinhx1

(24)

on Q3 we obtain the correspondent vector fields ẽ11, ẽ12, ẽ21 on R3
whose components in the

coordinate basis are





E1
11 = − cosh(x2

) sin(x3
)

E2
11 = cos(x3

) + sinh(x2
) sin(x3

) tanh(x1
)

E3
11 = − sech(x2

) cos(x3
) tanh(x1

) − sin(x3
) tanh(x2

)

E1
12 = cosh(x2

) cos(x3
)

E2
12 = sin(x3

) − cos(x3
) sinh(x2

) tanh(x1
)

E3
12 = − cosh(x2

) sin(x3
) tanh(x1

) + tanh(x2
)(cos(x3

) + sin(x3
) sinh(x2

) tanh(x1
)) .

From equations 3.1(3) we know that

−a21
(11)(12) = a11

(12)(21) = a12
(21)(11) = −2,

being 0 all others coefficents. Replacing these coeficients in the geodesic equations (2) we obtain

the differential equations of geodesics. As above, we obtain Figure 4 that shows the half of the

wave front set with the singularity at the first conjugate point, similar to the Heisenberg case.

4.4 SU(2)

The case K > 2λ corresponds to G ∼= SU(2) = {A ∈ GL(2,C)|AĀt = I, detA = 1}. Then

SU(2) =

{[
a b

−b̄ ā

]
: a, b ∈ C, aā + bb̄ = 1

}

If we write a = y1+ iy2 and b = y3 +y4, then SU(2) can be represented as S3 ⊂ R4 by the equation

y2
1 + y2

2 + y2
3 + y2

4 = 1. Let us take (23) as coordinates of S3. A basis of the Lie algebra that verifies
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(12) is





f1 = − sinx2
∂

∂x1
+ cosx2 tan x1

∂

∂x2
+

∂

∂x3

f2 = cosx2 sinx3
∂

∂x1
+ (cosx3 + sin x2 sinx3 tan x1)

∂

∂x2
+ (− secx2 secx3 tan x1+

+ sin x3(tan x2 + cosx2 tanx1 tan x3 + sin x2 tan x1 tan x2 tanx3))
∂

∂x3

f3 = cosx2 cosx3
∂

∂x1
+ (− sinx3 + cosx3 sin x2 tan x1)

∂

∂x2
+ (cosx2 sin x3 tan x1+

+ tan x2(secx3 + sinx3(sin x2 tanx1 − tanx3))
∂

∂x3
+ x3

∂

∂x4
.

It follows from 11 that





E1
11 = β sin x2 + α cosx2 sin x3

E2
11 = − β cosx2 tan x1 + α(cos x3 + sin x2 sinx3 tan x1))

E3
11 = − β + α(− secx2 secx3 tan x1+

+ sinx3(tan x2 + cosx2 tan x1 tan x3 + sin x2 tan x1 tanx2 tan x3)

E1
12 = − β sin x2 + α cosx2 sinx3

E2
12 = β cosx2 tan x1 + α(cos x3 + sin x2 sin x3 tan x1)

E3
12 = β + α(− sec x2 secx3 tan x1+

+ sinx3(tan x2 + cosx2 tan x1 tan x3 + sin x2 tan x1 tanx2 tan x3)) ,

with

α =
1

2

√
K

2
+ λ, β =

1

2

√
K

2
− λ and γ =

1

4

√
K2 − 4λ2.

Replacing these coefficients in (2) and taking account the relation on (10) we obtain the differential

equations of geodesics. Processing the program in Appendix A with the data above, we get Figure

2 which shows that there are two first conjugate points at each “side” of the wave front set. It also

shows that the auto intersection of wfs happens along a segment of line connecting both conjugate

points. Some details of the singularity at the first conjugate points, are showed too.
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Figure 2: Wave front set without circular symmetry: SU(2), K > 2λ (K = 3, λ = 1).

4.5 Ẽ(2)

The case K = 2λ corresponds to G = Ẽ(2), where E(2) is defined in (13). In the coordinate system

x1, x2, x3 a basis for the Lie algebras (14) is





f1 = cosx3
∂

∂x1
+ sin x3

∂

∂x2

f2
∂

∂x3

f3 = − sin x3
∂

∂x1
+ cosx3

∂

∂x2

where

[f1, f2] = −f3

[f2, f3] = −f1

[f3, f1] = 0,

and the coefficients of generators (e11, e12, e21) to replace in equations (2) are

E1
11 = − cosx3, E2

11 = − sinx3, E3
11 = −

√
2K, E1

12 = cosx3, E2
12 = sin x3, E3

12 = −
√

2K.
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Applying the computational program in Appendix A to the above data, we get Figure 5 with half

of the wave front set and the singularity at the first conjugate points. The singularity is the same

as SU(2) in subsection 4.4.

4.6 S̃U(1, 1)

Let us consider −2λ < K < 2λ. In this case G ∼= S̃U(1, 1), as in (15) where

SU(1, 1) =

{[
a b

b̄ ā

]
: a, b ∈ C, aā − bb̄ = 1

}
.

By the identification a = y1 + iy2 and b = y3 +y4, we have that SU(1, 1) is isomorphic to Q3 ⊂ R4.

It turns out that aā− bb̄ = 1 transforms into y2
1 +y2

2 −y2
3 −y2

4 = 1. We take the coordinate system

(24) on Q3 to have the basis (16) of the Lie algebra generated by





f1 = cosx3 coshx2
∂

∂x1
− (sin x3 + cosx3 sinh x2 tanhx1)

∂

∂x2
+

+ (− coshx2 sinx3 tanhx1 + (− cosx3 + sin x3 sinh x2 tanhx1) tanhx2)
∂

∂x3

f2 = − sinh x2
∂

∂x1
+ coshx2 tanhx1

∂

∂x2
+

∂

∂x3

f3 = coshx2 sin x3
∂

∂x1
+ (cos x3 − sinx3 sinh x2 tanhx1)

∂

∂x2
+

+ (cos x3 sechx2 tanhx1 − sin x3 tanhx2)
∂

∂x3
,

(25)

where

[f1, f2] = 2f3

[f2, f3] = 2f1

[f3, f1] = −2f2 .

It follows also from (16) that the coefficientes to substitute in (2) are





E1
11 = − β cosx3 coshx2 − α sinh x2

E2
11 = α coshx2 tanhx1 + β(sin x3 + cosx3 sinh x2 tanhx1)

E3
11 = α − β(− coshx2 sin x3 tanhx1 + (− cosx3 + sin x3 sinh x2 tanhx1) tanhx2)

E1
12 = β cosx3 coshx2 − α sinh x2

E2
12 = α coshx2 tanhx1 + β(− sinx3 − cosx3 sinh x2 tanhx1)

E3
12 = α + β(− coshx2 sin x3 tanhx1 + (− cosx3 + sin x3 sinh x2 tanhx1) tanhx2) ,

with

α =
1

2

√
K

2
+ λ, β =

1

2

√
λ −

K

2
and γ =

1

4

√
4λ2 − K2.

We obtain the graphic of the wave front set in Figure 6, which shows the same type of singularity

as in the subsections 4.5 and 4.6 before.
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4.7 E(1, 1)

For the case K = −2λ the associated Lie group is G = E(1, 1), see (17). In the coordinate system

x1, x2, x3 a basis for the Lie algebra is





f1 =
∂

∂x3

f2 = cosh x3
∂

∂x1
+ sinhx3

∂

∂x2

f3 = sinhx3
∂

∂x1
+ coshx3

∂

∂x2

and

[f1, f2] = f3

[f2, f3] = 0

[f1, f3] = f2.

It follows from the adapted basis (18) that the coefficients to be substituted in (2) are

E1
11 = coshx3, E2

11 = sinhx3, E3
11 =

√
2λ, E1

12 = coshx3, E2
12 = sinhx3, E3

12 = −
√

2λ ,

The graphic of the wave front set in this case is in Figure 7. Again, the graphic shows the same

behaviour as the subsections 4.5, 4.6 and 4.7 above.

4.8 S̃U(1, 1)

Let’s now examine the case K < −2λ. The Lie group G is isomorphic to the universal covering

S̃U(1, 1) of SU(1, 1). We consider the basis (25). The coefficients of the adapted basis (19) are





E1
11 = α cosx3 coshx2 − β coshx3 sin x3

E2
11 = α coshx2 tanhx1 + β(sin x3 + cosx3 sinh x2 tanhx1)

E3
11 = − β(cos x3 secx2 tanhx1 − sin x3 tanhx2)+

+ α(− cosh x2 sin x3 tanhx1 + (− cosx3 + sin x3 sinh x2 tanhx1) tanhx2)

E1
12 = α cosx3 coshx2 − +β coshx2 sinh x3

E2
12 = α(− sin x3 − cosx3 − sinx3 sinh x2 tanhx1)

E3
12 = β(cos x3sechx2 tanhx1 − sin x3 tanhx2)+

α(− coshx2 sinx3 tanhx1 + (−cosx3 + sin x3 sinh x2 tanhx1) tanhx2) ,

with

α =
1

2

√
−

(
K

2
+ λ

)
, β =

1

2

√
λ −

K

2
and γ =

1

4

√
K2 − 4λ2.

Replacing these coefficients in (2) we obtain the graphic of the wave front set in Figure 8. Again,

the graphic shows the same form as the three subsections above.
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4.9 G1

This case corresponds to W2 = W1 > 0. The structure equations are

[e11, e12] = −2αe11 + 2αe12 − 2e21

[e21, e12] = λ(e11 − e12)

[e21, e11] = λ(e11 − e12)

where α =
1
2

√
λ − K

2 . The associated group is

G1 =








1 0 0

x1

x2
σ̃(x3)


 : x1, x2, x3 ∈ R





where

σ̃(x3)





eαx3

(
sinh(βx3)

β
B + cosh(βx3)I

)
, if K < −14λ

eαx3 (x3B + I) , if K = −14λ

eαx3

(
sin(β′x3)

β′
B + cos(β′x3)I

)
, if − 14λ < K < 2λ

and

α =
1

2

√
λ −

K

2
, β =

1

2
√

2

√
−K − 14λ, β′

=
1

2
√

2

√
K + 14λ e B =

[
α λ

−2 −α

]
.

In this particular situation, we distinguish three cases, given by conditions K and λ on σ̃:

Case K < −14λ. A basis for the Lie algebra in a system of canonical coordinates is:

g1 = −σ11
∂

∂x1

− σ21
∂

∂x2

g2 =
∂

∂x3

g3 = −σ12
∂

∂x1

− σ22
∂

∂x2

where

[g2, g1] = −2αg1 + 2g3

[g2, g3] = −λg1

[g3, g1] = 0
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and 



σ11 = eαx3

(
α

β
sinh(βx3) + cosh(βx3)

)

σ21 = eαx3

(
−2

β
sinh(βx3)

)

σ12 = eαx3

(
λ

β
sinh(βx3)

)

σ22 = eαx3

(
−

α

β
sinh(βx3) + cosh(βx3)

)
.

The vector fields satisfying the structure equations are

e11 = −(g1 + g2)

e12 = −g2

e21 = −σ12
∂

∂x1

− σ22
∂

∂x2

then

E1
11 = σ11, E2

11 = σ21, E3
11 = 1, E1

12 = 0, E2
12 = 0, E3

12 = 1.

We show the graphic of singularities at wave front in Figure 9.

Case K = −14λ. In this case, the basis of the Lie algebra is

g1 = −σ11
∂

∂x1

− σ21
∂

∂x2

g2 = − ∂

∂x3

g3 = −σ12
∂

∂x1

− σ22
∂

∂x2

where

[g2, g1] = −2αg1 + 2g3

[g2, g3] = −λg1

[g3, g1] = 0

and 



σ11 = eαx3(1 + αx3)

σ21 = eαx3(−2x3)

σ12 = 0

σ22 = 0.

The vector fields satisfying the structure equations are

e11 = −(g1 + g2)

e12 = −g2

e21 = −σ12
∂

∂x1

− σ22
∂

∂x2
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thus

E1
11 = σ11, E2

11 = σ21, E3
11 = 1, E1

12 = 0, E2
12 = 0, E3

12 = 1.

The graphics of the singularities at wave front set are in Figure 10.

Case −14λ < K < 2λ. Here a basis for the Lie algebra in a system of canonical coordinates is

given by:

g1 = −σ11
∂

∂x1

− σ21
∂

∂x2

g2 = − ∂

∂x3

g3 = −σ12
∂

∂x1

− σ22
∂

∂x2

where

[g2, g1] = −2αg1 + 2g3

[g2, g3] = −λg1

[g3, g1] = 0

and





σ11 = eαx3

(
α

β′
sin(β′x3) + cos(β′x3)

)

σ21 = eαx3

(
−2

β′
sin(β′x3)

)

σ12 = eαx3

(
λ

β′
sin(β′x3)

)

σ22 = eαx3

(
−

α

β′
sin(β′x3) + cos(β′x3)

)
.

The vector fields satisfying the structure equations are

e11 = −(g1 + g2)

e12 = −g2

e21 = −σ12
∂

∂x1

− σ22
∂

∂x2

then

E1
11 = σ11, E2

11 = σ21, E3
11 = 1, E1

12 = 0, E2
12 = 0, E3

12 = 1 .

The graphics of singularity at wave front set are in Figure 11.
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4.10 G2

This last case corresponds to −W2 = W1 > 0. The structure equations are

[e11, e12] = −2αe11 − 2αe12 − 2e21

[e21, e12] = −λ(e11 + e12)

[e21, e11] = λ(e11 + e12)

where α =
1
2

√
−λ − K

2 . The group is

G2 =








1 0 0

x1

x2
σ(x3)


 : x1, x2, x3 ∈ R



 .

Here

σ(x3) = eαx3

(
sinh(βx3)

β
B + cosh(βx3)I

)
,

and

β =
1

2
√

2

√
14λ − K, e B =

[
α λ

2 −α

]
.

Thus





E1
11 = −eαx3

(
α

β
sinh(βx3) + cosh(βx3)

)

E2
11 = eαx3

(
−2

β
sinh(βx3)

)

E3
11 = 1

E1
12 = 0

E2
12 = 0

E3
12 = 1 .

The graphics of singularity at wave front set are in Figure 12.



CUBO
10, 2 (2008)

Wave Front Sets Singularities of Homogeneous ... 131

5 Appendix A: Commands in Mathematica to Generate

the Wavefront Sets

In this appendix we stablish a list of commands in the MATHEMATICA Programme. By using

the values of the functions Ei

1,j
for the corresponding Eij and aαi

(βj)(γk) in the equations for y′i,

these commands builded all the pictures showed in this work,

In[1]:= E11[x1 ,x2 ,x3 ]:=1

In[2]:= E21[x1 ,x2 ,x3 ]:=0

In[3]:= E31[x1 ,x2 ,x3 ]:=-x2

In[4]:= E12[x1 ,x2 ,x3 ]:=0

In[5]:= E22[x1 ,x2 ,x3 ]:=1

In[6]:= E32[x1 ,x2 ,x3 ]:=x1

In[7]:= geo[c1 ,c2 ,a ,r ]:=Evaluate[{x1[t],x2[t],x3[t]}]/.Flatten[NDSolve[{

x1’[t]==E11[x1[t],x2[t],x3[t]]*y1[t]+E12[x1[t],x2[t],x3[t]]*y2[t],

x2’[t]==E21[x1[t],x2[t],x3[t]]*y1[t]+E22[x1[t],x2[t],x3[t]]*y2[t],

x3’[t]==E31[x1[t],x2[t],x3[t]]*y1[t]+E32[x1[t],x2[t],x3[t]]*y2[t],

y1’[t]==2*d[t]*y2[t], y2’[t]==-2*d[t]*y1[t], d’[t]==0,

x1[0]==0,x2[0]==0,x3[0]==0,y1[0]==c1,y2[0]==c2,d[0]==a},

{x1,x2,x3,y1,y2,d},{t,0,r}]]

In[8]:= WaveFront[u ,v ,r ]:=geo[Cos[u],Sin[u],v,r]/.t->r

In[9]:= ParametricPlot3D[WaveFront[u,v,1],{u,0,2 Pi},{v,3,3.4}]

In[10]:= ParametricPlot3D[WaveFront[u,v,1],{u,0,2 Pi},{v,-7,7},PlotPoints->

{20,100},PlotRange->{{-1,1},{0,1},{-0.5,0.5}},ViewPoint->{0,-1,0.3}]
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Figure 5: E(2) (K = 2λ = 1).
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Figure 6: SU(1, 1), −2λ < K < 2λ (λ = 1, K = 1).
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Figure 7: E(1, 1) (λ = 1).
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Figure 9: G1, K < −14λ (λ = 1, K = −15).
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Figure 10: G1, K = −14λ (λ = 1).
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Figure 11: G1, −14λ < K < 2λ (λ = 1, K = 0).
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Figure 12: G2 (λ = 1, K = −3).
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