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ABSTRACT

We propose and investigate efficient numerical methods for inverse problems related

to Magnetic Resonance Imaging (MRI). Our goal is to extend the recent convergence

results for the Landweber-Kaczmarz method obtained in [7], in order to derive a con-

vergent iterative regularization method for an inverse problem in MRI.

RESUMEN

Nosotros investigamos y proponemos métodos numéricos eficientes para problemas in-

versos relacionados con resonancia Magnética de Imagen (MRI). Nuestro objetivo es

extender resultados recientes de convergencia para el método de Landweber-Kaczmarz
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obtenido en [7], a fin de obtener un método de regularización iterativo convergente para

un problema inverso en MRI.
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Inverse Problems.
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1 Introduction

Magnetic Resonance Imaging, also known as MR–Imaging or simply MRI, is a noninvasive tech-

nique used in medical imaging to visualize body structures and functions, providing detailed images

in arbitrary planes. Unlike X-Ray Tomography it does not use ionizing radiation, but uses a pow-

erful magnetic field to align the magnetization of hydrogen atoms in the body. Radio waves are

used to systematically alter the alignment of this magnetization, causing the hydrogen atoms to

produce a rotating magnetic field detectable by the scanner.

More specifically, when a subject is in the scanner, the hydrogen nuclei (i.e., protons, found in

abundance in the human body as water) align with the strong magnetic field. A radio wave at the

correct frequency for the protons to absorb energy pushes some of the protons out of alignment.

The protons then snap back to alignment, producing a detectable rotating magnetic field as they

do so. Since protons in different areas of the body (e.g., fat and muscle) realign at different speeds,

the different structures of the body can be revealed.

The image to be identified in MRI corresponds to a complex valued function P : [0, 1]×[0, 1]→C

and the image acquisition process is performed by so-called receivers. Due to the physical nature

of the acquisition process, the information gained by the receivers does not correspond to the

unknown image, but instead, to P multiplied by receiver dependent sensitivity kernels. In real life

applications, the sensitivity kernels are not precisely known and have to be identified together with

P . This corresponds to a version of the blind deconvolution problem that has been investigated

by many authors. See for example [2, 12, 14]

Our main goal in this article is to investigate efficient iterative methods of Kaczmarz type

for the identification problem related to MRI. We extend the convergence results for the loping

Landweber-Kaczmarz method in [7] and derive a convergent iterative regularization method for

this inverse problem.

This article is outlined as follows. In Section 2 the description of a discrete mathematical

model for Magnetic Resonance Imaging is presented. In Section 3 we derive the corresponding

inverse problem for MRI. In Section 4 we investigate efficient iterative regularization methods for

this inverse problem. Using a particular hypothesis on the sensitivity kernels, we are able to derive

convergence and stability results for the proposed iterative methods.
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2 The direct problem

In what follows we present a discrete model for MRI. In our approach, we follow the notation

introduced in [1]. The image to be identified is considered to be a discrete function

P : {1, . . . , phor} × {1, . . . , pver} =: B → C ,

where phor, pver ∈ N0 are known. Therefore, the number of degrees of freedom related to this

parameter is pnum := phor × pver (typical values are phor = pver = 256; pnum = 65536).

As mentioned above, the image acquisition process is performed by several receivers, denoted

here by Rj , j = 0, . . . , rnum − 1, where rnum ∈ N0 is given (typically one faces the situation where

rnum << pnum). Due to the physical nature of the acquisition process, the information gained by

the receivers does not correspond to the unknown image, but instead, to P multiplied by receiver

dependent sensitivity kernels

Sj = S(Rj) : B → C , j = 0, . . . , rnum − 1 .

In real life applications, the sensitivity kernels Sj are not precisely known and have to be

identified together with P . This fact justifies the following ansatz:

(A1) The sensitivity kernels Sj can be written as linear combination of the given basis functions

Bn : B → C, for n = 1, . . . , bnum, and bnum ∈ N0.

In other words, we assume the existence of coefficients bj,n ∈ C such that

Sj(m) =

bnum∑

n=1

bj,n Bn(m) , m ∈ B , j = 0, . . . , rnum − 1 . (2.1)

In the sequel we make use the abbreviated notations bj := (bj,n)
bnum

n=1 and (bj) := (bj)
rnum−1
j=0 .

Notice that the coefficient vectors bj = b(Rj) are receiver dependent.

The measured data for the inverse problem is given in a subset of the Fourier space of the

image P , i.e. there exists a known subset M ⊂ B (consisting of pproj elements) such that the

receiver dependent measurement Mj = M(Rj) satisfies

Mj := P[F(P × Sj)] , j = 0, . . . , rnum − 1 .

where F is the Discrete Fourier Transform (DFT) operator defined by

F : {f | f : B → C} → {f̂ | f̂ : B → C}

f 7→ (F(f))(m) :=

pnum−1∑

n=0

f(n) exp

(
−

2πi

pnum
nm

)
,
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and P is the operator defined by

P :
{
f | f : B → C

}
→

{
g | g : M → C

}
=: Y

f 7→ (P[f ])(m) := f(m) , m ∈ M .

Notice that, due to ansatz (A1) and the linearity of F and P, the measured data Mj ∈ Y

can be written in the form

Mj =

bnum∑

n=1

bj,n P[F(P × Bn)] , j = 0, . . . , rnum − 1 . (2.2)

Remark 2.1. The numerical evaluation of the DFT requires naively O(p2
num) arithmetical opera-

tions. However, in practice the DFT must be replaced by the Fast Fourier Transform (FFT), which

can be computed by the Cooley-Tukey algorithm1 and requires only O(pnum log(pnum)) operations.

3 The inverse problem

Next we use the discrete model discussed in the previous section as a starting point to formulate

an inverse problem for MRI.

The unknown parameters to be identified are the discrete image function P and the sensitivity

kernels Sj . Due to the ansatz (A1), the parameter space X consists of pairs of the form (P , (bj)),

i.e.

X :=
{
(P , (bj)) ; P ∈ C

pnum , (bj) ∈ (C
bnum)

rnum

}
.

It is immediate to observe that X can be identified with C
(pnum+bnum×rnum), while Y can be identified

with C
pproj .

The parameter to output operators Fi : X → Y are defined by

Fi : (P , (bj)) 7→

bnum∑

n=1

bi,n P[F(P × Bn)] , i = 0, . . . , rnum − 1 . (3.1)

Due to the experimental nature of the data acquisition process, we shall assume that the data

Mi in (2.2) is not exactly known. Instead, we have only approximate measured data Mδ

i
∈ Y

satisfying

‖Mδ

i
−Mi‖ ≤ δi , (3.2)

with δi > 0 (noise level). Therefore, the inverse problem for MRI can be written in the form of the

following system of nonlinear equations

Fi(P , (bj)) = Mδ

i
, i = 0, . . . , rnum − 1 . (3.3)

It is worth noticing that the nonlinear operators Fi’s are continuously Fréchet differentiable,

and the derivatives are locally Lipschitz continuous.

1The FFT algorithm was published independently by J.W. Cooley and J.W. Tukey in 1965. However, this
algorithm was already known to C.F. Gauss around 1805.
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4 Iterative regularization

In this section we analyze efficient iterative methods for obtaining stable solutions of the inverse

problem in (3.3).

4.1 An image identification problem

Our first goal is to consider a simplified version of problem (3.3). We assume that the sensitivity

kernels Sj are known, and we have to deal with the problem of determining only the image P .

This assumption can be justified by the fact that, in practice, one has very good approximations

for the sensitivity kernels, while the image P is completely unknown.

In this particular case, the inverse problem reduces to

F̃i(P) = Mδ

i
, i = 0, . . . , rnum − 1 , (4.1)

where F̃i(P) = Fi(P , (bj)), the coefficients (bj) being known. This is a much simpler problem,

since F̃i : X̃ → Y are linear and bounded operators, defined at X̃ := {f | f : B → C}.

We follow the approaches in [7, 5] and derive two iterative regularization methods of Kaczmarz

type for problem (4.1). Both iterations can be written in the form

Pδ

k+1 = Pδ

k
− ωkαksk , (4.2)

where

sk := F̃[k](P
δ

k
)
∗

(F̃[k](P
δ

k
) −Mδ

i
) , (4.3)

ωk :=

{
1 ‖F̃[k](P

δ

k
) −Mδ

i
‖ > τδ[k]

0 otherwise
. (4.4)

Here τ > 2 is an appropriately chosen constant, [k] := (k mod rnum) ∈ {0, . . . , rnum − 1} (a group

of rnum subsequent steps, starting at some multiple k of rnum, is called a cycle), Pδ

0 = P0 ∈ X̃ is an

initial guess, possibly incorporating some a priori knowledge about the exact image, and αk ≥ 0

are relaxation parameters.

Distinct choices for the relaxation parameters αk lead to the definition of the two iterative

methods:

1) If αk is defined by

αk :=

{
‖sk‖

2/‖F̃[k](P
δ

k
)sk‖

2 ωk = 1

1 ωk = 0
, (4.5)

the iteration (4.2) corresponds to the loping Steepest-Descent Kaczmarz method (lSDK) [5].

2) If αk ≡ 1, the iteration (4.2) corresponds to the loping Landweber-Kaczmarz method (lLK)

[7].
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The iterations should be terminated when, for the first time, all Pk are equal within a cycle.

That is, we stop the iteration at the index kδ

∗
, which is the smallest multiple of rnum such that

Pkδ

∗

= Pkδ

∗
+1 = · · · = Pkδ

∗
+rnum−1 . (4.6)

Convergence analysis of the lSDK method

From (3.1) follows that the operators F̃i are linear and bounded. Therefore, there exist M > 0

such that

‖F̃i‖ ≤ M , i = 0, . . . , rnum − 1 . (4.7)

Since the operators F̃i are linear, the local tangential cone condition is trivially satisfied (see (4.16)

below). Thus, the constant τ in (4.4) can be chosen such that τ > 2. Moreover, we assume the

existence of

P∗ ∈ Bρ/2(P0) such that F̃i(P
∗

) = Mi , i = 0, . . . , rnum − 1 , (4.8)

where ρ > 0 and (Mi)
rnum−1
i=0 ∈ Y rnum corresponds to exact data satisfying (3.2).

In the sequel we summarize several properties of the lSDK iteration. For a complete proof of

the results we refer the reader to [5, Section 2].

Lemma 4.1. Let the coefficients αk be defined as in (4.5), the assumption (4.8) be satisfied for

some P∗ ∈ X̃, and the stopping index kδ

∗
be defined as in (4.6). Then, the following assertions

hold:

1) There exists a constant α > 0 such that αk > α, for k = 0, . . . , kδ

∗
.

2) Let δi > 0 be defined as in (3.2). Then the stopping index kδ

∗
defined in (4.6) is finite.

3) Pδ

k
∈ Bρ/2(P0) for all k ≤ kδ

∗
.

4) The following monotony property is satisfied:

‖Pδ

k+1 − P∗‖2 ≤ ‖Pδ

k
− P∗‖2 , k = 0, 1, . . . , kδ

∗
, (4.9)

‖Pδ

k+1 − P∗‖2
= ‖Pδ

k
− P∗‖2 , k > kδ

∗
. (4.10)

Moreover, in the case of noisy data (i.e. δi > 0) we have

‖F̃i(P
δ

kδ

∗

) −Mδ

i
‖ ≤ τδi , i = 0, . . . , rnum − 1 . (4.11)

Next we prove that the lSDK method is a convergent regularization method in the sense of

[3].

Theorem 4.2 (Convergence). Let αk be defined as in (4.5), the assumption (4.8) be satisfied for

some P∗ ∈ X̃, and the data be exact, i.e. Mδ

i
= Mi in (3.2). Then, the sequence Pδ

k
defined in

(4.2) converges to a solution of (4.1) as k → ∞.
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Proof. Notice that, since the data is exact, we have ωk = 1 for all k > 0. The proof follows

from [5, Theorem 3.5].

Theorem 4.3 (Stability). Let the coefficients αk be defined as in (4.5), and the assumption (4.8)

be satisfied for some P∗ ∈ X̃. Moreover, let the sequence {(δ1,m, . . . , δrnum,m)}m∈N (or simply

{δm}m∈N) be such that limm→∞(maxi δi,m) = 0, and let M
δm

i
be a corresponding sequence of

noisy data satisfying (3.2) (i.e. ‖M
δm

i
− Mi‖ ≤ δi,m, i = 0, . . . , rnum − 1, m ∈ N). For each

m ∈ N, let km

∗
be the stopping index defined in (4.6). Then, the lSDK iterates P

δm

km

∗

converge to a

solution of (4.1) as m → ∞.

Proof. The proof follows from [5, Theorem 3.6].

Convergence analysis of the lLK method

The convergence analysis results for the lLK iteration are analog to the ones presented in Theo-

rems 4.2 and 4.3 for the lSDK method. In the sequel we summarize the main results that we could

extend to the lLK iteration.

Theorem 4.4 (Convergence Analysis). Let αk ≡ 1, the assumption (4.8) be satisfied for some

P∗ ∈ X̃, the operators F̃i satisfy (4.7) with M = 1, and the stopping index kδ

∗
be defined as in

(4.6). Then, the following assertions hold:

1) Let δi > 0 in (3.2). Then the stopping index kδ

∗
defined in (4.6) is finite.

2) Pδ

k
∈ Bρ/2(P0) for all k ≤ kδ

∗
.

3) The monotony property in (4.9), (4.10) is satisfied. Moreover, in the case of noisy data,

(4.11) holds true.

4) For exact data, i.e. δi = 0 in (3.2), the sequence Pδ

k
defined in (4.2) converges to a solution

of (4.1) as k → ∞.

5) Let the sequence {δm}m∈N, the corresponding sequence of noisy data M
δm

i
, and the stopping

indexes km

∗
be defined as in Theorem 4.3. Then, the lLK iterates P

δm

km
∗

converge to a solution

of (4.1) as m → ∞.

Proof. The proof follows from corresponding results for the lLK iteration for systems of

nonlinear equations in [7].

Notice that the assumption M = 1 in Theorem 4.4 is nonrestrictive. Indeed, since the op-

erators F̃i are linear, it is enough to scale the equations in (4.1) with appropriate multiplicative

constants.
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4.2 Identification of image and sensitivity

Our next goal is to consider the problem of determining both the image P as well as the sensitivity

kernels Sj in (3.3). The lLK and lSDK iterations can be extended to the nonlinear system in a

straightforward way

(P
δ

k+1, (bj)
δ

k+1) = (P
δ

k
, (bj)

δ

k
) − ωkαksk , (4.12)

where

sk := F ′

[k](P
δ

k
, (bj)

δ

k
)
∗

(F[k](P
δ

k
, (bj)

δ

k
) −Mδ

i
) , (4.13)

ωk :=

{
1 ‖F[k](P

δ

k
, (bj)

δ

k
) −Mδ

i
‖ > τδ[k]

0 otherwise
. (4.14)

In the lLK iteration we choose αk ≡ 1, and in the lSDK iteration we choose

αk :=

{
‖sk‖

2/‖F ′

[k](P
δ

k
, (bj)

δ

k
)sk‖

2 ωk = 1

1 ωk = 0
. (4.15)

In order to extend the convergence results in [7, 5] for these iterations, we basically have to

prove two facts:

1) Assumption (14) in [7].

2) The local tangential cone condition [7, Eq. (15)], i.e. the existence of (P0, (bj)0) ∈ X and

η < 1/2 such that

‖Fi(P , (bj)) − Fi(P̄, (b̄j)) − F ′

i
(P , (bj))[(P , (bj)) − (P̄ , (b̄j))]‖Y ≤

η‖Fi(P , (bj)) − Fi(P̄ , (b̄j))‖Y , (4.16)

for all (P , (bj)), (P̄, (b̄j)) ∈ Bρ(P0, (bj)0), and all i = 1, . . . , rnum.

The first one represents no problem. Indeed, the Fréchet derivatives of the operators Fi are locally

Lipschitz continuous. Thus, for any (P0, (bj)0) ∈ X and any ρ > 0 we have ‖F ′

i
(P , (bj))‖ ≤ M =

Mρ,P0,(bj)0 for all (P , (bj)) in the ball Bρ(P0, (bj)0) ⊂ X .

The local tangential cone condition however, does not hold. Indeed, the operators Fi are

second order polynomials of the variables bj,n and P . Therefore, it is enough to verify whether the

real function f(x, y) = xy satisfies

|f(x, y) − f(x̄, ȳ) − f ′

(x, y)((x − x̄, y − ȳ))| ≤ η|f(x, y) − f(x̄, ȳ)| ,

in some vicinity of a point (x0, y0) ∈ R
2 containing a local minimizer of f . This, however, is not

the case.
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Therefore, the techniques used to prove convergence of the lLK and lSDK iterations in [7, 5]

cannot be extended to the nonlinear system (3.3).

It is worth noticing that the local tangential cone condition is a standard assumption in the

convergence analysis of adjoint type methods (Landweber, steepest descent, Levenberg-Marquardt,

asymptotical regularization) for nonlinear inverse problems [3, 4, 6, 9, 10, 11, 13]. Thus, none of

the classical convergence proofs for these iterative methods can be extended to system (3.3) in a

straightforward way.

Motivated by the promising numerical results and efficient performance of the lLK and lSDK

iterations for problems known not to satisfy the local tangential cone condition (see [7, 8, 5]), we

intend to use iteration (4.12) for computing approximate solutions of system (3.3). This numerical

investigation will be performed in a forthcoming article.

5 Conclusions

We presented the description of a discrete mathematical model for Magnetic Resonance Imaging

and derived the corresponding inverse problem for MRI.

We investigate efficient iterative regularization methods for this inverse problem. An iterative

method of Kaczmarz type for obtaining approximate solutions for the inverse problem is proposed.

Using a particular assumption on the sensitivity kernels, we are able to prove convergence and

stability results for the proposed iterative methods.

The convergence analysis presented in this article extends the results for the loping Landweber-

Kaczmarz method in [7]. Moreover, we prove that our method is a convergent iterative regulariza-

tion method in the sense of [3].
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