Some Problems in Functional Differential Equations *

Manuel Pinto

Abstract.

Functional differential systems close to ordinary differential systems, which are an h-system in variations, are studied. We obtain existence results and asymtotic formulae for their solutions. Several explicite examples and applications are shown.

Systems of functional differential equations close to systems of ordinary differential equations.

In [1], Bellman proposed to investigate conditions on the lag r to know the behavior of solutions of the functional differential equation

$$u'(t) + au(t - r(t)) = 0$$
, a constant (1)

when $r(t) \to 0$ as $t \to \infty$. In [2], Cooke proves that if $r \in L_1([0,\infty))$ then any solution u of (1) satisfies

$$u(t) = e^{at}[c + o(1)], \quad t \to \infty$$

for some constant c. In [3], Cooke generalizes this result to linear systems of functional differential equations asymptotically autonomous. Grossman and Yorke [4] consider the one-dimensional functional differential equation

$$u'(t) = a(t)u(t - r(t)).$$

[&]quot;Research Supported by Grants D.T.I. Universidad de Chile E 3063-9222 and FONDECYT 0855-91 and the "Cooperation Francaise"

We consider systems of functional differential equations which behave a symptotically as an ordinary h-system [5, 6]. That is to say, let $P := P_x(t, x)$ continuous function with derivative $P_x = P_x(t, x)$ continuous for which the system

$$x' = P(t, x) \tag{3}$$

M. Pinto

is an h-system in variation. We recall that (2) or the null-solution of (2) is an h-system in variation [5,6] if there exist a continuous function $h: [0,\infty) \to (0,\infty)$ and constants $K \ge 1$, and $\delta > 0$ such that for $0 \le |x_0| < \delta$ we have

$$|\Phi(t,t_0,x_0)| \le Kh(t)h(t_0)^{-1} \quad t \ge t_0 \ge 0$$

where $\Phi(t, t_0, x_0)$ is the fundamental matrix of the variational system

$$z' = P_r(t, x(t, t_0, x_0))z$$

with $\Phi(t_0, t_0, x_0) = \text{Id}$ (the identity matrix)

Further, let $F:[0,\infty)\times C_0\to\mathbb{R}^n$ for which the system

$$y' = F(t, y_t) \tag{3}$$

verifies

$$|F(t, y_t) - P(t, y)| \le r(t) ||y_t'||,$$
 (4)

where $r \in C([0,\infty),\mathbb{R})$ and $0 \le r(t) \le q$. Here $C_0 = C([-q,0],\mathbb{R}^n)$ and if $y \in C([t-q,t],\mathbb{R}^n)$, we denote y_t the element in C_0 defined by

$$y_t(s) = y(t+s), \quad -q \le s \le 0.$$

We define also for $y \in C([t-2q,t], \mathbb{R}^n)$:

$$y_t(s) = y(t+s), -2q < s < 0.$$

Moreover, we define

$$||y|| = \sup_{-q \le s \le 0} |y(s)|,$$

and

$$||y||_2 = \sup_{-2\sigma < s < 0} |y(s)|$$

Theorem 1.1 Assume

- (i) The ordinary differential system (2) is an h-system, with radius of attraction $\boldsymbol{\delta}$
 - (ii) There exists a continuous and nonnegative function c(t) such that

for all t > 0 and all $g \in C_0$.

(iii) There exists a continuous and nonnegative function r = r(t) such that for all continuously differentiable $g \in C_0$ and all t > 0:

$$|F(t,q) - P(t,q(0))| \le r(t) ||q'_t||$$

iv) $\beta(t)r(t) \parallel c_t \parallel \in L_1([0,\infty))$, where $\beta(t) = h(t)^{-1} \parallel t^h \parallel_2$.

Then for any solution $y = y(t;t_0,y_0)$ of (3) with $||y_0|| \le \delta$ there exists a solution x of (1) such that $y = x + h \cdot \hat{\sigma}$ (1), where $\hat{\sigma}$ (1) is a function defined on (t_0, ∞) which converges as $t \to \infty$

Proof If $|y(t_0)| \le \delta$, then the solution $x = x(t; t_0, y(t_0))$ is well defined and verifies $|x(t, t_0, y(t_0))| \le K |y(t_0)| h(t)h(t_0)^{-1}$ for $t \ge t_0 \ge 0$ and $K \ge 1$ a constant. Now, by (ii) $y = y(t, t_0, y_0)$ is defined on $[t_0 - q, \infty)$. By the formula of variation of the constants, we have for $t \ge t_0 \ge t_0$.

$$y(t) = x(t; t_1, y(t_1)) + \int_{t_1}^{t} \Phi(t, s, y(s)) [F(s, y_s) - P(s, y(s))] ds.$$
 (5)

Then, by (i) and (ii)

$$|y(t)| \le K |y(t_1)| h(t)h(t_1)^{-1} + Kh(t) \int_{t_1}^t h(s)^{-1} r(s) ||y_s'|| ds$$

or

$$|h(t)^{-1} \mid y(t) \mid \leq Kh(t_1)^{-1} \mid y(t_1) \mid +K \int_{t_1}^t r(s)h(s)^{-1} \parallel y_s' \parallel ds.$$

Thus $z(t) = h(t)^{-1} | y(t) |$ satisfies

$$z(t) \le Kz(t_1) + \int_{t_1}^t Kr(s)h(s)^{-1} \parallel y_s' \parallel ds.$$
 (6)

For $u \in I = [-q, 0]$ and $s \ge t_1$, by (ii), we have

$$|y'_{s}(u)| = |F(s+u, y_{s+u})| \le c_{s}(u) ||y_{s+u}|| = c_{s}(u) |y(v)|$$

for some $v = v(s) \in [s - 2q, s]$. Further,

$$c(s+u)h(s)^{-1} \mid y(v) \mid = c(s+u)h(s)^{-1}h(v)z(v) \le \beta(s)c(s+u)z(v).$$

Thus denoting $m(t) = max\{z(u): t_0 - 2q \le u \le t\}$ we get

$$h(s)^{-1} \parallel y_s' \parallel \leq \beta(s) \parallel c_s \parallel m(s).$$
 (7)

Substituting this into (6) we obtain

$$z(t) \le K z(t_1) + \int_{t_1}^{t} Kr(s)\beta(s) \| c_s \| m(s)ds.$$
 (8)

Since the right member of (8) is increasing as a function in t, we have $m(t) \le Kz(t_1) + \int_{t_1}^t Kr(s)\beta(s) \parallel c_s \parallel m(s)ds$. Then by (iv), Gronwall's inequality implies

that m and hence z are bounded. Moreover, for any t fixed $\Phi(t, s, y(s))[F(s, y_s) - P(s, y(s))] \in L_1([0, \infty)$ as a function of s because by (i), (iii), (iv) and (7) we get

$$\mid \varPhi(t,s,y(s))[F(s,y_s)-P(s,y(s))]\mid \leq Kh(t)h(s)^{-1}r(s)\parallel y_s'\parallel \leq$$

$$\leq K_1 h(t) \parallel c_s \parallel r(s)\beta(s)m(s) \leq K_2 h(t)r(s)\beta(s) \parallel c_s \parallel \in L_1([0,\infty)).$$

Then the integral in (5) can be written as $h(t) \cdot \tilde{o}(1)$, where $\tilde{o}(1)$ denotes a function of t which has a limit as $t \to \infty$.

Theorem 1 includes the interesting type of equations as:

$$y' = F(t, y(t) - y(t - r(t)))$$
 (9)

For this equation, system (2) becomes x' = 0 and (iii) becomes

$$| F(t,g) | \le r(t) || g' ||$$
 (10)

Thus here $h \equiv 1, \beta \equiv 1$ and we have

Corollary 1.2 Let us assume (iii), (iv) with $\beta = 1$ and (iii) with (9) instead of (3). Then for any solution $y = y(t; t_0, y_{t_0})$ of (9) there exists a constant vector such that

$$y = y(t_o) + v + o(1)$$

as $t \to \infty$. In particular, any solution of (9) is asymptotically constant.

For equations $y' = y^3(t) - y^3(t - r(t))$ or $y' = [y(t) - y(t - r(t))]^3$ condition (4) becomes

$$|F(t,g)| \le Kr(t)w(||g'||)$$
 (11)

Thus from lemma 1, [5] we obtain:

Corollary 1.3 Assume (ii), (iv) and (iii) with (11) instead of (4). Then there exists a constant $\delta > 0$ such that any solution $y = y(t_1t_0, y_{t_0})$ with $\|y_{t_0}\| \le \delta$ is defined on $\|b_0 - q_\infty\|$ and

$$y = y(t_0) + v(t_0) + o(1), t \to \infty$$

where $v=v(t_0)$ is a constant vector such that $v(t_0) \to 0$ as $t_0 \to \infty$. Moreover, $\delta = \delta(t_0)$ verifies $\delta(t_0) \to \infty$ as $t_0 \to \infty$. Then if t_0 is chosen large enough for any initial function φ there exists t_0 large enough such that the solution $y=y(t,t_0,\varphi)$ verifies the above property.

Corollary 1.4 If $\int_t^t a(u)du \le K$, K constant, for $s-2q \le t \le s$ and $a \parallel a_t \parallel r \in L_1([0,\infty])$, then the solutions of the scalar equation y'(t) = a(t)y(t-r(t)), satisfy

$$y(t) = exp(\int_0^t a(s)ds)[c + o(1)], \quad c \text{ constant.}$$

Thus, in particular, the solutions of

$$y'(t) = -ty(t - e^{-3t})$$
 and

$$y'(t) = e^t y(t - e^{-2t})$$

satisfy respectively

$$y = e^{-\frac{c^2}{2}}[c + 0(1)], c constant and$$

 $y = e^{t}[c + o(1)], \quad c \quad constant$

Corollary 1.5 If A is an stable matrix, then any solution of

$$y' = Ay(t - r(t)), r \in L_1([0, \infty))$$

satisfies

$$y = e^{tA}x_0 + e^{-\alpha t} \cdot \tilde{o}(1)$$

where x_0 is a constant vector, $0 > \alpha > maxRe\lambda$ with λ an eigenvalue of A and $\tilde{o}(1)$ is a convergent vector as $t \to \infty$.

Corollary 1.6 If the system

$$x' = A(t)x$$

is an h-system strong and $r \cdot ||A||| A_t || \in L_1([0,\infty))$, then any solution y of

$$y' = A(t)y(t - r(t))$$

satisfies

$$y = \Phi[y_0 + o(1)]$$
 as $t \to \infty$

where y_0 is a constant vector and Φ is a fundamental matrix of (12).

2 Asymptotic formulae for the solutions of

$$y'' + c(t)y(t - r(t)) = 0$$

Consider the functional differential equation

$$y'' + c(t)y(t - r(t)) = 0 (1$$

where $c:[0,\infty)\to\mathbb{R}$ and $r:[0,\infty)\to[0,\infty)$ are continuous functions. For r=r(t) small, in some sense which will be precised, we hope that the solutions y of (1) behave asymptotically as the solutions z of the ordinary differential equation.

$$z'' + c(t)z(t) = 0 (2$$

In fact, we will prove that any solution y of (1) are defined on all of $I = [0, \infty)$ and it satisfies as $t \to \infty$:

$$y = (\delta_1 + o(1))z_1 + (\delta_2 + o(1))z_2$$

$$y' = (\delta_1 + o(1))z'_1 + (\delta_2 + o(1))z'_2$$
(3

where $\{z_1, z_2\}$ is a fundamental system of solutions of Eq(2) and $\{\delta_1, \delta_2\}$ are constants.

Suppose $r(t) \leq q$ and consider the Banach space $C_o = C([-q,0],\mathbb{R})$ with the norm

$$\|\varphi\| = \sup_{-\sigma \le s \le 0} |\varphi(s)|, \varphi \in C_o.$$

Furthermore, for $y\in C([0,\infty),\mathbb{R}),$ we define y_t the useful element in C_0 given by

$$y_t(s) = y(t+s), -q \le s \le 0$$

Let

$$y(t) = A(t)z_1(t) + B(t)z_2(t)$$
(4)

under the condition

$$A'z_1 + B'z_2 = 0 (5)$$

Then, we have $y' = Az'_1 + Bz'_2$ and $y' = A'z'_1 + B'z'_2 + Az'_1 + Bz'_2$. Thu $y' = A'z'_1 + B'z'_2 - c(Az_1 + Bz_2)$. Therefore

$$A'z'_1 + B'z'_2 = c(t)[y(t) - y(t - r(t))]$$
(6)

Solving Eqs. (5) and (6), we get

$$A' = -w^{-1}z_2.c(t)[y(t) - y(t - r(t))]$$

$$B' = w^{-1}z_1.c(t)[y(t) - y(t - r(t))]$$
(7)

where w is the Wronskian of system $\{z_1, z_2\}$. Now, we have

$$\begin{array}{ll} \mid y(t)-y(t-r(t)) \mid & = & \mid \int_{t-r(t)}^{t} y'(s) ds \mid = \mid \int_{-r(t)}^{0} y'(t+s) ds \mid \\ & = & \mid \int_{-r(t)}^{0} y'_{t}(s) ds \mid = \mid \int_{-r(t)}^{0} (Az'_{1} + Bz'_{2})_{t}(s) ds \mid . \end{array}$$

Thus

$$\mid y(t) - y(t - r(t)) \mid \leq r(t) \max_{i=1,2} \parallel z'_{it} \parallel \cdot (\parallel A_t \parallel + \parallel B_t \parallel)$$

Then, by system (7), the vector x = (A, B) satisfies a system of functional differential equations of the type.

$$x' = F(t, x_t) \tag{8}$$

satisfying the conditions (i) $F:I\times C_0\to\mathbb{R}$ is a continuous function, (ii) $\mid F(t,\varphi)\mid\leq \lambda(t)\parallel\varphi\parallel,(t,\varphi)\in I\times C_0.$

In this point, we need the following Theorem concerning the asymptotic behavior of system (8).

CUBO 8 43

Theorem 2.1 Assume conditions (i), (ii) where $\lambda \in C(I, \mathbb{R})$ satisfy $\lambda(t) \in L_1(I)$. Then the solutions of Eq(8) are defined on all of I and they converge as $t \to \infty$.

The proof of this theorem is omitted because it is similar to Theorem 1.1. Thus, we get:

Theorem 2.2 Assume that $r(t) \mid c(t) \mid \cdot \mid z_i(t) \mid \cdot \mid \mid z_{it} \mid \mid \in L_1(I) \quad i=1,2.$ Then formulae (3) hold.

Proof The application of Theorem 1 implies that A and B converge as $t \to \infty$. The formulae (3) follow by (4) and (5).

Corollary 2.3 If $r \in L_1(I)$, then any solution y of the functional differential equation

$$y'' + ay(t - r(t)) = 0, a > 0 constant$$

satisfies for $t \to \infty$.

$$y = (\delta_1 + o(1)) \sin at + (\delta_2 + o(1)) \cos at$$

$$y' = a(\delta_1 + o(1)) \cos at - a(\delta_2 + o(1)) \sin at.$$

Corollary 2.4 If $c(t) \in C^2(I)$, c > 0 and $c^{-3/2}c^n$, r(t). $|c^{-3/4}(t)| ||c_t^{-1/4}|| \in L_1(I)$ then any solution y of the functional differential equation

$$y" + c(t)y(t - r(t)) = 0$$

satisfies for $t \to \infty$

$$\begin{split} y &= c(t)^{-1/4} [(\delta_1 + o(1)) exp(i \int^t c^{1/2}(s) ds) + (\delta_2 + o(1)) exp(-i \int^t c^{1/2}(s) ds)] \\ y' &= c(t)^{1/4} [i(\delta_1 + o(1)) exp(i \int^t c^{1/2}(s) ds) - i(\delta_2 + o(1)) exp(-i \int^t c^{1/2}(s) ds)]. \end{split}$$

References

- R. Bellman, Research problem: Functional differential Equation. Bull. Amer. Math. Soc. 71, 495 (1965).
- [2] K. Cooke, Functional equations with asymtotically vanishing lag, Rend. Circ. Mat. Palermo Ser. II 16 36-59 (1967).
- [3] K. Cooke, Linear functional differential equations of asymptotically autonomous type. J. Diff. Eq. 7, 154-174 (1970).

44 CUBO 8

- [4] S. Grossman and J. A. Jorke, Asymptotic behavior and exponential stability criteria for differential delay equations, J. Diff. Eqs. 12(2) 236-255 (1972).
- [5] M. Pinto, Asymptotic integration of systems resulting from the perturbations of an h-system, J. Math. Anal. Appl. 131 194-216 (1988).
 - [6] M. Pinto, Variationally differential systems, J. Math. Anal. Appl. 150 254-260 (1990).

Dirección del autor:
Manuel Pinto
Depto. de Matemáticas. Fac de Ciencias. Universidad de Chile
Casilla 653. Santiago. Chile