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Some Problems in Functional Differential
Equations *

Manuel Pinto

Abstract.

Functional differential systems close to ordinary differ-
ential systems, which are an h-system in variations, are s-
tudied. We obtain existence results and asymtotic formulae
for their solutions. Several explicite examples and applica-
tions are shown.

1 Systems of functional differential equations close
to systems of ordinary differential equations.

In (1], Bellman proposed to investigate conditions on the lag r to know the behavior
of solutions of the functional differential equation

u(t) + au(t — r(t)) =0, a constant (1)

when 7(t) — 0 as t — co. In [2], Cooke proves that if 7 € Li([0,00)) then any
solution u of (1) satisfies

u(t) = e*lc+o0(1)], t— o0

for some constant c. In [3], Cooke generalizes this result to linear systems of
functional differential equations asymptotically autonomous. Grossman and Yorke
(4] ider the one-di ional functional differential equation

u'(t) = a(t)u(t — r(t)).
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We id i of functional differential ions which behave asymp-
totically as an ordinary h-system [5, 6]. That is to say, let P : [0,00) x R" — R"a
continuous function with derivative P; = P(t,z) continuous for which the system

2' = P(t,2) @

is an h-system in variation. We recall that (2) or the null-solution of (2) is an
h-system in variation [5,6] if there exist a continuous function & : [0,00) — (0, 00)
and constants K > 1, and § > 0 such that for 0 <| 2o |< § we have
| 8(tsto, 7o) |< Kh(t)h(to) ™ t2t920
where ®(t, to, Zo) is the fundamental matrix of the variational system
' = Pe(t,z(t,t0,70)) 2

with @(to, to, o) = Id (the identity matrix)
Further, let F: [0,00) x Cy — R™ for which the system

' = F(t,y) ®)

verifies
| £(tyye) = P(t,v) (< r(8) |l wi I, (G

where r € C([0,00),R) and 0 < (t) < q. Here Cp = C([—q,0],R") and if
y € C([t — g,1],IR"), we denote y; the element in C, defined by

w(s) =y(t+s), —g<s<0.
We define also for y € C([t — 2q, ), R"):
n(s)=y(t+s), —29<s<0.

Moreover, we define
lyll= sup |u(s)l,
—9ss<0

and
Yli2= su &)
hol= s 15(e)|
Theorem 1.1 Assume
(i) The ordinary differential system (2) is an h-system, with radius of
attraction §

(ii) There erists a conti and tive function c(t) such that

| F(tg) < e®) llgll

for allt >0 and all g € Cy.
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(iii) There exists a i and tive function r = r(t) such
that for all continuously differentiable g € Co and all t > 0:

| F(t,9) = P(t,9(0)) |< () |l ot |

w) AO)r(t) || e l|€ Li([0,00)), where f(t) = h(®)™" || ¢* [|o.

Then for any solution y = y(t;to, yw) of (3) with || yg, ||< 8 there exists a
solution z of (1) such that y =z + h:6 (1), where 6 (1) is a function defined
on [to,00) which converges as t — oo.

Proof If | y(to) |< 6, then the solution = = z(t; to, y(to)) is well defined and verifies
| z(t,to, y(to)) |< K | y(to) | h(t)h(to)™* for t > to > 0 and K > 1 a constant. Now,

by (i4) y = y(t, to, ys;) is defined on [to — g, 00). By the formula of variation of the
constants, we have for ¢ > t; > to

y(t) =2 (titr, y(t1)) + /ltq'(lvs,v(s))lf‘(sm.) = P(s,y(s)))ds-. (5)
Then, by (i) and (ii)
1012 K [ y(u) |OA@)™ + KhQ [ b r(s) 44

or
RO () |< Kh(t)™ | y(t) | +K[ r($)h(s)™" || v; || ds.

Thus 2(t) = h(t)™! | y(t) | satisfies
() < Kat)+ [ el 1, 1 de ©
For u € I = [—q,0] and s > t,, by (i), we have
| ¥i(w) =] F(s + t, yssn) |S o) [| Yasu 1= cs(w) [y(0) |
for some v = v(s) € [s — 2¢, s]. Further,
o(s + u)h(s)™ | y(v) |= c(s + u)h(s) ' h(v)z(v) < B(s)c(s + u)z(v).
Thus denoting m(t) = maz{z(u) : to — 29 < u < t} we get
h(s)™ | 4 1< B(s) Il e || m(s). (7)
Substituting this into (6) we obtain
=) < Ket) + [ Kr(Be) | | m@)ds. ®

Since the right member of (8) is increasing as a function in ¢, we have m(t) <
Kz(t) + f,: Kr(s)B(s) || ¢s || m(s)ds. Then by (iv), Gronwall’s inequality implies
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that m and hence z are bounded. Moreover, for any ¢ fixed &(t,s,y(s))[F(s,u,) =
P(8,y(s))] € Ly([0,00) as a function of s because by (i), (iii), (iv) and (7) we get

| (¢, 3,u($) [F(s,15) = P(sy(a)] [< Kh(OR(s)™'r(s) | v [I<

< Kah(t) || es || (s)B(s)m(s) < Kah(t)r(s)B(s) || e ||€ Li([0; 9))-
Then the integral in (5) can be written as h(t): 6(1), where 6(1) denotes a

function of ¢ which has a limit as ¢t — oo. u
Theorem 1 includes the i ing type of equations as:
v'=F(t,y(t) —y(t —r(®) 9)
For this equation, system (2) becomes z’ = 0 and (iii) becomes
| Ft9) [<r@) 1" I (10)

Thus here h = 1,3 =1 and we have

Corollary 1.2 Let us assume (ii), (iv) with 3 =1 and (iii) with (9) instead
of (8). Then for any solution y = y(t;to,y,) of (9) there exists a constant
vector such that
¥ =y(to) +v+o0(1)
1l "

as t — oo. In particular, any solution of (9) is ptotically

| |
For equations 1/ = y(t) — (= r(1)) or v/ = [u(t) — y(t — n(1))}* condition (4)

becomes
| F(t,9) |< Kr(®)uw(|| o' [1) (11)
Thus from lemma 1, [5] we obtain:
Corollary 1.3 Assume (ii), (iv) and (iii) with (11) instead of (4). Then

there exists a constant § > 0 such that any solution y = y(tito,y,) with
[l ve, I 8 is defined on [to — g,00) and

v =y(to) +v(to) +0(1), t = 00

where v =v(ty) is a constant vector such that v(ty) — 0 as tg — 00. Moreover,
& = 8(tg) verifies 6(ty) — 00 as ty — oo. Then if ty is chosen large enough
for any initial function ¢ there exists ty large enough such that the solution
v =y(t,to, ) verifies the above property.

Corollary 1.4 If [’ a(u)du < K, K constant, for s —29<t<s anda| a||
-r € L,([0,00)), then the solutions of the scalar equation y'(t) = a(t)y(t —r(t)),
satisfy

y(t) = ezp(/o' a(s)ds)[c+ o(1)], ¢ constant.
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Thus, in particular, the solutions of
y(t) = —ty(t — ™) and
Y1) =e'y(t—e™)
satisfy respectively
y= et [c+0(1)], c constant and

y=e'lc+0(1)], c constant

Corollary 1.5 If A is an stable matriz, then any solution of
y'=Ay(t = r(t), r € Li([0,00))

satisfies
y = ey + e 5(1)

where zy i3 a constant vector, 0 > a > mazReA with A an eigenvalue of A
and 6(1) is a convergent vector as t — oo. [ ]

Corollary 1.6 If the system
2' = A(t)z

8 an h-system strong and r- || A |||| A [|€ L1([0,00)), then any solution y of
y' = A(t)y(t - r(t)

satisfies
y = Plyo + o(1)] as t — oo

where yo is a constant vector and ¢ is a fundamental matriz of (12). ]

2 Asymptotic formulae for the solutions of
y" +et)yt-r@) =0
Consider the functional differential equation
y" eyt - (1) = 0 (0
where ¢ : [0,00) — R and r : [0,00) — [0,00) are continuous functions. For
7 = r(t) small, in some sense which will be precised, we hope that the solutions y

of (1) behave asymptotically as the solutions z of the ordinary differential equation.

2" +e(t)z(t) =0 (2)
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In fact, we will prove that any solution y of (1) are defined on all of I = [0, 00)
and it satisfies as t — oo:

v= (8 +0(1)z + (& +o(1))

v = (6 +0(1)z + (& +0(1)2 (C)]

where {z1,2} is a fund al system of solutions of Eq(2) and {4;,6,} are con-
stants.

Suppose r(t) < g and consider the Banach space C, = C([—q,0],R) with the
norm

llell= sup |w(s)], ¢ €Co.
=q<8<0

Furthermore, for y € C([0,00),IR), we define y; the useful element in Cy given

by
w(s)=y(t+s), -g<s<0
Let
y(t) = A(t)z1(t) + B(t)z(t) (4)
under the condition
Az + B’z =0 (5)

Then, we have y' = Az{ + Bzy and y* = A'z] + B'z) + Az + Bz,. Thus
y" = A'z} + B'Z — c(Az; + Bz). Therefore

Azl + B'z = c(t)[y(t) — y(t — (1)) (6)
Solving Eqs. (5) and (6), we get

A= —wz.c(t)[y(t) - y(t (1))

B = wlae(t){y(t) — u(t = r(1))] (O]
where w is the Wronskian of system {z;,2,}. Now, we have
V@ =y(t=r®) | = | [lqv/()ds|=] [ v/ (t+s)ds|

| [ viks)ds | = | [, (A% + B)(s)ds | .

Thus
| w(®) = y(t = r(t)) |< r(t) max || 2 || (|| Ac || + || Be )

=12
Then, by system (7), the vector z = (A, B) satisfies a system of functional
differential equations of the type.
7' = F(t,z) (8)

satisfying the conditions (i) F' : IxCy — R is a continuous function, (i) | F(t, ¢) |<

A@) [l e Il (t,) € T x Co.
In this point, we need the following Theorem concerning the asymptotic beha-

vior of system (8).
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Theorem 2.1 Assume conditions (i), (ii) where A € C(I,R) satisfy A(t) €
L\(I). Then the solutions of Eq(8) are defined on all of I and they converge
as t — oo.

‘The proof of this theorem is omitted because it is similar to Theorem 1.1. m
Thus, we get:
Theorem 2.2 Assume that r(t) | c(t) | | 2:(t) | - || = [|€ La() i=1,2. Then
formulae (8) hold.

Proof The application of Theorem 1 implies that A and B converge as t — oo,

The formulae (3) follow by (4) and (5). u
Corollary 2.3 If r € Ly(I), then any solution y of the functional diffe ial
equation

y" +ay(t - r(t)) = 0, a > 0 constant

satisfies for t — oo,
y = (81 + o(1))sin at + (8, + o(1))cos at
y' = a(é + o(1))cos at — a(by + o(1))sin at.
L}

Corollary 2.4 Ifc(t) € C*(I), ¢ > 0 and c=*/2c", r(t). | 3A) ||l & /* ll€ Li(T)
then any solution y of the functional differential equation

v" eyt —r(t) =0

satisfies for t — oo

y=c(t) (& + o(l))ezp(i/‘ 2(3)ds) + (&2 + o(1))ezp(—i ’c'/z(s)ds)]

o = c()/4[i(8, + o(1))exp(i /' M2(s)ds) — i(6y + u(l))u‘p(-i/ HM2(s)ds)).
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