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A trace inequality with a subtracted term

H. Miranda *and Robert C. Thompson !

Abstract.

For fixed real or complex matrices A and B, the well
known von Neumann trace inequality identifies the maxi-
mum of | trn(UAV B) |, as U and V range over the unitary
group, the maximum being a bilinear expression in the sin-
gular values of A y B. This paper establishes the analogue
of this inequality for real matrices A and B when U and
V range over the proper (real) orthogonal group. The ma-
ximum is again a bilinear expression in the singular values
but there is a subtracted term when A and B have deter-
minants of opposite sign.

John von Neumann (1] proved a half century ago that if A and B are square
matrices with complex elements, then

supyveu() | ir(UAV B) |= aify + a2 + ... + @nBBn

where ay > ... > a, are the singular values of A and B; > ... > B, the singular
values of B, with the sup taken over all matrices U and V in the n x n unitary
group U(n). This theorem has attracted interest in applied linear algebra, including
mathematical physics (7], psychology (9], the hyperelasticity of isotropic materials
(18], and elsewhere, including [17, 19]. In this paper we consider matrices A and B
with real elements, and we locate the value of suptr(UAV B) as the sup is taken
over all elements U,V of SO(n), the real proper orthogonal group.

Alist [2-11] of articles simplifying the original von Neumann proof, or expanding
the scope of the result, appears at the end of this paper. The earliest of these is
the Fan paper [8]. There is a detailed analysis of the case of equality in [7]. New
results related to the theorem are probably worthwhile, and ours are a natural
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counterpart to the original theorem and seem not to be in the literature, at least
not in [2-11]. Our results add to the slowly growing class of spectral inequalities
having subtracted terms.

We the last by laninig that I i | with
subtracted terms often occur in the utudy of singular vnluu. See [13, 14, 15] for
some examples. Many of these i curious il lities are best und.
in terms of the properties of the root iated with the classical simple

Lie groups and algebras,
Our proof cechmque in this paper is deme.nury, usmg no Lie theory‘ lnauad

using a imi hnique often employ

Theorem 1 Taking the singular values oy, 3; of the real matrices A and B in
weakly decreasing order,

supp,Q € SO(m)ir(PAQB) = aify + aafs + ... + an-1Bn-1 + sign(det(AB))anfy.
In particular, when A and B have determinants of opposite sign,
suppgesom!tr(PAQB) = ayfy + gy + .. + anfn.

Proof Since SO(n) x SO(n) is compact and trace is a continuous function, the
sup in Theorem 1 is attained. We show that it at most is the value claimed in the
theorem. Let P and Qo be elements of SO(n) at which the sup is attained. We are
going to perturb the matrix PpAQoB by a rotation and deduce certain information.
Let R;;(6) be a rotation matrix, that is, an identity matrix apart from elements
cosf, sind, —sind, cosd in positions (i, i), (i, j), ( ,i) and (j, j), respectively. Then
tr(Ry;(6) PoAQo B) achieves a maximum at 8 = 0, so that its derivative with respect.
to # at @ = 0. A simple computation shows that the (i, j) and (j, i) elements of
PyAQoB are the same. Application of this fact for all i and j shows that PyAQoB
is symmetric.

Since tr(PyAQoB) = tr(QoBFyA), a similar computation shows that Qo BFPyA
is symmetric.

Let S = PyA and T = QoB. Then ST and T'S are real symmetric matrices,
with S having as its singular values those of A and T those B. By the singular
value decomposition for real matrices, matrices O, and Oy in SO(n) exist such that

0,50, = diag(sy, ..., 8n)

We may assume that the diagonal elements s; in 0,50, are nonnegative, except
perhaps for the last, and are arranged in order of weakly decreasing absolute values.
Thus 8; = Qy, ..., 8n=1 = Qp-1, 8 = sign(det(A))an. Note that

tr(PyAQoB) = tr(ST) = tr((0) Ps) (A02) (05 ' Qo) (BOTY)).

Renaming O, P as Py, AO; as A, O, asQo as BO, as B,0,50, as S, and
O7'TO;! as T, we now have § = RA = diag(ay, ..., an-1, sign(det(A))an), T =
QoB, with ST and T'S symmetric. Let T' = [t;].
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We assert that the trace of ST is the trace of a product

diag(ay, .. an-1, sing(det(A)) an)diag(£By), - Bym)

with p a permutation of 1,...,n, an with the product fo the % signs in the right
factor giving the sign of detB.

The symmetry ol‘ ST und TS implies that s;t;; = s;t; and t;s; = t;s;. Hence
(s? - a,)tq =0 If s‘ # 87 then 14, = 0. If 5 has distinct diagonal elements, then
T must be d the d I el of T ara % the singular values
of B and detST = detAB, our assertion is immediate, even if A or B is singular.

Since an inequality is being proved, we could avoid the in which S has nondis-
tint singular values case by appealing to the distinct singular value case and con-
tinuity. We prefer to give a direct analysis. Let S? have nondistinct diagonal
elements. Then T splits as a direct sum of blocks: T' = diag(T},T3, ..., Tk-1, Tk),
say, corresponding to S = diag(o1/1,0212, ..., 0k-1Ix-1, 06 D), with 0y > 03 > ... >
0k-1 > 0k > 0. Here each [ is an identity matrix but D, departs from an identity
in that the last diagonal entry is —1 exactly when detA is negative. A simultane-
ous block diagonal similarity of S and 7', with proper orthogonal diagonal blocks,
permits us to take 73, ..., Tk-) to be diagonal, and also Ti when Dj is an identity
matrix and oy is nonzero. If o = 0, we may replace Ty by PiTiQ« where P, and
Qx are proper orthogonal matrices diagonalizing T, and leave the products ST'
and 7'S unchanged. We only have to show how to replace T by a diagonal matrix
when detA is negative and Dj has —1 as its last diagonal element. The matrix
0k Dy Ty is symmetric, and its trace, as the sum of its eigenvalues, is a sum of terms
each of which is the singular value o of S times + a singular value of DT}, that
is, times £ a singular value of Tk, The product of the =+ signs is the sign of the
product of the eigenvalues of DT} and therefore is the sign of detD;T}. Because
the last diagonal element of Dy is —1, the product of the =+ signs is the sign of
~detTy, = detDiTi. Hence the trace of ox DTy is the trace a product (ox Dy times
a diagonal matrix of signed singular values of Tk), in which the signs of the singular
values of T are those on then singular values of DT, except for the sign on one
singular value, which for 7} is apposite to that of DyTi. From these facts, our
assertion follows without any need to effect a diagonalization of Ty.

Thus

tr(RAQoB) = tr(ST) = Y (%a:)(£By).

with only a, among o perhaps carrying a negative sign. If detAB is negative,
the positions of the negative entries on the a; and on the 3, cannot completely
be the same, so that at least one term ;) carries a negative sign. A simple
rearrangement argument shows that when det(AB) is nounegative the sum cannot
exceed.

Zn.d,
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and when det(AB) is negative

n-1
3 i = anbn.
i=1
Returning to the original matrices A and B, before the notational changes, we
have proved that the expressions just displayed are upper bounds for tr(PAQB).
M , these ions are achievable values for tr(PAQB) as P and Q
range over SO(n) Indeed we may take A = diag(ay, ..., @n-1, sign(det(A))ay,), B =
diag (B, ..., Bu-1, sign(det(B))fn), and the take P =Q = I. L]
It is easy to see that in fyveu(n) | tr(UAV B) |= 0. Because of the absence of
absolute values, the inf parallel to the sup in Theorem 1 is generally nonzero, and
its value is left to the reader.
The generalization of Theorem 1 to more than two matrices is the content of
Theorem 2. Its proof will give an alternative demonstration of Theorem 1.

Theorem 2 Let Ay,..., Ay be matrices with real entries. Take the singular
values of Aj to be 81(A;) 2 ... 2 sn(A;) for j = 1,..,m. Then, as matrices
Py,..., Pm range over SO(n).

SUPPeSO(n),...aeSOMIT (PLAY ... PuAm

n=1 m m
= 3T 5(A)) + sign(det(A...A,.)) 1 sa(4)).
=] j=1 =1

Proof We shall use induction on m. No use is made of Theroem 1. The
following argument includes then m = 1 case starting the induction.

Without loss of generality, we may suppose that A, ..., A,, are diagonal, with
the diagonal elements of each A; in order of decreasing absolute values, and only
the last possibly negative. As before, the sup is attained, so suppose that matrices
Py, Py, ..., Pn in SO(n) achieve it. The matrices A,, ..., A,, may have multiple or
zero singular values. Suppose, as an initial case, that each diagonal matrix A,
has simple nonzero singular values. Set M = P\A;...P, Ay Pm. Let Ry(6)
be a rotation matrix as before. Then tr(Ri;(6)M A,,) has a maximum at 6 = 0,
and so does tr(MR;(0)A,) = tr(Rij(0)AnM). Therefore MA,, is symmetric,
and so is AwM. Let A,, = diag(ay,...,0n), where the o, are distinct in absolute
value. Then Mi;o; and o;M;; = o;Mji. Therefore (0? — 0?)M;; = 0, whence
M is di l. M , the di | elements of M are in order of weakly
decreasing absolute values and only the last is possibly negative. For if not, by
simple rearrangement inequalities, tr(R™'M RA,,) would be increased by a suitable
choice of the generalized permutation matrix R in SO(n).

When m = 1, by proper orthogonality the matrix M = P, must now be the
identity, and the value of thL sup in clear. Let m > 1,

Let N = PuAnPiAt...Pu-1. Then trMAm = trNA,,_;, and by the same argu-
ment N is a diagonal matrix, with diagonal elements in order of weakly decreasing
absolute values and only the last possibly negative,

e~
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~ Now
PaAnMP;! = NAp-1(= PnAmPiA)...Po-iAm-1)-
BRI ARN AR ATA | oo dingorial matsices.vith diagonal el

which are in order of strictly decreasing absolute values since this is true for Ap,
and weakly so for M, and for A,,-; and weakly for N. Thus the similar diagonal

matrices A, M and NA,,_, have their simple eig ing on

the diagonal in the same order. Consequently the matrix P, effecting the similarity

must be a diagonal matrix, and therefc with the di J matrix Ap-).
Hence

PrAL. P At PuAm = PLAL(Prie1 P) (Am-1Am).

We are now in a position to apply induction. AS P,

P2, (Pem-1Prm
iy 2,(Pan-1Prn) range

sup tr(Py Ay PicaAm-2(Pin-1 P ) (Am-14Am))

n-1
= (A1) 8i(An-2)8i( An-1Am)

=l

+eign(det(Ay... An-a(An-14m)))$n(A1) - 8n(An-2) $n(Am-1Am)

n-1
= z!‘(/\l)nu‘i(Am-I)’l(Am)

=1
+sign(det(A;...Ap-14m))8n(A1)...8n(Am-150(Am)

Therefore, for m > 1, the sup is its claimed value when the A, have simple
nonzero singular values. Now suppose the A; do not all have simple nonzero singular
values. Choose the P, so that the sup is attained, and then perturb the A; to have
simple nonzero singular values. The upper bound on the trace is then valid for the
chosen F; and the perturbed A;. By continuity it continues to be an upper bound
as the perturbations approach zero, whence it is an upper bound for the original
matrices A,.

It is clear that the upper bound on the trace is achieved for suitable matrices
P, in SO(n). ]

The case of equality in the von Neumannn theorem seems to be analysed only
in (7). The full result is somewhat intricate, but becomes a bit simpler if the von
Neumann theorem is stated in another way. A later paper examining cases of
equality in the von Neumann result and our proper orthogonal version of it will be
prepared if sufficiently significat results are found.
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