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ABSTRACT
We introduce a notion of dimension for C*-algebras that is a noncommutative
version of the covering dimension for spaces, and study its basic properties and
some properties for continuous field C*-algebras, tensor products and composi-
tion series. As an application we estimate the dimension of the group C*-algebras
of some important solvable Lic groups.

RESUMEN
Introducimos la nocién de dimensién para C*
versién no de la di i6n de re

dlgebras, las cuales son una
i por espacios. Estudia-

mos las propiedades bésicas y algunas propiedades para campos continuos de

C*-dlgebras, prodi iales y series de ici6 icacié

Como una
estimamos la dimensién del grupo de C*-dlgebras de algunos importantes grupos
de Lie solubles.
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Introduction In this paper we i fuce a notion of di ion for C*-algebras.
and study its basic properties. Our definition of the dimension for C*-algebras is
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quite parallel to that of the covering dimension for topological spaces. Therefore, our
investigations for the dimension given below are quite natural and elementary, but
such an attempt has not been done previously in the literature. On the other hand,
another covering dimension (completely positive rank) for nuclear C*-algebras has
been introduced by Winter [Wt]. However, our dimension is completely different from
Winter’s one. Also, the stable rank (a sort of ive complex di ion),
the real rank (a sort of real di ion) and a logical rank for C*-
algebras have been introduced by Rieffel [Rf], Brown-Pedersen [BP] and the author
[Sd3] respectively.
This paper consists of just one section. We first introduce a notion of dimension for
“-algebras. Then we consider its basic properties and some properties for continuous
field C*-algebras, tensor prod and ition series. We also discuss about
some connections with the other ranks mentioned above. From this we sce that our
dimension (as numbers) is certainly the same as the completely positive rank in some
cases but not always, and it is rather different from the real rank and much more from
the stable rank. Finally, as an application, using [Sd1] and [Sd2] in part we estimate
the dimension of the group C*-algebras of some important solvable Lie groups such
as the ax + b group, the real 3-dimensional Heisenberg group, the real 5-dimensional
Mautner group and the real 7-dimensional Dixmier group.

1 The covering dimension for C*-algebras
We first recall the definition of the covering dimension for spaces.

Definition 1.1 Let X be a (non-empty, normal) topological space and dim X the
covering dimension of X. By definition, for n > —1 an integer, dim X < n if and only
if e finite open covering of X has an open refinement (U;) such that for any n+2
distinet Uy, (1< k < n+2) of (U;) we have N}2U;, = @ (cf. [Wt]). By definition,

dim@ = -1.

Passing the above definition directly to C*-algebras we have

Definition 1.2 Let 2 be a (non-zero) C*-algebra and dim2 denote the covering
dimension of 2 defined by: for n > 0 a non-negative integer, dim? < n if and only
if every finite covering of closed ideals (B,) of 2, that is, their union is 2, or 2 is
generated by the union, has a refinement of closed ideals (J;) of 2, that is, J; C B,
for some ¢ and its union is 2 such that for any n + 2 distinct J;, (1 < k < n+2) of
(3;) we have N23;, = {0}

Remark. It is shown below that this notion as a dimension for C*-algebras is quite
natural and might be some important.

Proposition 1.3 Let C(X) be the C*-algebra of continuous complez-valued functions
on a compact Hausdorff space X. Then the following are equivalent:

1. dimX < n.
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2. dimC(X) < n.

Furthermore, if X is a non-compact locally compact Hausdorff space, then we can
replace C(X) with Co(X) the C*-algebra of continuous functions vanishing at infinity
on X.

Proof. For a finite open covering (U;) of X, we assign the finite covering of closed
ideals Cy(U;) of C(X) that consist of continuous functions vanishing at infinity on
U,. Note that U; N Uy = 0 if and only if Co(U;) N Co(Uk) = {0}.

Remark. We have cpr(Co(X)) = dim X [Wt, Proposition 2.19], where cpr(-) means
the completely positive rank of Winter as a covering dimension for nuclear C*-
algebras. On the other hand, sr(C(X)) = [dim X/2] + 1 [Rf, Proposition 1.7] and
RR(C(X)) = dim X [BP, Proposition 1.1], where sr(-), RR(:) mean the stable rank
of Rieffel [Rf] and the real rank of Brown-Pedersen [BP] respectively, and [y] means
the largest interger < y. Furthermore, by definition sr(Co(X)) = sr(Co(X)*) and
RR(Cy(X)) = RR(Cy(X)), where Cy(X)™ is the unitization of Cy(X) by C.

Continuous field C*-algebras

Proposition 1.4 Let A be a C*-algebra and A* its spectrum that consists of equiva-
lence classes of irreducible representations of . If A" is a locally compact Hausdorff
space, then the following are equivalent:

1. dim2A* < n.

2. dim2A < n.

Proof. Note that " is always locally compact (cf. [Dx, 3.3]). By assumption that
A% is Hausdorff, 2 is isomorphic to No(A®, {2} rea~ ) the C*-algebra of a continuous
field (vanishing at infinity) on A" with fibers %, given by elementary C*-algebras,
i.c., either matrix algebras M, (C) or K the C*-algebra of compact operators on a
separable infinite-dimensional Hilbert space, which correspond to elements 7 of 2"
(ef. [Dx, Theorem 10.5.4]). For a finite open covering (U;) of A", we assign the finite
covering of closed ideals To(Uj, {2x}reu,) of 2 that consist of continuous operator
fields vanishing at infinity on U;. Note that since the fibers . are simple C*-algebras,
any closed ideal of 2 is given by o(U, {2z }xev) for an open subset U of X. n
As a generalization of the above proposition, we have

Proposition 1.5 Let Do(X, {At}ex) be the C*-algebra of a continuous field van-
ishing at infinity on a locally compact Hausdorff space X with fibers A, simple C*-
algebras. Then the following are equivalent:

1. dimX < n.
2. dim (X, {Ae}eex) < n.

In particular. we have dim Co(X,2) = dim X for a simple C*-algebra A, where
Co(X.2) is the C*-algebra of continuous A-valued functions on X.
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By definition, we always have
Proposition 1.6 Let 2 be a simple C*-algebra. Then dim2 = 0. On the other hand,
for C*-algebras A, B, we have

dim 2 @ B = max{dim 2, dim B},

where & means the direct sum.
In particular, dim M,(C) = 0 and dimK = 0, where M, (C) is the C*-algebra of

n x n matrices over C and K is the C*-algebra of compact operators on a separable
infinite dimensional Hilberl space. PFurthermore, any finite dimensional C"-algebra

has the covering dimension zero.
Remark. For 2 any AF-algebra, that is, an inductive limit of finite dimensional
C*-algebras, we have sr(2) = 1 [Rf, Proposition 3.5] and RR(2) = 0 [BP, Proposition
3.1). Moreover, cpr(2) = 0 if and only if 2 is (separable) AF [Wt, Theorem 3.4].

We in fact have
Theorem 1.7 Let % be a C*-algebra. Then
dim 2 = dim Prim(2),

where Prim(2) is the primitive ideal space of 2.

Proof. Note that any closed ideal of 2 is an intersection of primitive ideals of 2.
Therefore, any finite covering of closed ideals of 2 corresponds to a finite covering
of closed subsets of Prim(2) (cf. [Dx]). Note also that the covering dimension for a
(normal) space may be defined by its coverings of closed subsets. | ]
Remark. This theorem says that the dimension of 2 is determined when and only
when the covering dimension of its primitive ideal space is done. Thus, 2 need not
to be of continuous trace. By this interpretation we see below that our dimension
for C*-algebras has the same properties as the covering dimension for spaces does.
Hence, it is viewed that C*-algebras (with this intrinsic dimension) are much more

like topological spaces in a sense.
Therefore,
Theorem 1.8 Let Iy(X, {2 }tex) be the C*-algebra of a continuous field on a locally
compact Hausdorff space X. Then
diniTo(X, {2 }eex) < dim X + sup dim ;.
tex

In particular, for % a C*-algebra, we have
dim Cy(X, %) < dim X +dim2A.

(T
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Proof. Note that the primitive ideal space of To(X, {2 }+ex) is regarded as the fiber
space over the base space X with fibers the primitive ideal spaces of 2;.

Tensor products
Proposition 1.9 Let 2 be a C*-algebra. Then
dim®2 = dim My (2), dim2=dimASK,

where M, () 2 A& M, (C) is the C*-algebra of n x n matrices over 2A. Moreover, if
B is a simple C*-algebra and if A or B is nuclear, then

dim = dim A ® B,

where @ means the minimal (unique) C*-tensor product.

Proof. Note that M, (C) and K are simple C*-algebras of type I. Therefore, the ideal
structures of M, () and A ® K are the same as that of % ([RW, Theorem B.45, p.
262]). Thus, the claims of these cases follow. Also note that by [RW, Lemma B.50,
p. 264] the ideal structure of A ® B is the same as that of 2 (by taking the spatial
representation) (cf. [Mp, 6.3]).
Remark. We have cpr(M,(Co(X))) = dimX [Wt. Proposition 2.7). Also,
RR(M,.(C(X)) = {dim X/(2n — 1)} [BE, Corollary 3.2] and sr(My(2)) = {(sr(%) —
1)/n} + 1 for any C*-algebra 2 [Rf, Theorem 6.1], where {x} means the least integer
> r. Morcover, RR(A® K) < 1 [BE, Proposition 3.3] and sr(2 ® K) = min{2,sr(2)}
| [Rf. Theorems 3.6 and 6.4].

‘ Proposition 1.10 Let Co(X xY') be the C* -algebra of continuous functions vanishing
| at mfimity on the product space X x Y of (normal) locally compact Hausdorff spaces
X.Y. Then

dim Co(X) ® Co(Y) = dim Cp(X x Y) < dim X + dimY.
Let %, B be C*-algebras with their spectrums A®, B* (normal) Hausdorff spaces.
T dimA® B = dim A" x B < dim A" + dim B".
Proof. Note that Cyp(X)®@Cy(Y) = Co(X xY). The product theorem of the covering
dimension for spaces (cf. [Pe) implies the first estimate. For the second estimate,

note that
AQB = To(A", {Ac}rean) ®To(B, {B.}sewn)
2 oA x B, {Ar ® B, s pemnxmn)s
and cach fiber A, ) B, is a simple clementary C*-algebra (K or M,(C) for some n)

since A, B are CCR by the assumption on their spectrums. Then use Proposition 1.5
and the product theorem of the covering dimension for spaces.
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Composition series

Proposition 1.11 Let % be a C*-algebra and D its quotient C*-algebra. Then
dim2 > dimD.

Proof. The claim follows from that an open covering of D is lifted to that of 2, and

its refinement of the covering of 2l passes to that of the first covering of D.
Remark. For a closed ideal J of a C*-algebra 2, the following is false in general:

dimJ < dim 2.

For example, there exists a locally compact Hausdorff space X with dim X = 1 but
dim 3X = 0 for X the Stone-Cech compactification of X (cf. [Pe]). Note that Co(X)
is a closed idcal of C'(4X) that is isomorphic to the multiplier algebra of Cy(X). Thus,
we have dim Cy(X) =1 > 0 = dim C(8X).

Proposition 1.12 Let % be a C*-algebra, J its closed ideal and A/J its quotient
C*-algebra. Then

dim 2 < max{dim J, dim 2/J}.
Proof. This follows from Theorem 1.7, a basic property of primitive ideal spaces (cf.
[Dx. 3.2]) and a basic formula for the covering dimension for spaces. 1
Remark. Let Cy(X)* be the unitization of Co(X) by C. Then we have

dim Co(X)* < max{dim Co(X), dim C} = dim Gy (X).

It is known that there exists a locally compact Hausdorff space X with dim X =
1 but dimX* = 0, where X* is the one point compactification of X (sce [Os]).
Since Cp(X)* = C(X*), in this case we have dimCo(X)* = 0 < dimCy(X) =
1. Therefore, similarly we have dim2* < dim2 for A a C*-algebra and A* its
unitization by C. But the equality is false in general. In this point our dimension is
different from the stable rank of Rieffel [Rf] and the real rank of Brown and Pedersen
[BP] since by definition sr(2*) = sr(2) and RR(A*+) = RR(2) for any C*-algebra 2.
From [Rf, Theorems 4.3 and 4.4] and [Eh, Theorem 1.4] we always have

sr(2) > max{sr(3),sr(2/3)}, RR(A) > max{RR(J), RR(A/T)}.

But the reverse incqualities are false in general, and this is often an obstruction in
computing the ranks of extensions of C*-algebras in general. We see below the merit
of this proposition.

Example 1.13 Let B be the C*-algebra of bounded operators on a Hilbert space.
Then we have the following short exact sequence:

0—-K—-B—B/K—0, and

dimB = 0 = max{dim K, dim B/K}

TR
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since ¥ and B/K are simple and K is the unique nontrivial closed ideal of B. Let T
be the Toeplitz C*-algebra. Then

0—=K—-T—C(T)—0, and
dimC(T) = 1 < dim T < max{dimK, dim C(T)} = 1.
Let E = {f € C([0,1], My(C))| f(1) € C & C (diagonal)}. Then
0= Go([0,1), My(C)) » E - C®C — 0,
dim B < max{dim Cy([0, 1), My(C)),dimC & C} = 1.
Since C([0,1/2], M»(C)) is a quotient of E, we have
1> dimE > dim C((0,1/2], Ma(C)) = 1.

Note also that the primitive ideal space of B is not Hausdorff because it is identified
with the union of [0,1) and two points attached at 1 so that the two points are not
separated.

On the other hand, it is known from [Rf, Proposition 6.5] and [BP, Proposition 1.3]

that sr(B) = oo and RR(B) = 0. Also, sr(T) = 2 [Rf, Examples 4.13] and RR(%) = 1
[Os, Corollary 1.5].

Theorem 1.14 Let A be a C*-algebra of type I and (J ); its composition series of

closed deals such that sub 1 3;/3j-1 have trace. If the series 1s
finite. then

dim @ < max dim To(X;;, {Ac}eex,) = maxdim X;
J 3
= max dim Prim(J;/J;-1),
i
where To(X;, {Acbeex,) = Jy/F-1 where X; are the spectrums of 35/, %, are

clementary C*-algebras, and Prim(3;/J;_,) are the primitive ideal spaces of 3;/3;-1.
Furthermore,

dim 2 > supdim Ug_, Y,

where Yy are the subspaces of the spectrum of 2 consisting of equivalence classes of
k-dimensional irreducible rep ions of 2.

Proof. Note that a C*-algebra is of type I if and only if it has a composition secries of
closed ideals such that its subquotients have continuous trace. Also, a C*-algebra of
continuous trace is isomorphic to the C*-algebra of a continuous field on its spectrum
with fibers elementary simple C*-algebras as given in the statement. Hence, using
Propositions 1.5 and 1.12 repeatedly we obtain the first estimate. For the second
estimate, note that the unions Ug_, Yj for n € N are closed subspaces of the spectrum
of A. Thus, A has quotient C*-algebras D, with D) = Ur_, Y (cf. [Dx]). Then use
Proposition 1.11.

]
More gencrally,
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Theorem 1.15 Let A be a C*-algebra. If A has a finite composition series (J;); of
closed ideals such that J;/J;-y are isomorphic to To(X;, {Ae}eex,) with X; locally
compact Hausdorff spaces and 2, simple C*-algebras, then

dim 2 < maxdim Lo (X5, {%}eex, ) = maxdim X;
= maxdim Prim(J;/J;-1).
J

dl

Proof. Use P: itions 1.5 and 1.12 rep [ ]

Theorem 1.16 Let 2, B be C*-algebras. If they have finite composition series (J;);,
(R4)1 of closed ideals such that subquotients J;/3;_1, Ri/Ri— are respectively isomor-
phic to To(X;, {c}eex, ), To(Yi, {Bs}ew)) with X;, Yi locally compact Hausdorff
spaces and A, B, simple C*-algebras, then

dim A © B < max dimTo(X; x Yi, {2 ® B, }eex, sev)
2
= max dim Prim(3,/3j-1 ® &1/81-1).
£

where To(X; x Yi, {%e @ Bu}eex, sevi) = Tj/j-1 @ fu/Ru-1.
Proof. Notc that (J; ® £);, is a finite composition series of A ® B, and its subquo-
tients are given by (3;/3;-1 @ f1/Ri-1),1. Furthermore,
3;/3-1 ® Ru/RKi-1 = Lo(X;, {Aeheex,) ® To(Yr, {Bs}sevi)
= To(X; x Y1, {2 ® Buheex, nevi)-
"
Example 1.17 Let C*(A) be the group C*-algebra of the real axr + b group A =
R x, R (a semi-direct product) with the action a defined by a,(z) = e'z for t.x € R.
Then we have the following short exact sequence:
0—-K&K— C*(A) — Co(R) =0, and
dim Cp(R) = 1 < dim C*(A) < 1 = max{dim K & K, dim Cy(R)}.
Let C*(H) be the group C*-algebra of the real 3-dimensional Heisenberg group
H = R? x, R with the action a defined by ay(z,y) = (z + ty,y) for t € R and
(z.y) € R%. Then we have the following short exact sequence:
0— Co(R\ {0)) ®K — C*(H) — Cy(R*) = 0, and
dim Cp(R?) = 2 < dim C*(H) < 2 = max{dim Cp(R \ {0}) ® K, dim C,(R?)}.
More generally, let Hz, 1 = R™*! 31, R™ be the real (2n + 1)-dimensional Heisen-

berg group with the action « defined by a¢(z,y) = (z + E;;. t;y5,y) for € R and
t=(t,).y = (;) € R". Then we have the following short cxact sequence:

0— Co(R\ {0}) ® K — C*(Hzuy1) — Co(R™) = 0, and
dim Cy(R*") = 2n < dim C* (Ha,41) < 2n =
wmax{dim Cy(R \ {0}) @ K, dim Co(R™)}.
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Example 1.18 Let C*(M) be the group C*-algebra of the real 5-dimensional Maut-
ner group M = C? x4 R with the action af defined by af(z,w) = (22, e2™tw)
for t € B, z,w € C and @ an irrational number. Then we have the following short
exact sequence:

0= 3= C*(M) = Co(R) = 0,

0—CoR) QA 8K -7 - &?Co(RxT)®K —0 and

dim Cy(R) = 1 < dim C* (M) < max{dim J, dim Cy(R)}

< max{dim Cy(R?) ® %y ® K, dim Cy(R x T) ® K,dim Cy(R)} = 2

where %, is the irrational rotation algebra associated with 6 and is simple. See [Sd1]
for the composition series given above and sr(C*(M)).

More generally, in [Sd1] we have constructed finite composition series (J;) of group
(*-algebras C*(G) of semi-direct products G = C" x, R with general actions a such
that 3,/3,-y are isomorphic to Cy(X;, ;) with X; certain locally compact Hausdor(l
spaces and A; given by either C, K or K ® 2, where 2g are simple or non-simple
noncommutative tori. Using this structure and Theorem 1.8 and Proposition 1.12 we
can estimate dim C* (@) as follows:

dim C*(G) < m}:xdihlj,/ﬂ,-. = mja.xdian(X,?l,)
< mjax((lim Xj +dim2;).
By Proposition 1.11 we also have
dimC*(G) 2 dim Co(GY)

(for G a locally compact group), where G7 is the space of all 1-dimensional represen-
tations of G (cf. [Sd1]).

For more applications as above, let Dgn1 = C*" %3 Han41 be the real (6n + 1)-
dimensional generalized Dixmier groups with the action 3 defined by 8,(z,w) =

2)). (€Ww;)) for 2 = (2;),w = (w;) € C* and g = (,y,t) € Han41 thereal (2n+
1)-dimensional Heisenberg group as in Example 1.17. See [Sd2] for sr(C*(Den+1)) and
the structure of the group C*-algebras C*(Dgn+1) of Den+1 as finite composition series
of closed ideals with subquotients J;/3;; given by To(X;, {2 }cex,) (in general) with
X, certain locally compact Hausdorff spaces and the fibes 2, given by cither C, K
or ¥« g, (where g, is a special case of noncommutative tori such as finite tensor
products of rotation algebras g, for 6, varying). In this case we have

dim C* (Dgn41) < maxdim3;/3;-1 = maxdimTo(X;, {Ue}eex,)
J 7
< max(dim X; + sup dim ).
i tex;
From this estimate we in fact have

2n < dim C* (Dgn+1) < dn+ 1.
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Remark. As the final remark, our results Proposition 1.3, Theorem 1.8, Propositions
1.9, 1.10, 1.11 and 1.12 above just say that our dimension satisfies (not all) the axioms
for the topological rank introduced by [Sd3], and only one axiom for inductive limits
of C*-algebras is missing.

Received: April 2005. Revised: May 2005.
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