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ABSTRACT 

The airo of litis paper is to study the R.iemaruüa:n 1oanifolds that have 
bases aJong which their sectional curvat.ures are const.ant. 

1 l NTRODUCTION 

Let M" be a n-dimensional füemannian manifold with curvature tensor R. 

Given p E M , let X, Y E TpM be two linearly independent vectors. The sectional 

curvature of M along the plane spanned by X and Y is defined by 

I<(X Y)_ (R(X, Y)X, Y) 
' - llXll'llYll' - (X, Y),-

An ort.hornomal basis f3 = { Ei, E2 1 ••• , En} is called a basis oí cons tanl ct1rvature 

e if 

l<(E;, E;); e, V 1 :S 1 y! J :S n. 

We show in Examp\e l.2 thal this condiction does noL imply that 1\1/ has constant 

curvature at p. 

Example 1.1 Thc space fonns liave ba.ses of constant curoaturn at ali puint8. 
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Example 1.2 Let 50(3) be the Lie group oj the rotations in Euclidean space R3 . 

We consider 50(3) equipped with the left-invariant metric such that {F1, F2 , F3 } is 

an orthonormal basis o/TrS0(3) (I is the identity matrix o/ S0(3)), where 

~). F,=(~ ~~ )e F3 =( ~ ~ ~)· 
o o - 1 o -l o o 

We have 
1 1 

[F1, F2 ) = 2F,, [F2 , F3 ) = ;¡F1 ancl [F,, F.)= ;¡F2 . 

Now, by using Theorem 4.3 of (Milnj, we get that {F1, F2, F3 } diagonalizes the Ricci 

tensor {see Section 2) o/ 50(3) and the Ricci curvatures at F¡, 1 5 i :5 3, are given 

by 

fücc(F.) = -~, Ricc(F2) = -~ and fücc(F3 ) =l. 

In particular, the scalar wrvature of 30(3) at J is zero. Hence, if X , Y are or­

thonormal vectors in T1S0(3), then K(X, Y ) = - fücc(X x Y) (see Lemma 2.1), 

where x indicates the cross product in T,S0(3). Tlms 50(3) has not constant 

curvature. Consider the following vectors o/ the tangent space TrS0(3): 

E1 = (=$ 
fl 

~) J 

o fl 3 ' 
_fl o 3 

( o 
1 1 - 1+~) - ::J+7J 2 =-3+73 

E1= ~ o -~ 1 

_!~ ~ © 
2 - 3+ 3 3 

E= (!~ 
- ~ -_31:2ff 1-3+~) 

6~ o 1 3 
J 3 - 1+ J 3- 1+ 3 . 

-~~ -k~ o 

Clearly { E11 E2, E3 } is a11 or01onomw/ basis o/ curvature zer·o. Now, if we co1isider 

thc left invariant uector fie/ds iriduced by E1, E'l and EJ, we obtai11 a frame field o/ 
curuature zero along the whole 50(3). 

This exu.mple shows Lhat there exisl manifolds with bases of constant curvature, 
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but which have not constant curvature. In fact1 Example 1.2 is a particular case of 

the following. 

Theorem 1.3 Ali tridimensional Riemannian manifold has, at least, a basis o/ con· 

stant curvature at all points. 

We also obtained a very large family of manifolds with bases of constant curva­

ture: 

T heore m 1.4 Let Mn be a con/ormally jlat manifold. Theni given p E M , there 

exists a basis o/ constant curvature in TPM. 

The converse is not true1 as the following example shows. 

Example 1.5 [.,et Nf be the Riemannian product S0(3) X N, where Nis either s• 
or R, and S0{3) is as in Example 1. 2. Let f3 = {E11 Si, E31 E4 } be an orthono1mal 

basis of T(l,:: )J\111 x E N, where {E1, E2 , E3 } is as in Example 1.2 and E.1 E T~N. 
Then f3 is a basis of zero curvature o/ M. Now, applying the Kulkarni Theorem (see 

{Kulkj} to the qtiadruple F1, F2 , F3 and E., we see that M cannot be conformally 

flat. 

2 BASIC MATERIA L 

In this section we present the basic definitions and results which will be used 

in proof of Theorem 1.2 and T heorem 1.4. 

Let i\1! a R.iemannian manifold with metric { , ) and curvature tensor1 R. f'ix 

p E i\/ and !et { E 1 , E2 1 ••• E11 } be a orthononnal basis of TpM. The Ricó tensor of 

1\!/ at p is given by 

Q(X) = L RE,xE;, X E T,M. 
i=I 

The quadratic forn1 associated to Q will be indicated by Rice. So 

Ricc(X) = (Q(.Y ), .\ ) = (L RE,xE,, .Y), X E T,,M . 

1 Wt: .Vl' using t hc following ddlnition for /l: 

wht>re t' mclK:itt!ll thc IUt!mannian connt.'Ction oí M . 
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If U E TPM is a unit vector, then Ricc(U) is called the Ricci curvature of M at 

direction U . 1n pa rticular, 

The real number 

flicc(E, ) = L K (E,,E, ). 
i=l(i#) 

" " 
S(p) = L flicc(E,) = 2 L K (E, , E;) 

i=I i <j 

is the scalar curvature of M at p. 

When NI has dimension 3, K, S and Q are relatecl as follows. 

Lemma 2.1 Let NI be a 3-dimensional Riemannian manifold, let p E M and let U 

and V be two orthonormal vectors o/ TpJ\1 . Then 

K(U, V)= S~) - flicc(U x V ). 

Proof: Since {U, V, U x V} is an 0rth<:morma:l basis, we get 

Hence 

flicc(U) = K (U, V) + K (U, U x V) 
flicc(V) = K(U, V) + K (V, U x V ) 

flicc(U x V ) = K(U, U x V) + K(V, U x V). 

S(p) = flicc(U) + flicc(V) + flicc(U x V ) = 2K(U, V)+ 2 flicc(U x V) , 

which preves the Jemma. o 

Now we present a linear algebraic lemma which is essential in the proofs of 1.3 

and 1.4. 

Lemma 2.2 Let V be a n-dimensional vector space equipped with an inner prod­

uct. Let B : V x V ~ R be a traceless bilinear forrn. Then there exists a basis 

(W, , W,, ... , W0 ) such that B (W,, W¡) = O, /or i = l, . , n. 

Proof: Let W" E V be an unit vec tor such that B(Wn1 Wn) :;: O. Let V be the 

subspace of V orthogonal to Wn, arid {Vi , V2 , . , Vn- i } be an orthonormal basis of 

V. T heu 

B(V,, Vi)+ B (V,, V,) + .. ·+ B(V,,_ ,, \/,,_ ,) = O, 
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since the trace of B is equal to zer.o. Now, by making induction on n, we obtain 

a.n ortbonormal basis of V, say {W1, W2 , •• , YVn-d, sucb tbat B(W¡, W¡) = 01 for 

i = 1, ... 1 n - l. Hence {Wt, W2, ... , Wn-li 1'Vn} is a orthonormal basis of V with 

tibe desired property. o 

Corollary 2.3 Let V be a n-dimensional vector space equipped with the inner prod­

uct ( , ) . Let B : V x V --t IR be a bilinear form . Then there exists a basis 

(W,, W,, ... , W.) such that B(W,, W,) = ";fl, /or i = 1, .. , n. 

Proof: Let B : V x V --t IR be the bilinear form defined by 

- trB 
B(X, Y)= B(X, Y) - -(X, Y ). 

n 

So t r 8 = O and tben b>y Lernma 2.2 there is an orthonorrnal basis 

¡w,,w,, .,w._,, w.¡ 

such that B(W,, W¡) = ©, for i = 1, .. ,n. Hence B(W, , W,) = (tr B)/n, for i = 
l, ... , n. o 

3 CONSTRUCTING CONSTANT CURVATURE BASES 

We begin this secfüm wi•th the following proposition, whicl:i sh0ws that the 

scalar curvature of a rnarnifolcl M determines completely the valiUe 0f the c0nstant 

0f a basis of constarnt curvatu·r.e1 if t•here ex:ists sucb a basis. 
Proposition 3.1 Jf {E11 E2 1 • •• 1 E11} e TPM is aba.sis o/ constan-t curvature e o/ a 

Riemannian manifold M, then e = S(p)/n(n-1), where S(p) is the scalar curvature 

o/ M atp. 

Proof: Just observe that S(p) = 2 L«; K(E,, E;) = n(n - l)c. o 

Now we can construct a fami•ly of RJemannian manifolds which has no bases of 

constant curvat.ure. 
Proposition 3.2 Let 1\il = P 2 x Fk 1 where P 2 is a 2-dimensional Riemannian 

manifold, and F", k ~ 2, is a k-dimensiona/ jlat manifold. lf the sectional curvature 

o/ P is never zero, then i'vl has no bases o/ constant curvature. 

Proof: ln fact 1 if {Vi, Vi, ... 1 V,1 } is such a basis al sorne p = (a1 b) E M, then 

K (V. 1 V;) = 2K/n(n - 1), 1 :5 ·i # j :5 n, n = k + '2 1 where K is the curvature of P 
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ata. Now, writ ing V¡ = X¡ + Y;, where X¡ E Ta. P and y¡ E Ti,F , for 1 :::; i::; n, we 
obtain that 

- 2K 
K (V; , V;) = (R(X;, X;)X;, X; ) = n(n _ I), 1 Si# j S n, 

where R is the curvature tensor of P. Hence 

2 2 2 2 llX;ll llX;ll - (X;,J<;) = n(n - I) >O, 1 Si# j S n , 

which implies that the vectors X¡, 1 5 i 5 n , aire pairwise linea:rly independent and 

the parallelograms spanned by the pa:irs {X¡,X; L 1 5 i :/. j:::; n, have the same 

area. This is oot possible, since TaP has dimension 2 and n ;::: 4. So lvf cannot have 

bases oí constant curvature. o 

P r oof of T heor em 1.3: Let p E M and let B be the syrnmetric bilinear form 

induced by the R.icci tensor of M, Q (see Section 2) , that is, 

B (X , Y ) = (Q(X), Y ), X , Y E T,M. 

So S(p) = t r B. Frorn Corollary 2.3 it folilows that there exis ts an orthonormal basis 

( E,,E,,E, ) of T,M such that B(E;,E;) = R.icc(E;) = (t r B) / 3, l S i S 3. But 

S(p) = t r B. Hence K (E;, E;) = S(p)/6, by Lemma 2.1. o 

Proof of Theorem 1.4: We use the same notati0n as in the proof of T heorem 1.3. 

Let {E11 E2 , . •• 1 En} be an orthonormail basis of M such that 

B(E;, E; ) = Rice( E;) = tr B = S(p) , l Si S n. 
n n 

Since ¡\if is conformally Aat, we get from T heorem 3.2 of [I<ulkj that 

I<(E E·) = R.icc(E,) + R.icc(E;) - S(p) 1 Si S n. 
"' n-2 (n- l )(n - 2)' 

Hence f<(E,, E, ) = S(p)/n(n- 1) and the proof is complete. o 

As a application of T heorem 1.4, we obtain the following example. 
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Example 3.3 Let M be one of the manifold. li.sted. 

( • ) a hypersurface of rotation o/ IR.n ¡ 

(• ) a warped product of the type !R. X~ N , where N is a space form; 

(• ) a Riemannian product Sm(lj./C) x H"(-1/./CJ, where H"(-1/Jc) is lhe hy­

perbolic space of cmroature -c. 

Then M has base.s of constant curvatur.e. In fact, in any case, M is conformally 

ftat. 
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