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ABSTRACT

The aim of this paper is to study the Riemannian manifolds that have
bases along which their sectional curvatures are constant.

1 INTRODUCTION

Let M™ be a n-dimensional Riemannian manifold with curvature tensor R.
Given p € M, let X,Y € T,M be two linearly independent vectors. The sectional
curvature of M along the plane spanned by X and Y is defined by

(R(X,Y)X,Y)

KON = R - xooe

An orthornomal basis 8 = {E\, Ex, ..., E,} is called a basis of constant curvature
cif
K(E;, Bj)=c,V1<i#j<n

We show in Example 1.2 that this condiction does not imply that M has constant
curvature at p.

Example 1.1 The space forms have bases of constant curvature at all points.
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Example 1.2 Let SO(3) be the Lie group of the rotations in Buclidean space R®.
We consider SO(3) equipped with the left-invariant metric such that {Fy, Fy, Fs} is
an orthonormal basis of TrSO(3) (I is the identity matriz of SO(3)), where

0 10 0 0 0 0
-1 00|, B=[0 0 1| eBmB=(0
0 00 0 -1 0 -1

By
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We have

(R, )= 2P, [FB) = 2R and (B, Fi)=
Now, by using Theorem 4.3 of [Miln], we get that {F\, F5, F3} diagonalizes the Ricci
tensor (see Section 2) of SO(3) and the Ricci curvatures at Fy, 1 <1 < 3, are given
by

Rico(5}) = —%, Rico(F3)i= -% andl Rico(A3) = 1.
In particular, the scalar curvature of SO(3) at I is zero. Hence, if X,Y are or-
thonormal vectors in T;SO(3), then K(X,Y) = = Ricc(X x Y) (see Lemma 2.1),
where X indicates the cross product in TrSO(3). Thus SO(3) has not constant
curvature. Consider the following vectors of the tangent space TrSO(3):

o 9
B = -g 0o £,
_Y3 _\V3
6 0
0 gt 1 =1+V3
=3+V3 2343
By = : 0 -2
2 —34+V3 Bl
1143 =243 0
23+V3 =3+V3
0 _ 1=8+2V3 1 -3+V3
3 —14V3 6—1+v3
= 1-3+2%3 1_V3
By = 3 1+V3 0 3-1+V3
1 -3+y/3 V3
~1+V3 0

i

te

P
i

Clearly {E\, Ey, B3} is an orthonormal basis of curvature zero. Now, if we consider
the left invariant vector fields induced by E\, B, and Ey, we obtain a frame field of

curvature zero along the whole SO(3).

This example shows that there exist manifolds with bases of constant curvature,
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but which have not constant curvature. In fact, Example 1.2 is a particular case of
the following.

Theorem 1.3 All tridimensional Ri 1 ifold has, at least, a basis of con-
stant curvature at all points.

We also obtained a very large family of manifolds with bases of constant curva-
ture:
Theorem 1.4 Let M™ be a conformally flat manifold. Then, given p € M, there
exists a basis of constant curvature in T,M.

The converse is not true, as the following example shows.
Example 1.5 Let M be the Riemannian product SO(3) x N, where N is either S'
or R, and SO(3) is as in Ezample 1.2. Let B = {E,, Ea, E3, Eq} be an orthonormal
basis of Ty )M, © € N, where {E\, Ey, Es} is as in Ezample 1.2 and Ey € T,N.
Then 8 is a basis of zero curvature of M. Now, applying the Kulkarni Theorem (see
[Kulk]) to the quadruple Fy, Fy, F3 and E,, we see that M cannot be conformally
flat.

2 BASIC MATERIAL

In this section we present the basic definitions and results which will be used
in proof of Theorem 1.2 and Theorem 1.4.
Let M a Riemannian manifold with metric ( , ) and curvature tensor' R. Fix
p € M and let {Ey, By, ... E,} be a orthonormal basis of T, M. The Ricci tensor of
M at p is given by
n
Q(X)=>" RexE;, X €TM.
i=1

The quadratic form associated to @ will be indicated by Ricc. So

Rice(X) = (Q(X), X) = (2": e R e

i=1

"We are using the following definition for It
R(X,Y)Z = -VxVyZ+VyVxZ +Vxyv 2,

where T indicates the Riemannian connection of M.

-



If U € T,M is a unit vector, then Ricc(U) is called the Ricci curvature of M at
direction U. In particular,
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Rice(By) = Z K(B;, By).
i=1(i#k)

The real number o =
=) Rice(By) =2 K(E:, E;)
i=1 i<j
is the scalar curvature of M at p.
When M has dimension 3, K, S and @) are related as follows.
Lemma 2.1 Let M be a $-dii tonal Ri 1 ifold, let p € M and let U
and V' be two orthonormal vectors of T,M. Then

K(U,YV)= S(p) — Rice(U x V).

Proof: Since {U,V,U x V} is an orthonormal basis, we get

Rice(U) = K(U,V) + K(U,U x V)
Rice(V) = K(U, V) + K(V,U x V)
Rice(U x V) = K(U,U x V) + K(V,U x V).

Hence
S(p) = Rice(U) + Rice(V) + Rice(U x V) = 2K(U, V) + 2Rice(U x V),

which proves the lemma. O

Now we present a linear algebraic lemma which is essential in the proofs of 1.3
and 1.4.
Lemma 2.2 Let V be a n-dimensional vector space equipped with an inner prod-
uct. Let B:V xV — R be a traceless bilinear form. Then there ezists a basis
{Wi, Wa, ..., Wy,} such that B(W;, W;) =0, fori=1,...,n.

Proof: Let W, € V be an unit vector such that B(W,, W,) = 0. Let V be the
subspace of V orthogonal to Wy, and {V;, V4, ..., Va-1} be an orthonormal basis of
V. Then

B(Vi, Vi) + B(Vy, V) + -+ + B(Vaz1, Vai) = 0,

.. 7
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since the trace of B is equal to zero. Now, by making induction on n, we obtain
an orthonormal basis of V, say {Wh, W, ..., Wy_1}, such that B(W;, W;) = 0, for
i=1,...,n—1. Hence {Wy,Wa,...,Wn_1, Wy} is a orthonormal basis of V with
the desired property. O

Corollary 2.3 Let V be an-dimensional vector space equipped with the inner prod-
uct (, ). Let B:VxV —R be a bilinear form. Then there ewists a basis
{Wi, Wa, ..., Wa} such that B(W;, W;) = 2, fori=1,...,n.

Proof: Let B :V x V— R be the bilinear form defined by

Bl v) = Bt v) = 22

(X, 7).

n

So tr B = 0 and then by Lemma 2.2 there is an orthonormal basis
(W, Wa, ..., W1, Wa}

such that B(W;, W;) = 0, for i = 1,...,n. Hence B(W;, W;) = (tr B)/n, for i =
e e

3 CONSTRUCTING CONSTANT CURVATURE BASES

We begin this section with the following proposition, which shows that the
scalar curvature of a manifold M determines completely the value of the constant
of a basis of constant curvature, if there exists such a basis.

Proposition 3.1 If {Ey, Ey,..., By} C T,M is a basis of constant curvature c of a
Riemannian manifold M, then ¢ = S(p)/n(n—1), where S(p) is the scalar curvature
of M at p.

Proof: Just observe that S(p) = 23,; K(E;, E;) = n(n = 1)c. 0

Now we can construct a family of Riemannian manifolds which has no bases of
constant curvature.
Proposition 3.2 Let M = P? x F* where P? is a 2-dimensional Riemannian
manifold, and F*, k > 2, is a k-dimensional flat manifold. If the sectional curvature
of P is never zero, then M has mo bases of constant curvature.

Proof: In fact, if {V},V,...,Vi} is such a basis at some p = (a,b) € M, then
K(Vi,V;) =2K/n(n— 1), 1 <i#j < n,n=k+2, where K is the curvature of P
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at a. Now, writing V; = X; + Y;, where X; € T,P and ¥; € T, F, for 1 <i < n, we
obtain that

1<i#j<n,

K(V, V) = (RO, ), X,) = o

where R is the curvature tensor of P. Hence

>0, 1<1#j<n,

2
X216 = (X, X502 =
ARG = 06, X0 = 2 s
which implies that the vectors Xj;, 1 < ¢ < m, are pairwise linearly independent and
the parallelograms spanned by the pairs {X;, X;}, 1 < i # j < n, have the same
area. This is not possible, since T, P has dimension 2 and n > 4. So M cannot have

bases of constant curvature. O
Proof of Theorem 1.3: Let p € M and let B be the symmetric bilinear form
induced by the Ricci tensor of M, @ (see Section 2), that is,

B(X,Y) = (Q(X),Y), X,Y €T,M.

So S(p) = tr B. From Corollary 2.3 it follows that there exists an orthonormal basis
{E\, Ey, B3} of T,M such that B(E;, E;) = Rice(E;) = (trB)/3, 1 <i<3. But
S(p) = tr B. Hence K (B, E;) = S(p)/6, by Lemma 2.1. 0

Proof of Theorem 1.4: We use the same notation as in the proof of Theorem 1.3.

Let {Ey, B, ..., E,} be an orthonormal basis of M such that

B(E,, E)) = Rice(B}) = 'i’ﬁlz Y ST(”) s S

Since M is conformally flat, we get from Theorem 3.2 of [Kulk] that

Rice(E;) + Rice(Bj) S(p)

5 e

K(E, E;) =

Hence K'(E;, E;) = S(p)/n(n — 1) and the proof is complete. ©

As a application of Theorem 1.4, we obtain the following example.

(T




!lll ESES OF CONSTANT CURVATURE

Example 3.3 Let M be one of the manifolds listed.

(e) @ hypersurface of rotation of R™;
) a warped product of the type R x4 N, where N is a space form;
¢
(¢) a Riemannian product S™(1/+/c) x H"(—1/\/c), where H™(=1/\/c) is the hy-

perbolic space of curvature —c.

Then M has bases of constant curvature. In fact, in any case, M 1is conformally

flat.
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