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1 Introduction

This paper is an attempt to acquaint the non-specialist with a topic in ordinary dif-
ferential equations that has been becoming quite prominent in the last half-century.
By using simple examples it hopes to show that, first, realistic models for many phys-
ical applications can be represented in terms of such functional differential equations,
especially of delay type. Then it tries to show that standard mathematical analysis
of not much more than undergraduate level can be used to get much important
information about solutions of such equations.

As will be evident in sections 2 and 3, one of the important properties of solu-
tions of such equations is that they often exhibit oscillatory properties as functions
of the independent variable ¢, usually associated with time in physical applications
modeled by these equations. In the opinion of the author, a considerable number
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of natural phenomena exhibit oscillatory behavior in terms of the time, and one of
the interesting proper times of delay differential equations as they usually have solu-
tions with just such oscillatory properties, while corresponding differential equations
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without delays do not.

Since this is an expository paper and not a survey, the author has included
many straight forward computational details at a fairly unsophisticated level, but
has omitted many areas in the ﬁe}d of functional differential equations in which

important advances have been made.

2 Linear and Almost Linear Cases

One of the simplest differential equations is one that models the so called simple
harmonic oscillator. With ¢ the time variable and z(t) the state variable representing
displacement from equilibrium, it is just

3(t) + k*z(t) = 0; (1)

here k is a positive constant, and the dot indicates derivative with respect to t,
50 &(t) = d’z/dt*. This of course simply states one of Newton’s laws of motion:
force equals mass times acceleration. For example, it models the small oscillations
about equilibrium of a simple pendulum and is a simple special case of a linear
homogeneous ordinary differential equation with constant coefficients. A well known
elementary method for finding solutions for such equations is to look for solutions
of the form z(t) = ce, where ¢ and A can be complex constants; we can allow
(1) to have complex valued solutions, and note that their real and imag'inary parts
are respectively real valued solutions. Substitution of z(¢) = ce™ into (1) easily
yields A + k* = 0 for any case where ¢ # 0. We recall that for a general nth
order linear homogeneous ordinary differential equation, this same method leads to
an equation of the form P(A) = 0 where P is a polynomial of degree n. Thus if
A1, Aa, . .. A are distinct roots of this equatlon asolution, in general complex valued,

of (1) can be found of the form z(t) = Z cje’it. The equation P(A) = 0 is usually

referred to as the characteristic equatlon for the given o.d.e., and P is the associated
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characteristic polynomial. We can easily show that if A; is a root of P of multiplicity
l; > 1, t='eMt is also a solution. We also recall the fact that all solutions of such
an o.d.e. can be expressed in terms of such solutions.

As is well known from sufficiently long observation, the oscillations of a simple
pendulum decrease in amplitude with time. So over a long time interval (1) is not
an accurate model for such a pendulum. It is also true that for sufficiently large
oscillations from equilibrium, the period of the oscillation is amplitude dependent,
unlike the solutions of (1); this is because a better model for larger oscillations is
given by the nonlinear equation &(t)+k?sin z = 0, which also has periodic solutions,
but the period of these are amplitude dependent.

If we are concerned only with small oscillations over a long period of time, we
usually assume a frictional drag on the pendulum proportional to its speed and are
led to a more realistic equation.

3(t) + ba(t) + k’z(t) = 0 (2)

where b is a positive constant. Since our characteristic equation for (2) is A? + \b+
k* = 0, it follows easily that any solution of the form ce', where A is a root of
this characteristic equation, approaches 0 as t — oo. Are all solutions of (2) linear
combinations of such solutions? If b = 2k the answer is no, since in this case te’ is
also a solution; in this case the characteristic equation has a non-simple (i.e. double)
root. The author suggests that such a possibility for (2), or for any linear constant
coefficient equation, is from the point of view of applications not as important; since
the constants b and k in (2) are usually results of measurements, the chances of
having b = 2k is rather remote.

Suppose we wish to model another system where there is again a restoring force
proportional to the displacement from equilibrium, but where the force due to the
speed is not proportional to the speed at the time of observation, but at a time just

a constant amount before this time. We are led to an equation of the form

() + bi(t — )+ z(t) =0 (3)

where by a rescaling of the ¢ variable we can always assume the coefficient of z(t)
to be 1. To find solutions of (3) we can again look for complex solutions of the form
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z(t) = ce* where now A must be a root of the characteristic equation

N4 Abe™™ 4+ 1 =0. ()
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It is clearly not a polynomial equation in A, and in fact will have an infinite number
of distinct roots. If all roots of (4) have negative real parts, it can be shown thal
all solutions of (3) satisfy z(t) — 0 as t = oo, although the proof of this is far from
simple. On the other hand, if there exists a root A of (4) with ReX > 0, then there
exists a solution z(¢) which becomes unbounded as ¢ — oo, as is easy to see. (For
A = a+ b, we use the notation ReX = a, ImA = b).

Before undertaking an analysis of all possible roots of (4) let us say something
about the concept of general solution for equations like (3), so called delay differen-
tial equations (d.d.e.s for short). As in the ordinary differential equation case, we
formulate an initial value problem (i.v.p. for short) for a more general second order

d.d.e. of the form

(1) = f(a(t), 3( = 7)) (3.1)

where f(z,y) is continuously differentiable in the (z,y) plane.

If we are interested in solutions of (3.1) for ¢ > 0, we must clearly know (t) for
—r <t < 0. Let %(t) be a function continuous on [—r, 0], and o be any real number.
We can then assert the existence of a unique solution &(t) = z(t; 2o, %) of (3.1) on
some interval [0, d,),d; < r, such that z(0) = zp and #(t) = ¥(2) for —r < ¢ < 0, by
defining it to be the unique solution of the o.d.e.

B(t) = f(@(t),(?))

such that z(0) = z, and £(0) = (0) on the interval [0,d;). If d; = r we can repeat
this procedure on [r, ds) for some dy < 2r, and continue in this way to some maximal
interval [0, dp,); here d,, = oo is possible. Thus is called using the method of steps.
Thus for d.d.e.s our initial conditions for solutions are necessarily in terms of given
functions on the delay interval [—r, 0). Later we will formulate the i.v.p. for d.d.e.s
in a more general manner.

Returning to equation (3) we can find solutions on (—oo, 00) of the form ce™, ¢
a constant, A a root of (4). However not all solutions on [0, oc) as stated above for
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(3) can be defined on (—o0,00); the initial function given on [—r,0] is continuous,
but not necessarily differentiable and if #(t) = ¥(t), —r < t < 0, &(t) need not
exist on this interval. In fact, it is also easy to see that not all solutions on [0, c0)
are linear combinations of ¢;e’* on that interval; clearly unless the initial function
1)(t) is of that form on [—r, 0], this cannot be true.

We now state some properties of the roots of (4); these will in fact also hold for
characteristic roots of all linear d.d.e.s with constant coefficients of any order, or
even systems of such linear d.d.e.s.

(i) There exists a constant ¢ such that if A is a root of (4), ReA < c.

(ii) The set of all roots of (4) is infinite, and has no limit point in the complex
plane.

(iii) For any ¢; and ¢; > ¢, the set of all roots A of (4) for which ¢; < ReA < ¢, is
finite.

These properties can be established by using the particular form of the charac-
teristic function f(\) = A? + bAe ™ + 1, and also some classical results for entire
functions like f(A); cf. (7] for example, where entire functions are called integral
functions.

We now study the roots of (4) in some detail. First, there are obviously no
nonnegative real roots of (4), and a simple analysis of (4) shows that there is at
least one real negative root since f(0) = 1 and f(A) is negative for A < oo and
sufficiently negative. We then see that there exist solutions of (3) on (—o0, 00) that
tend to 0 strictly monotonically as ¢ — co. Another reasonably simple analysis of
(4) shows that it can have no more than 2 real roots. So in a sense, most of the real
solutions on (—o0,00) oscillate as ¢ increases. It can also be shown that if br > 1,
(4) can have no more than one real root; we leave the proof of this to the reader.

However, (4) can have roots A with ReA > 0, and so (3) can have solutions which
are unbounded as t = co. We will show this by showing that for any 7 = 74,0 <
rg < /2, there exists a by = b(ro) > 0 such that (4) has a pure imaginary root
iy, Bo # 0, and that the real part of this root changes sign as b is varied from by.

.
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Let A = a +i3; then (4) becomes
F(a,8,b,r) = a® = b* + be™*"(ccos Br + Bsin fr) + 1 =0

(5)
G(a, B,b,7) = 20 + be~°"(B cos fr — asin Br) = 0

If we choose 8 = By = m/2r), @ = ap = 0, b = by = (72 — 4r3)/27my, Where
0 < 1y < 7/2, then Ag = i3 is a solution of (5) for the values of ay, Bo, o, by as above.
We will use the Implicit Function Theorem to show first that there exist functions
a(b,r), B(b,7), and a positive constant & such that for [b — bo| < &y, |r—mg| <
do, these functions are differentiable, and in fact, the partial derivative a(by, )
is nonzero. Thus a(b, o) changes sign at b = by, as asserted above. By direct

computation we get

Fo = —(n* = 4rd)/4ro, Fp = —(n* + 418) /270

at (o, Ho, bo, 7o), and using the Cauchy-Riemann equations, or by direct computa-
tion,

Go = (7% + 41) /2710, Gp = —(n* — 417) /4o

So the Implicit Function Theorem holds. We could in fact, have used a well-known
result from complex analysis to get this by showing that if f(A) = A* —be™™ +1,
then f(Ag) = 0 and Im (Ag) = 0 implies f'()o) # 0, which is not difficult to verify.
However, we want to show that oy, # 0 at (b, 70). So we compute the partials F,
and Gy, and use the fact that

ay =D_l —G,g Gu Fb
By & Fg " =Hy )G

where Dy = F,G5 — GoFg = F2 + G2 > 0 at (ao, o, bo, 70). Since Fy, = m/2rg, and
Gy = 0 at this point, it follows that o = (—GpFy+GaGy) Dy ' = (—F‘,Fb)Dgl at this
point, and so there exists d, > 0, such that for any b,0 < b— by < &y, 7 =19 < 7/2,
(3) will have a solution which becomes unbounded as t — co.

More generally, it follows by direct computation that for each » > 0 and b = b, =
(=1)"[(2n+1)*72—4r?)/2r(2n+1)m, n=0,1,2,..., (4) will have a pure imaginary
root A = i(2n + 1)7/2r. Since we want positive damping in (3); i.e., b > 0, we can
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for any integer n > 0 for which (—1)"((2n+ 1)r — 2r) > 0 get values of b, for which
(4) will have a pure imaginary root i(2n + 1)r/2r, and proceeding as in the case of
n = 0, r < m/2 above can show that again for b near b,, (4) will have a root with
positive real part; we omit the details.

In dealing with a general system of delay-differential equations and the associ-
ated i.v.p.s., it is convenient to introduce the set of n-dimensional vector functions
continuous on [—r,0], say Cp, and associate with any n-dimensional vector valued
function z(t) continuous on [—r,b],b > 0, a function on [0,b) to C, denoted by z,
and defined by z(t+6) : —r < 6 < 0. We can then express the right side of such an
equation as a vector valued function on C;. For example, let n = 2, and consider
(f(¢, %), 9(¢, %)) where f and g are continuous for (¢, ) in C, where the continuity
is in terms of the norm

118, )| = sup{(#*(6) + ¥*(8))% : —r < 6 < 0}.

Consider the system
i(t) = flze,5)
(3.2)
u(t) = gz ue)
where for any function (z(t),y(t)) on the real interval [—7,b), b > 0, we use the
notation (z¢, ) = z(t + 0,y(t +0)),—r < 0 < 0; i.e., (z4,y) is in C,. Then the
i.v.p. for (3.2) is to find (z(t),y(t)) continuous on [—r,b) and which satisfies (3.2)
for 0 < t < b, and (z(0),y(0)) = (#(0),¥(8)) for —r < 6 < 0 for any given (¢,v))
in C,. Note that for any solution (z(t),y(t)) of (3.2), we can associate the function
(@4, y¢) : t = C,, but if we regard this as a solution to (3.2), we would have to specify
the concept of derivative for such Cy-valued functions. This can be done, but leads
to complications which we prefer not to get into.
To illustrate how (3) can be formulated in this general manner, define f(¢,v) =
%(0), g(o, ¥) = —¢(0) — 9p(—r) for (¢,%) in C,. Then (3.2) becomes
(0 = y(0)
90 = () ~ byt~ ),

a system clearly equivalent to (3). Note that in the earlier formulation of the i.v.p.




for (3) we need only ¢(0) = z(0), but t(t) = &(¢) on all of [—r,0].

We now give an indication of why all solutions of a general i.v.p. for (3) can
not be expressed in terms of exponential functions e, where A; are roots of (4).
consider ¢(t) = 0,¥(t) = r +t for —r < ¢ < 0. We use the method of steps. For
0 <t <7, (3) becomes #(t) + bt + x(t) = 0, and since z(0) = $(0) = 0, we get
o(t) = —bt on this interval. For r < ¢ < 2r, (3) becomes &(t) — b* + z(t) = 0, with
@(r) = —br and &(r) = —b. This has a solution of the form z(¢) = b*+A cos t+Bsint
where A and B are uniquely determined. Thus the solution on [0,2r] can not be
expressed in terms of e\ where ) is a root of (4).
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However, in more general theory for i.v.p.s for linear autonomous d.d.e:s (cf.
[3] for example) it follows that if A; : j = 1,2,...,m are simple roots of (4), and'if
Aj i j =m+1,m+2,... are the remaining roots of (4) such that Re \; < 0,7 > m+1,
then the solution of any i.v.p. for (3) can be expressed in the form

m
z(t) = Z ;e + v (t)
=1

where ¢; are suitable complex constants, and v, (t) — 0 as ¢ = oo.

Before turning to a special type of nonhomogeneous linear d.d.e, we give an
answer to a question: are all the roots of (4) simple? The answer is in the affirmative
if be < r < 2/3v/5. This can be done by a direct analysis of the pair of equations
f(A) =0, f'(A) =0 where f()) = )\ +bXe~™ + 1, some of the details of which are
given in the appendix of this paper.

We will now discuss a very special case of a nonhomogeneous linear d.d.e.; specif-

ically an equation of the form

O = ) = ) ©)

where as before b and 7 and positive constants, and
x )
; ; L
q(t) = Z a; cos it + b; sin pu;t where Z(a; +b7)7 < o0. (7)
t=1 i=p
Note that g(t) is not necessarily periodic; for example it is not difficult to show that
cost + cos 7wt is not periodic. In fact, it belongs to a larger class of functions, called

—
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almost periodic (a.p. for short) functions. Although there are other definitions of
a.p. functions, we find the following perhaps the simplest: g(t) is a.p. if for any
€ > 0 there exist sequences of real numbers {a;}, {b;} and {u;},7=0,1,2,..., and
a N(¢) > 0 such that n > N(e) implies

n
Zaj cos p;t + by sin pjt — g(t)| < e,
=0

uniformly for ¢ in (—o0, 00).

Clearly, if y; = jw,j =0,1,2,..., for some constant w > 0, any g(t) as given in
(7) is periodic with period 27 /w.

We can then look for solutions of (6) of the form

z(t) =

M

i
(—

@j cos pit +E_,~ sin p;t, (6.1)
J

and as for the homogeneous problem, we look for complex solutions z(t)
E(t) + bz(t — 1) + 2(t) = G(t) (6.2)
where

o
G(t) = chei“f', ¢j = a; — ib;.
=0

Clearly, the real part of a solution z(t) of (6.2) is a solution z(t) of (6). So substi-
tuting

~
A= Zije“‘" (8)
3=0
into (6.2) we get easily that
& = (=42 —ibpe™™" +1)'¢;, =0,1,2,.... (9)

provided iy, is not a root of (4).

Under the condition that (4) has no pure imaginary roots, the ¢;,j = 0,1,...
are well defined, but does the series (8) converge for all real t? Since there are a
finite number of roots of (4) in any strip of the complex A-plane defined by |Re)| <
p, p > 0 and fixed, it follows easily that if (4) has no pure imaginary roots, there
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exists a p; > 0 such that

[FGmy)| = | = 1 + ipzbe=" + 1| > py w5175 = 0,1, -, (9.1)

if |p1;| — oo as j — oo, which shows, using (9), that (8) converges absolutely.
If |u;l € B < 00,j = 0,1,..., we may assume without loss of generality that
;i = Bo as j — oo. But |f(ify)| > 0, and so

[fGu)l = 11 (iuz) = £(iBo) + F(iBo))

\

2 |f(@Bo)l = |f (is) = f(iBo))[L = €0/2
for all j sufficiently large; so from (9) we get

(5] < le;1(2/e0)s
and since

lejl = (a2 +b2)%, j=0,1,2,...,

%

we see that ) ¢;e"* converges absolutely for all £. Does this last series converge to
=0

a solution of (6)? If we can show that

(10)

7=0

converges absolutely, then its sum is just Z(t), where z(t) is given by (8). If
[l 5 = 1,2,..., is bounded, it follows easily that (10) converges absolutely; a

similar argument will show that in this case Z picies =) will also converge ab-

solutely to 2(t — r), and so in this case z(t) solves (6.2). If |u;l,5 = 0,1,2,.
unbounded, it has already been noted that (9.1) holds which with (9) shows that
(10) converges absolutely, and a similar argument show that (t) exists if z(t) is
given by (8). So we have proved that if (4) has no pure imaginary roots, we can find
a series solution for (6), and in fact this series solution will be a.p.

We can also try to find solutions of a certain type for so called almost linear
equations with delays, which in a sense, are perturbations of linear homogeneous
delay equations, using the method of undetermined coefficients. Let us consider the
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example:
#(t) + bi(t — r) + z(t) = eg(t, z(t), z(t — 1)) (11)

where € is a small positive constant, g is sufficiently smooth and g(t + T, z,y) =
g(t,z,y) for all t,z,y, where T > 0 is constant. Suppose we look for a solution z(t)
of (8) which also satisfies z(t + T') = z(t) for all £. We can proceed as follows: take
any function T-periodic function y(t), possibly suitably restricted, and notice that
since g(t,y(t),y(t — r)) is also T-periodic, it will have a series f: crettet where
w = 2r/T. Then one can use the method of undetermined cggéiocoient to find a
series solution of (8) with g(t,(t), z(t — r)) replaced by this series. We then try to
impose additional conditions that this mapping of y(¢) to this series solution z(t,y)
is unique and that it has a fixed point. The fixed point will then clearly solve (11).

The case where g is a.p. in ¢ independently of z,y can be addressed the same
way, but is much more complicated. To see this let us consider the simple case where

2
g(t,z,y) = p(t)z, where p(t) = 2(cost + cosmt) = Y c;e'M* where ¢ = 0,¢; =
=2

2
Lji#0,and Ay =A =1, Ay =Xy =m Ify(t) = Y Gje™*, then the series for
=Z2

p(t)y(t) will involve terms such as et g¥int e£i2 eill+m)t eHill-mt edi2nt Thys the
method of undetermined coefficients gives us a series involving these terms. But then
the mapping y(t) — z(t) is not “into”. So the “input” y(t) into g, and subsequently
the solution z(t), must involve all \; € {m+nm : m,n = 0,£1,+2,...}, a countable
set, to get an “into” map. This creates complications that can to some extent be
overcome; cf. [1] for a general method of formal series solutions of equations such
as (6) and (11).

On the other hand, by another much less complicated method, one need only
impose conditions on the roots of the characteristic equation of the linear part of (8)
and use the fact that g(¢,y(t),y(t — r)) is a.p. if y(t) is to obtain the existence of a
unique solution z(¢; y) of (11) with z(¢) on the right side replaced by y(t), and show
that for || sufficiently small, this map defines a contraction on a suitable metric
space of a.p. functions; from the theory of a.p. function, the fact that uniform on
(—00,00) limits of a.p. functions are again a.p. is very important.

-



3 Nonlinear Delay-Differential Equations

294 George Seifert

We will confine ourselves to a specific and fairly simple nonlinear d.d.e., an equation
that can be used to model the variation in size of population of a single biological
space growing in a constant environment with food supplied at a constant rate
usually referred to as a logistic equation. Such an equation without delay is given
by

N(t)/N(t) = a — bN(t), N(0)=No >0 (12)
here a and b are positive constants, Ny is the initial size of the population, whose size
at t > 0 is given by N(¢). Eq. (12) says that the rate of change of the population in
time is exponential if the size is small (near zero), but as the population increases,
the food supply, being supplied at a constant rate, decreases for each ba:ticular
individual, and reduces the exponential rate of increase by an amount proportional
to the size of the population.

The i.v.p. for (12) can be explicitly solved. However, even without an explicit
solution we can obtain some important properties of such solutions. First, they are
all positive for all ¢ > 0; then each solution is either strictly increasing, strictly
decreasing, or constant valued. If it is observed, that the population size exhibits
substantial oscillatory properties, it follows that (12) cannot therefore be a correct
model for such population process. Suppose it can be assumed that the rate at
which food is consumed depends not only on the size of the population at ¢, ie.,
N(t), but also on its size at a previous time, say at ¢t — r,7 > 0. We then could
model this by a d.d.e. with an i.v.p. such as

N(t)/N(t) = a — bN(t) — N(t —r), N(t) 20, —r <t <0, N(0)>0. (13)

By a suitable change of time scale and a rescaling of population variable N(t),

we can assume that in (13) 7 = 1; i.e., define N(t) = rN(rt) and by a routine
calculation we get

N(t)/N(t) = a—bN(t) — N(t — 1),a=ra (14)

and it can be shown that under certain conditions, all solutions of (14) sufficiently
near the equilibrium solution N(t) = a/(b+ 1) for —r < ¢ < 0 will oscillate about

Y
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this equilibrium point; i.e. there will exist a sequence ¢; — 00 as j — 00, b1 > t;,
such that
(~1(N(t;) —a/(b+1)) > 0, =0,1,2,.....

This is proved in [6], and the method, loosely speaking, is to look at the linearization
of (14) about @/(b+ 1), impose conditions that this linear part has characteristic
roots with nonzero imaginary and negative real parts, and to show that under further
conditions, the oscillatory behavior of the corresponding solutions of the linearization
is transferred to certain solutions of the nonlinear equation; for details, cf. [6].

4 Some Final Remarks

For a discussion of functional differential equations in general we refer to books by
Hale (3], Hale and Verdun Lunel [4] and Kolmanovskii and Myshkis [5]. They use
mathematical analysis at a rather sophisticated level; i.e., at least at the graduate
level. Loosely speaking, functional differential equations in general include not only
those of retarded type, to which we have confined ourselves in the simple examples
above, but of advanced type, mixed type, and neutral type; the latter are, roughly
speaking, equations where there are time delays in the highest order derivative as
well as possibly in the lower derivative terms. It seems to the author that most
applications can be modeled in terms of retarded type equations. However, there
are examples of applications leading to models of these other types. Again, we refer
to well known books on the general subject, such as [3] and [4].

Finally, it can be suggested that ordinary differential equations are limits of
d.d.e.s as the delay approaches zero. In fact one can devise a proof for the existence
of solutions of initial value problems for ordinary differential equations by using this
idea; cf. the book by P. Hartman: “Ordinary Differential equations” J. Wiley &
Sons, Inc. N.Y., London, Sydney, (1964). Also, an excellent monograph, using fairly
elementary analysis, on d.d.e:s is by R.D. Driver, “Ordinary and Delay Equations”,
Appl. Math. Sciences 20, Springer-Verlag, N.Y., Heidelberg, Berlin (1977).

/.
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5 Appendix

We show that if eb < r < 2/3v/5, then f()) = 0 implies f’()) # 0. Suppose not, i.e.,
f'(A) = 2A+b(1 = Mr)e~™ = 0. Solving this last equation for be=™ and substituting
it into f(A) = 0 yields eventually P(\) = A+ A2 +7X— 1 = 0 provided A # 0. But
f(0) = 1, so we must have A # 0. This last equation has 3 roots, A1, Az, A3 where
one, say A, must be real. Since P(0) = —1 and P(A) > 0 for A sufficiently large, we
must have one, say A; > 0. But f(A;) > 0 so A; cannot be a root of f(A) = 0 and
f'(A) = 0. We next show that under the above condition, Ay and A3 are both real.
This follows easily; P (32) = 3z — 2 > 0, since 7 < 2/3+/5, and since P(0) = -1,
we must have, say, A, real, and clearly Ay > —2 > —L. But since P (-1) <0, we
also have A3 > —1. So f();) = A2 +bA\je™ T +1 > e+ 1 > 0,5 = 2,3, since

Ae is increasing for A < 0, and eb < r. This shows that A, and )3 cannot solve
f(X) = 0, which completes our proof.
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