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This paper is an at tempt to acquaint the non-specialist with a topic in ordinary dif­

ferent ial equations that has been becoming quite prominent in the last half-century. 

By using simple examples it hopes to show that, first, realistic models for many phys­

ical applications can be represented in terms of such functional different ial equations, 

especially of delay type. Then it tries to show that standard rnathematical analysis 

of not much more than undergraduate level can be used to get much important 

information about olutions of such equations. 

As will be evident in sections 2 and 31 one of the irnportant propert ies of solu­

tions of such equations is that they often exhibit oscillatory properties as fu nctions 

of the independent variable t, usually associated with t ime in physical applications 

mod led by these equations. Tn the opinion of the author, a considerable number 
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of natural phenornena e.xhibit oscillatory behavior in terms of the time, and one of 

the interesting proper t imes of delay differential equations as they usually bave solu­

tions with just such oscillatory properties, while corresponding differential equations 

without delays do not. 

Since this is an ex-pository paper and not a survey, the author has included 

many straight forward computational details at a fairly unsophisticated level, but 

has omitted many areas in the field of functional differentia1 equations in which 

importanl advances have been made. 

2 Linear and Almost Linear Cases 

One of the simplest differential equations is one that models the so called simple 

harmonic oscillator. With t the time variable and x(t) the state variable representing 

displacement from equilibrium 1 it is just 

x(t) + k2x(t) =O; (1) 

here k is a positive constant, and the dot indicates derivative witb respect to t, 

so x(t) = á'x/ dt2 . This of course simply states one of Newton's laws of motion: 

force equals mass times acceleration. For example, it models the small oscillations 

about equilibrium of a simple pendulum and is a simple special case of a linear 

homogeneous ordinary differential equation with constant coefficients. A well known 

elementary method far finding solutions for sucl1 equations is to look for solutions 

of the form x(t) = ce"t, where e and A can be complex constants; we can allow 

(1) to have complex valued solutions1 and note that their real and imaginary parts 

are respectively real valued solutions. Substitution of x(t) = ce" into (1) easily 

yields ,\2 + k2 = O for any case where e # O. We recall tbat for a general ntb 

order linear homogeneous ordinary differential equation, this same metbod leads to 

an equation oí the form P(>.) = O where P is a polynomial of degree n. Thus ií 

A1, ..\2 , .. A.tare distinct roots of this equation, a solution, in general complex valued, 
k 

oí (1) can be found of the form x(t) = L c;e'J'. T he equation P(>.) =O is usually 
j = l 

rcferred to as the characteristic equation for the given o.d.e., and Pis the associated 
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characteristic polynomia l. We can easily show that if >.; is a root of P of rnultiplicity 

l; ~ 1, t11 - 1 eÁ1 t is also a solution. We also recall the fact that ali solutions of such 

an o.d.e. can be expressed in terms of such solutions. 

As is well known from sufficiently long observation, the oscillations of a simple 

pendulum decrease in arnplitude with t ime. So overa long time interval (1) is not 

an accurate model for such a pendulum. lt is also true that far sufficiently la rge 

osci llations from equilibrium, t he period of the oscillation is ampli tude depeudent, 

unlike the solu tions of (1); this is because a better model for larger oscillations is 

given by the non linear equa lion X(t) + k2 sin x = O, which also has periodic solu t ions, 

but the period of these are amplitude dependent. 

If we are concerned only with small oscillations over a long period of time, we 

usually assume a fric tional drag on t he pendulum proportional to its speed and are 

led to a more realistic equation. 

i(t) + b:i;(t) + k'x(t) =O (2) 

where b is a positive constant. Since our characteristic e<¡uation for (2) is Xl + >..b + 
k2 = O, it follows easily that any solut ion of the form ce1"r , where A is a root of 

this characteristic equatio11 1 approaches O as t -7 Are all solutions of (2) linear 

combinations of such solutions? If b = 2k the answer is no, since in this case te"t is 

also a solution¡ in this case the characteristic equation has a non-simple (i.e. double) 

root. T he author suggests that such a possibility for (2) , or for any linear constant 

coefficient equatiou, is frorn t he point of view of applications notas irnportant; since 

the constanls b and k in (2) a re usually results of measurements, the chances of 

having b = 2k is rather remate. 

Suppose we wish to model another system where there is again a restoring force 

proportional to the displacement from equilibrium1 but where the force due to the 

speed is nol proportional to t he speed at t he t ime of observation 1 but at a time just 

a constant amount befare th is time. V\le are led to an equatio11 of the form 

x(t) + b:i;(t - r) + x(t) =o (3) 

where by a rescahng of thc I, variable we can always assu rne the coefficient of x(t) 

to be L To find olutio11s of (3) we can again look for complex solutions of the forrn 
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x(t) = ceA< wbere now >. must be a root of the cbaracteristic equation 

>.'+>.be_,,+ 1 =o. (4) 

It is clearly not a polynomial equation in >., a:nd in fa.et will have an infinite numbe1 
of distinct roots. 1f all roots of ( 4) have negative real parts, it can be shown thal 

ali solutions of (3) satisfy x(t) -->O as t--> oo, although the proof of this is far from 

simple. On the other hand, if there exists a root >. of (4) with Re>.> O, then there 

exists a solution x(t) whicb becomes unbounded as t --> oo, as is easy to see. (F'o1 

>.=a + ib, we use the not1>ti0n Re>.= a,Im>. = b). 

Befare undertaking an analysis of ali possible roots of ( 4) Jet us say something 

about the concept of general s0lution for equations like (3), so called delay differen­

tial equations (d.d.e.s for short). As in the 0rdinary differential equation case, we 

formulate an initial va1ue problem (i.v.p. for short) for a more general second arder 

d.d.e. of tbe form 

i(t) = J(x(t) , :i;(t - r)) (3.J ) 

where f (x, y) is continuously differentiable in the (x , y) plane. 

If we are interested in solutions of (3.1) for t ~ O, we must clearly know :i;(t) for 

-r :5 t :5 O. Let 1/l(t) be a function continuous on [-r, O], and x0 be any real number. 

We can t hen assert the existence of a unique solution :i;(t) = x(t; x0 , 1/1) of (3.1) on 

sorne interval [O, di) , d1 :5 r , such that x(O) = x0 and :i;(t) = 1/l(t) for - r :5 t :5 O, by 

defining it to be the unique solution of the o.d.e. 

:i(t) = f (x(t), 1/l(t)) 

such tha t x(O) = x0 and x(O) =¡/;(O) on the interval [O, d1). If d1 = r we can repeat 

this procedure on [r1 d1) for sorne di ~ 2r, and continue in tbis way to sorne maximal 
interval [O, dm) ; here d,,, = oo is possible. Thus is called using the method of steps. 

T hus for d.d.e.s our initial conditions for solutions are necessarily in terrns of given 

functions on the delay interval [-r,0). Laiter we will formulate the i.v.p. fer d.d.e.s 

in a more general manner. 

Returning to equation (3) we can find solutions on (-001 00) oí the form ce>.t, e 

a constant , >.a rooL of (4). 1-lowever not ali solutions 0 11 [O, oo) as stated above for 
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(3) can be defined on (-oo, oo); the initial fuuction given on [-r, O] is continuous, 

but not necessarily differentiable and if :i;(t) = ,P(t) , -r $ t $ O, x(t) need not 

exist on tbis interval. ln fact, it is also easy to see that uot all solutions on [0 1 

are linear combinations of c;é;t on that interval; clearly unless the initial function 

,P(t) is of that form on [-r, O], this cannot be true. 

We now state sorne properties of the roots of (4) ; these will in fact also hold for 

characteristic roots of ali linear d .d.e.s with constant coefficients of any arder, or 

eveu systems of such linear d.d.e.s. 

(i) There exists a constant e such that if ). is a root of (4) , Re>. $c. 

(ii) The set of ali roots of ( 4) is infinite, and has no limit point in the cornplex 

plan e. 

(iii) F'or any c, and e,> c1, the set of ali roots). of (4) for which c1 $ Re>. $ c2 is 

finite. 

T hese properties can be established by using the particular form of the charac­

teristic fu nction / (.>.) = >.' + b>.e-,; + ! , a nd also sorne classical results for enLire 

functions like / (>.); cf. [7] for example, where entire functions are called integral 

functions. 

We now study the roots of (4) in sorne detall. First, there are obviously no 

nonnegative real roots of (4), and a simple analysis of (4) shows that there is at 

least one real oegative root since / (O) = 1 and / (.>.) is negative for ). < oo and 

sufficiently negative. We then see that there exist solutions of (3) on (-oo, oo) that 

tend to O strictly monotonically as t --+ oo. Another reasonably simple analysis of 

(4) shows that it can have no more than 2 real roots. So in a sense, most of the real 

solutions on (- , oo) oscillate as t increases. It can also be shown that ií Or > 1, 

(ti) can have no more Lhan one real root; we leave the proor of Lhis Lo the reader. 

However, (4) can have roots). with Re>.> O, and so (3) can have solutions which 

are unbounded as t -+ oo. We will show this by showing Lhal for any r = r0 , O < 
r0 < 7r/2, there exists abo = b(ro) > O such that (4) has apure imaginary root 

i{J0 , /Jo 1 O. and that the real part of t his root changes sign as b is varied from b0 . 
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Let >. = "+ i/3; then (4} becomes 

F(a,/3, b, r) = a 2 - b2 + be-º'(acos fJr + /J sin /Jr) + 1 =O 

(5) 
G(a,/3, b, r} = 2a/3 + be- º'(fjcosfjr - a sin /Jr) =O 

lf we choose /3 =/Jo = 7r/2ro, °' = <>o = O, b = b0 = (7r 2 - 4r~}/27rro , where 

O < ro < 1f /2, then A, = i/30 is a solution of (5) far tbe values of a 0, /30 , r0, boas above. 

We will use the Lmplicit Function Theorem to show firs t that tbere exist functions 

a(b, r) , fJ(b, r) , and a positive constant ó0 such that far lb - bo l < ó0, Ir - ro l < 
óo, these functions are differentiable, ancl in fact , the partial derivative <>o(bo , ro) 

is nouzero. Thus a(b, ro) changes sign at b = b0, as asserted above. By direct 

coruputation we get 

F0 = -(1f2 - 4rg}/4ro, Fp = -(1f 2 + 4rg) /27rro 

at (ero, Po, bo 1 ro), and using the Cauchy-füernann equations 1 or by direct computa~ 

t ion, 

So tbe Im plicit Function Theorem holds. We could in fact , have used a well-known 

result froru complex analysis to get this by showing that if / (>.) = J.2 - be- •' + !, 

then / (>,0) =O and lm (J.0} =O implies f'(J.0} ¡< O, wh ich is not difficul t to verify. 

However, we want to show that "' ¡< O at (bu, ro). So we compute the partials Fo 

and G0 and use tbe fact that 

(°'') = DiJ' ( -Gp ªº) (F') 
/Jo Fp -F0 G, 

where Do= F0 Gp -G0 Fp = F;; + G~ > O at (<>0,/30, bo,ro}. Since F, = 7r/2ro, and 

G, =O at this point , it fo llows that a,= (-GpFo+G0 G,)D01 = (- F0 Fo) D01 at this 

point1 and o there ex.ists 60 > O, such that for any b1 O< b - bo < 60 , r - r0 < 7r/2, 
(3) will bave a solu tion which becomes unbounded as l --7 oo. 

More generally, it fo llows by direct computation tbat for each r > O and b = b, = 
(- 1}"{(2n + 1)2r.2 -4r2J/2r(2n+ l }'lf, n =O,! , 2, ... , (4) will have apure irnaginary 

ro t ,\ = i(2n+ l )íi/2r. Since we want positive damping in (3) ¡ i.e ., b > O, wecan 
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for any integer n ~ O for which (-1)"((2n+ l)7r-2r) >O get values of bn for which 

(4) will have apure irnaginary root i(2n + l )7r/ 2r, and proceeding as in the case of 

n = O, r < 7r/2 above can show that again for b near bn, (4) will have a root with 

positive real part; we omit the details. 

ln dealing with a general system of delay-differenlial equations and the associ­

aled i.v.p.s., it is convenient to introduce the sel oí n-dimensional vector functions 

continuous on [-r, OJ, say Gr, and associate with a.ny n-dimensional vector valued 
function x(t) continuous on [-r, bj, b > O, a function on [O, b) to C, denoted by x, 

and clefined by x(t + O) : - r $ O $ O. We can then express the right side of such an 

equation as a vector valued functiou on Gr. Far example, Jet n = 2, and consider 

(J(tf¡ , 1/1), g(tf¡, tf¡)) where f and g are continuous for (t/i, tf¡) in C, where the continuity 

is in terms of the norm 

11(<1>,1/J)ll = sup{ (t/!2 (0) + 1/J'(O))Í: -r::; e ::; O}. 

Consider the system 

x(t) f (x,,y,) 
(3.2) 

y(t) g(x.,y,) 

where for any function (x(t), y(t)) on the real interval [-r, b) , b > O, we use the 

notation (x., y,) = x(t. + O, y(t. + O)) , - r $ O $ O; i.e., (x,, y,) is in C,. Then the 

i.v.p. for (3.2) is to find (x(t), y(t)) continuous on [-r, b) a ncl which satisfies (3.2) 

for O < t < b, and (x(O) , y(O)) = (tf¡(O), 1f;(O)) for -r $ O $ O for any given (t/i, tf¡) 
in C,. ote that for any solution (x(t), y(t)) of (3.2), we can associate the funcLion 

(x,, y,) : t-+ e,, but if we regard this as a solution to (3.2), we would have to specify 

the concept of derivative for such Cr-valued functions. This can be done, but leads 
Lo complications which wc prefer nol lo gel into. 

To illustrate how (3) can be formulatecl in this general manner, define f (tf¡, 1/J) = 

1/1(0),g(tf¡, 1,1) = -Q'>(O)- tf¡(-r) for (t/i,t/i) in C,. Then (3.2) becomes 

:i;(t) = y(t) 
¡j(t) = -x(t) - by(t - r), 

a system clearly ec¡uivalent to (3). ote that in the earlier forrnulation of the i. v.p. 
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for (3) we need only ql(O) = x (O), but ,P(t) = :i;(t) on ali oí [-r , O]. 

We now give an indication oí why ali sol'llt ions oí a general i. v.p. for (3) can 

not be expressed in terms of exponen tia! functi0ns e >.i t , where >.; are roots of (4). 

consider ef>(t) = O, ¡/J(t ) = r + t for -r $ t $ O. We use the metbod oí steps. l"or 

O $ t $ r, (3) becomes x(t) + bt + x(t) = O, and since x(O) = ef>(O) = O, we gel 

x(t ) = - bt on tbis interval. For r $ t $ 2r , (3) becomes x(t) - b2 + x(t) =O, witb 

:c(r ) = - br and :i;(r) = -b. This has a solutioB of the form x(t) = b2+A cost+B sin t 

where A and B are uniquely determiBed. Th"s the solution on [O, 2r ] can not be 

expressed in terms oí e" wbere A is a root of (4). 

However, in more general theory for i.v.p.s for linear autonomous d.d.e.s (cf. 

[3] for example) it follows that if Aj : j = 1, 2, ... , m are simple roots oí (4), and il 

Aj : j = m+ 1, m + 2, ... are the remaining roots oí ( 4) su ch tbat Re Aj < O, j 2'. m+ 1, 

then the solution oí any i.v.p. for (3) Cllln be expressed in tbe form 
m 

x(t) = L CjeA;< + vm(t) 
j = l 

where e; are suitable complex constants1 and vm(t) --t O as t --too. 

Befare turaiug to a special type of nonhomogeneous linear d.d.e, we give w1 

ainswer to a question: are al] the roots of (4) simple? The answer is in the affirmaLive 
if be < r < 2/ 3./5. T his can be olone by a direct analysis of the pair oí equations 

f (A) =O, f' (A) =O where f( A) = A2 + bAe_, , + ! ,sorne oí tbe details oí which are 

given iu tite appendix of this paper. 

VVe wiJI now discus.s a very special case of a nonhornogeneous linear d.d.e.; specif­

ically an equation of the form 

x(t) + b:i;(t - r) + x(t ) = g(t ) (G) 

where as befare b and r and positive co11stants1 and 
= 

g(t) = L aj cos µj t + bj sin /t jl where L (aJ + bJ)l < oo. (7) 
j = p 

Note that g(t) is not aecessarily periodic; for example it is not difficult to show that 

cos t + cos 1ft is uol periodic. In fact1 it belongs to a larger class of functions, called 
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almost periodic (a.p. for short) íunctions. Although there are other definitions of 

a.p. functions, we fincl the following perbaps the simplest: g(t) is a.p. if for any 

e> O there ex:ist sequences of real numbers {a;}, {b,} and (µ 1 ),j =O, 1, 2, . .. , and 

a N(e) > O such that n > N(c) implies 

1 t a;cosµ;t + b;sin µ; t - g(t) I <e, 
1=0 

nniformly for t in (-oo, oo). 

Clearly, if l'i = jw,j = 01 11 2, ... , for sorne constant w >O, any g(t) as given in 
(7) is periodic with period 2tr /w. 

We can then look for solutions of (6) of the form 
00 

x(t.) = L ª;cos ¡t;t +b;sinµ,t, 
j = O 

and as for t he homogeneous problem, we look for comple.x solutions z(t) 

where 

z(t) + bi (t - r) + z(t) = G(t) 

00 

G(t) = L c;e¡i,;t , e;= a1 - ib,. 
j = O 

(6.1 ) 

(6.2) 

Clearly, the real part of a solution z(t) of (6.2) is a solution x(t) of (6). So substi­

tuting 
00 

z(t) = I:c;e;,,,, (8) 
i =O 

into (6.2) wc get easily that 

(9) 

provided 1¡1, is not a root of ( 4). 

Undcr the condition that ( 4) has 110 µure imaginary roots, the C;, j = 0 1 1,. 

ore well clefined, but do s the series (8) converge for ali real t? Sincc thcre are a 

finite numb r of roots of (•l) in any strip of the complex .X-pla ne definecl by !Re.XI < 
p, p > O and fixed, it follows easily that if (4) has no pure irnaginary roots1 therc 
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exists a p1 > O such that 

lf(iµ;) I = 1- µj + i µ;&e-'";' + i¡ ;:: Pi lµ; l2;i =o, 1, . (9.1) 

, which shows, using (9) , that (8) converges absolutely. ir lµ; I -+ oo as i -+ 

rr lu; I ~ B < , j = 01 1,. . , we may assume without loss of generality that 

But lf(i/lo)I > O, and so 

lf (iµ,) I IJ(i µ;) - f (if3o) + f (if3o))I 

;:: l!(if3o) l - l/( iµ;) - f (if3o)) jl ;:: éo/ 2 

ror a li j sufficientJy large; so from (9) we get 

and since 

le; 1 = (aj + bj) l, j = O, 1, 2, . 

we see that ¿: C;e•µ,r converges absolutely far ali t. Does tbis last series converge lo 
i=O 

a solut ion of (6)? U we can show that 
00 

Lµ'JCie iµj t 
j = O 

(10) 

converges absolutely, then its su m is just z(t), where z(t) is given by (8). U 

l!<; l,j = 1, 2, ... , is bounded, it fo llows easily that (10) converges absolu tely; a 

similar argument will show that in this case f; µ/C;é1J(r- r) wi ll also converge ab-
i=O 

solutely lo i(t- r). and so in Lhis case z(t) salves (6.2). If lµ1 j, j =O, 1,2, .. is 

unbounded, it has already been noted that (9.1) holds wh ich with (9) shows that 

(10) converges absolutely, and a similar argument show that .i:( t) exists if z(t) is 

giv n by ( ). So we have proved that ir ( 4) has no pu re imaginary roots, we can find 

a series solutiou for (6), aud in fact this series solu tion will be a.p. 

\• e can also try to find solu tions of a certain type for so ca11ed almost linear 

ec:¡uation wilh delays, which in a sense, are perturbations of linear homogeneous 

delay equations1 using the method of undetermined coefficients. Let us consider thc 
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x(t) + &x(t - r) + x(t) = Eg(t,x(t) , x(t - r)) ( LJ ) 

where € is a small positive constant, g is sufficiently smooth and g(l + T, x, y) = 
g(t,x,y) for ali t,x,y, where T > O is constant. Suppose we look for a solution x(t) 

oí (8) whi h al o satisfies x(t + T) = x(t) for ali t. \Ve can proceed as follows: take 

any íunction T-periodic íunction y(t) , possibly suitably restricted :X,and notice that 

since g(t, y(t), y(t - r)) is also T-periodic, it will have a series I; c•e;•w• where 
k= -oo 

w = 27r/T. Then one can use the method of undetermined coefficient to find a 

series solution oí (8) with r¡ (t, x(t), x(l - r)) replaced by this series. We then try to 

impose additional conditions that this mapping of y(t) to this series solut ion x(t, y) 

is unique and that it has a fixed point. The fixed poinl will then clearly sol ve (11 ). 

The case where g is a.p. in t independently of x, y can be addressed the same 

way, but i much more cornplicated. To see this !et us consider the simple case where 
2 

g(l.,x, y) = p(t)x, where p(t) = 2(cost + cos 7rt) = I; c;e;;, , where eo = O,c; = 
J=-2 

2 
l ,j-! 0, ancl A¡=,\_, = 1, .\, = ,\_, = 1T. lf y(t) = L c;e;A¡t, then the series for 

1=-1. 

p(t )y(t) will involve terms such as e±it, e±i'lft , e±•2t , e±iCl+•>t, e±i(i - .,..}t, e±i'l1ft. Thus the 

n1ethod oí undetermined coefficients gives usa series involving these terms. But then 

t he mapping y(t)-+ x(t) is not "into". So the "input" y(t) into g, and subsequently 

the solution :i:(t), must involve ali \ E (m+n7r: m, n =O, ± 1, ± 2, ... }, a countable 

set, Lo gel an "into11 map. This creates complications that can to some extent be 

over ome; cf. [1 J for a general method of formal series solutions of equations such 

as (6) and (11). 

011 tbe other hand, by another much less complicated method1 one need only 

impose conditions on the roots of the characteristic equation of the linear part of (8) 

and use th fact that g(t, y(t), y(l - r)) is a.p. if y(t) is to obtain the ex.istence of a 

nnique olution x(t; y) of (11) with x(t) 0 11 the right side replaced by y(I.), and show 

Lhat íor le ufficiently sma\1 1 this map defines a contraction on a suitable metric 

:;pace oí a.p. fun tions; from the theory of a.p. function, Lhe fact that uniform on 

( - ) lirmts of a.p. functions are again a.p. is "ery irnportant. 
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3 Nonlinear Delay-Differential Equations 

We will couíine ourselves to a specific and fairly simple non linear d.d.e., an equation 

that can be used to model tbe variation in size of population of a single biological 

space growing in a constant environrnent with food supplied at a constant rale 

usually referred to as a logistic equation. Such an equation without delay is gh•en 

by 

·1(t)/N(t) =a - bN(t), N(O) =No> O (12) 

here ci and b are posi tive constants, N0 is the initial size of tbe population1 whose size 

al t > O is giveu by (t). Eq. (12) says that the rate of change of the population in 

time is expouential if tbe size is small (near zero) 1 but as the population increases, 

the food supply, being supplied at a constant ra te, decreases for eacb particular 

individual1 a11d reduces the exponential rate of increase by an amount proportional 

to the size of the population. 

T ite i.v.p. for (12) can be explicitly solved . However, even without an explicit 

solution we can obtain some important properties of such solutions. First, they are 

ali positive for ali t > O; then each solution is either strictly increasing, strictly 

decreasing, or consLant valued. If i t is observed, that the population size exhibits 

substantial osciJJatory properties, it follows that (12) cannot tberefore be a correct 

rnodel for sucb population process. Suppose it can be assumed that the rate at 

which food is consurued depends not only on the size of the population at l , i.e., 

N(t) , but also on its size at a previous time, say at t - r, r > O. We then could 

model tbis by a d.d.e. with an i.v.p. such as 

lV(t) / (t} =a - b (t) - N(t - r) , N(t) ? O, -r $ t < O, N (O) > O. (13) 

[)y a suilable cbange of time scale and a rescaling of population variable N(t), 

we can assume that in (1 3) r = l; i.e., define Ñ(t) = rN(rt ) and by a routine 

calculalion we gel 

(t)/Ñ(t) =a - bÑ(t) - Ñ(t - 1) , a= ra (14) 

and it can be shown that under certain conditions, ali solut ion of (14) sufficiently 

near t ite equilibrium solut ion Ñ (t) = a/(b + 1) for - r $ t $ O will osci llate about 
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this equi librium point¡ i.e. there wi ll e.xist a seque.nce t1 ---+ as j--+ , bi+• > l;, 
such lhal 

(- t )l(Ñ(t¡) - ü/(b+ 1)) > O,j =O, t , 2,. 

T his is proved in l6]i and tbe method1 loosely speaking1 i to look at the linearizat ion 

of (14) aboul a/(b + 1), impose condilions lhal lhis linear part has characterislic 

roots with nonzero imaginary and negative reaJ parts 1 and to show that under fu rther 

condi tions, the osci llatory behavior of the corresponding solutions of the linearization 

is lra.11sferred to cerlain solulions of lhe nonlinear equation; for details, cf. [6]. 

4 Sorne Final Remarks 

For a discussion of functional different ial equations in general we refer to books by 

Hale !J], Hale and Verdun Lunel [4] and Kolmanovskii and Myshkis [5]. T hey use 

rnathematical analysis al a ralher sophislicaled level; i.e., at least a l lhe graduale 

leve!. Loosely speaking, functional differential equations in genera l include not only 

lh e of relarded lyp e, lo which we have confined ourselves in thc simple exarnples 

above, bul of advanced type, mixed type, and neutral type; the lalter are, roughly 

speaking, equations where there are time delays in the highest arder derivative as 

well as p06Sibly in lhe lower derivative lerms. It seems to the aulhor tbal most 

applications can be modeled in terms of retarded lype equalions. However, there 

are exrunples of applications leading to models of these otber lypes. Again, we refer 

to well known books on lhe general subjecl, such as [3] and 14]. 
F'i nally, it can be suggesled lhal ordinary differential equations are limits of 

d.d.e.s as lhe delay approaches zero. [11 fact one can devise a proof for the ex:istence 

of solutions of initial value problems ror ordinary differentiaJ equations by using this 

idea; cf. the book by P. Harlman: "Ordinary Differential equations" J . Wiley & 
Sons, lnc. .Y., London, Sydney, (1964). Also, an excellenl nionograph, using fairly 

elementary analysi 1 on d.d.e.s is by R.D. Driver1 
110rdinary and Delay Equations11 , 

Appl. Ylath. Sciences 20, Springer-Verlag, . Y. , Heidelberg, Oerlin (1977). 
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5 Appendix 

We show that if eb < r < 2/ 3./5, then j(:\ ) =O implies f'(>.) #O. Suppose not, i.e., 

!'(>.) = 2>.+ b(l - >.r)e-" =O. Solving this last equation for be- '' and substituting 
it into J(>.) = O yields eventually P (>.) = ),3r + >.' + r), - 1 = O provided ), f' O. But 

f (O) = 1, so we must have ), # O. This last equation has 3 roots, ),1, >.,, ),3 where 

one, say >.i, must be real. Since P (O) = -1 and P (>.) > O for), sufliciently large, we 

must have one, say ),1 > O. But J (>.1) > O so ),1 cannot be a root of f(>.) =O and 

!'(>.) =O. We next show that under the above condition, ),2 and >.3 are both real. 

T his follows easily; P (~) = i,\:. - ~> O, since r < 2/3./5, and since P(O) = - 1, 

we must have, say1 ..\2 real, and clearly >.2 > -fr- > -~. But since P (-~)< O, we 
also have ),3 > -~. So f (>.;) = >.] + b>.;e- ' ;' + 1 > =¡'e+ 1;:: O,j = 2,3, since 
Ae- .\r is increasing for >. < O, and eb < r . This shows that ..\2 and )q cannot solve 
f(>.) = O, which completes our proof. 
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