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Abstract

The existence and uniqueness of solutions to the difference equation with
advanced argument Az(n) = f(n,z(n),z(g(n))), g(n) > n- 1, are discussed.

1 Introduction

In this paper, where we denote N = {0,1,2,...}, we treat the problem of existence
and uniqueness of the solutions to the initial value problem (IVP)

{ Az(n) = f(n,z(n),z(g(n))), n € N,
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(where the difference operator A is defined by Az(n) = z(n+1)—z(n)) correspond-
ing to the difference equation with advanced argument

Az(n) = f(n, z(n), z(g(n)))- (12)

The sequence {g(n)} satisfies g(n) > n+ 1, Vn € N. For equations with continuous
argument, this problem has been analyzed in [9], and the present paper can be
considered, with appropriate modifications, as the discrete version of those results.

By a solution of Eq. (1.2) we will understand a sequence z : N — R" that
satisfies this equation on all of N. Thus, we are treating a non local problem.
This implies that the known methods for a certain class of equation with advanced
argument appearing in the theory of equations with delay [6] are not applicable to
Eq. (1.2).

Although, a solution of Eq. (1.2) has not a clear physical meaning, from a simple
inspection of problem (1.1) we may observe that the present state z(n) is conditioned
to the future understanding of the sequence z(k), k > n. The difficulties arising in
the study of equations with advanced argument remind the problem of backward
prolongation of delay differential equations [7].

The antecedents of this study are the following: The beautiful paper of Sugiyama
[9], who, by simple examples, shows that, in general, the uniqueness of the IVP fails
if we do not restrict the analyze of these equations to a specific functional space;
the paper of Popenda and E. Schmeidel [8], who study the problem of existence of
convergent solutions of scalar equations with advanced argument; our own research
on this subject, mainly dedicated to linear problems (1, 2, 3, 4, 5.

2 Existence and uniqueness

Throughout we will use a sequence {h(n)} satisfying

(HO) h(0) =1, 0 < h(n) < h(n+1),¥n € N, ih(n)" < oo.

n=0

We define
& ={f:N= R", [|fllx < o0},
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where
[I£1lx = sup{|a(m)~" f(n)|, n € N}.
If || f||» < oo, then we will say that f is an h-bounded sequence.
The Eq. (1.2) is defined by the function f : N x R x R* — R", which is
assumed to be continuous with respect to (z,y) € R™ x R" for any fixed n.
Let us consider the following conditions on the IVP (1.1):

(H1) For any point £ € R", the following sequence converges
n-1

> hm) ! f(m. € )|.

m=0

(H2) Let w(n, A, u) be a nonnegative and nondecreasing function with respect to
A and p for any fixed n, w : N X [0, +00) X [0, +00) = [0, +00), w(n, 0, 0) = 0, such
that the series

is convergent, where the sequence {a( n)} is defined by

afr) = M)

Yn € N.
(H3) For a nonnegative constant vy, we define the sequence {Mj(y)} by
Mo(7) =7 Min(7) = QMi(7)), k=0,1,2,...
oo
We will assume that for any v, the seriesz M,.(~y) converges.
k=0
(H4) The function f(n,z,y) satisfies the inequality
[h(n) ™ (£ (21, 1) = F(1 T2, 92))| < wln, h(n) ™' |21 = @al, A(n) ™ y1 = 2)
for any n € N and «,, T2, 1, %2 in R".

Theorem 1. The hypotheses (HO, H1, H2, H3, H4) umply the existence of a unique
solution {¢(n)} in the space £ of the IVP (1.1) for every € € R™.
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Proof. We will use the successive approximations method to demonstrate the exis-
tence of solution of the problem (1.1). Let us define the recurrence

zo(n) = &,
n-1

zepi(n) = €+ Z f(m, zi(m), zx(g(m))), k=0,1,2,...
m=0

We will prove that the estimate
[h(n)™ @rr(n) = u())] < Mi(b), k=0,1,2,...
is valid for any n € N. For & = 1 we have
[h(n)™ (z1(n) = &)] < ii!h(n)"f(m.zo(m),ro(y(m))l-
From (H1) and the notations introduced in (H4) we write
[h(m)~ (z1(n) = €)] < iu [h(m) =" f(m, &,€)| = b= Mo(b).
Let us suppose that
h() " (@a(n) = Tea(W)] € Mia(0), k=1,2,...
Since |A(n)~"(zk+1(n) — zx(n))| is majorated by

n—1

> w(m, h(m)™z(m) ~ si-1(m)], ~(m) ™~ z(g(m)) = ze-1(9(m))]),
m=0

then it follows the inequality

[h(n) = (@k(n) = zxs ()] < Y wlm, Mi—1(8), am) Mi_1 (8)) = Mic(b)-

m=0
From the telescope identity

Ti1(n) = Traa (n) — zx(n) + 2(n) — Dp—1(n) + ... + 21(n) — € + €,

we conclude that the convergence of sequence {zy} is equivalent to the convergence
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of the series

£+ Y (mrin(n) — 2a(n)).
k=0

In £, the partial sums of this series are majorated by:
[h(n)~'€| + [A(n) " (@1(n) = €)| + ... + |A(n) "} (zk41(n) — zk(n))| <

[[€]ln + Ma(b) + My (b) + ... + Mi(b).

The condition (H3) implies the convergence of the series ) ° | My (b) assuring, by
the Weierstrass criterion, the uniform convergence of {zx}32, on all N, to a sequence
(n) belonging to £;°. Since {zx(n)}2, converges coordinate by coordinate to (n),
then ¢(n) is a solution of the IVP (1.1).

Now, we will prove the uniqueness of the solution ¢ of IVP (1.1) in £;°. Suppose
that {z(n)}, {y(n)} are two h-bounded solutions of problem (1.1). From (H4) it
follows

A ) — )] € 3 A7, (o), (o)
e, ym s m)
< 5 wlm, hm)alom) = (o)), 1)~ (o)
).

Since {z(n)}, {y(n)} are h-bounded, we can define § = ||z — y||5. Therefore
n-1

[h(n)~"(z(n) = y(n))| € Y w(m,d,a(m)d) < (),

m=0

from whence
§ < Q(6).

We will see that the unique nonnegative number satisfying the above inequality is
& = 0. First, we prove that

e T

0 < My(d), k=1,2,...
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The definition of © leads to the estimate 2(d) = M, (d), implying 6 < M, (). If
§ < My_,(6), then

M (6)

QMi-1(8)) = Y w(m, My (6), a(m) M—1(6))

m=0

[\

iwm&am)&) Q(6) > 6.

m=0

The series E M;.(8) converges, what implies klim M;(8) = 0. From § < M(5) we
=00
k=0

get 0 = 0. [l

Theorem 2. Under conditions (HO, H1, H2, H3, H4), the solution {¢(n)} of IVP
(1.1) in the space £, has a limit as n — oo and both, the solution and its limit,
continuously depend on the initial value €.

Proof of the existence of the limit. Let ¢(n) an h-bounded solution of IVP
(1.1). We shall prove the existence of the limit ]Lm h(n)~'¢(n). Since
n—oo

n-1

h(n)~'p(n) = h(n)~"6 + > A(n) =" f(m, ¢(m), ¢(9(m))),

m=0

it is sufficient to prove the convergence of the sequence
Z h(n) =" £(m, o(m), ¢(9(m)))-

From the property
lim h(n)~' =0

n—ro0

and the Lebesgue dominate convergence theorem we obtain

hm Zh )~ (f(m, p(m), p(g(m))) = f(m,&,€)) =

m0

(T
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Therefore, the identity

n-1 .
D h(n)™ £ (m, p(m), p(g(m))) =

m=0

n-1 n-1
> h(n)~ (£ (m, p(m), p(g(m))) — f(m,&€) + Y h(n) ™" f(m, &)
m=0 m=0

implies

Jim Zh(n )" f(m, p(m), ¢(g(m))) = lim Zh )71 £ (m, €, ).

m_o m-O

This last limit exists due to the condition (H1).

Proof of the continuous dependence on the initial values. Let ¢;(n), a(n)
be h-bounded solutions of the IVP (1.1) with initial values ¢1(0) = &1, ¢2(0) = &
Hence

[h(n)~}(¢1(n) = a(n))| < [A(n)~! (& = &)

i i [h(m) =" (f(m, @1 (m), @1 (g(m))) = f(m, pa(m), a(g(m)))]
m=0

< [h(n) ™! (& - &)

n-1
+ 3 w(m, [h(m)~ (@1 (m) = @a(m))|, 1h(m) ™ (e1(9(m)) = @a(g(m)))])
m=0
Since both ¢, (n) and y(n) are h-bounded, we may define the nondecreasing func-
tion
w(e) = sup{|a(n)(pi(n) = ga(m))| = |h(n)™' (€1 = &) < e, €>0}.

From (H2) we have
%

hin) " (@1(n) = @a(n))] < [h(n) ™" (& — &)| + D wim, u(e), a(m)u(e)).

m=0
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If we compute the supremum on all n such that |h(n)~'(& —&)| < &, then we obtain
u(e) < & + Qu(e))-
Taking into account the existence of the limit
=l €
po = lim p(e),

it is follows that po < Q(u).

The same tokens used in the proof of Theorem 1 show that the last inequality is
a contradiction unless g = 0. This proves the continuous dependence, in the space

47, of the bounded solutions of system (1.1) with respect to the initial values as
well as the continuous dependence of the limits at n = oo of these solutions. .

3 Linear equations

How does the theory developed in section 2 work for the linear system

z(n+ 1) = A(n)z(n) + B(n)z(g9(n))?, (3.3)
where {A(n)}, {B(n)} are sequences of r x r matrices, that are not required to be
invertible. Let us assume the following set of conditions:
(c1) n+1<g(n) <n+N,

where NV is a constant natural number.

(C2) %SH,V"+1SmSn+N,Vn,

where {h(n)} is an increasing sequence satifying (HO). Defining
f(n,2,y) = A(n)a + B(n)y,

the condition (H1) will be accomplished if

(c3) p= (A + H|B(n)]) < 1.
=0

(T
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The function w(n, A, ) = [A(n)|A + |B(n)|u satisfies the condition (H4) and
condition (H2), since 4

Qy) = 3 wim,y, Hy) =7 Y (1A(m)| + H|B(m)|) < 0o
m=0 m=0

The sequence defined in (H3) turns to be Mi(y) = p*y. Thus, we may ennounce
the following

Theorem 3. Under conditions (HO, C1,C2, C3), the IVP
z(n+1) = A(n)z(n) + B(n)z(9(n)),
(0) = ¢ :

(3.4)

has a unique solution in the space £y . This solution, in the metric of space £y,
depends continuously on the initial data €. Moreover this solution converges as
n — 00.

The conditions (C1)-(C3) are stringent for the linear system (3.3). For example,
Theorem 3 cannot be applied to solve the IVP (3.4) if A(n) is constant. Linear
systems with advanced argument have been studied in [1, 2, 3, 4, 5], where conditions
of existence and uniqueness, more general than those given by Theorem 3, are given.

4 Another class of problems

Let us consider the equation
9(n)
Ax(n) = A(n)z(n) + B(n)z(g(n)) + D K(3(n), s)a(s),
=0

where g(n) > n+ 1 and g(n) > n for all n € N. The sequence {h(n)} satisfies
conditions (HO, C2). Also assume

n-l §(s)
©  Jim3 (M(S)l +a(s)|Bls)| + H Y \K(.«‘J(S),m)l> =p<1,

where the sequence {a(n)} was defined in (H2).

Y. .
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Theorem 4. For any £€ R", there exists a unique h—bounded solution z(n) of the
IvpP

§(n)
A(n)z(n) + B(n)z(g(n)) + Y K(a(n), )z(s)

=0
z(0) = §

Az(n)

Il

provided the conditions (HO, C2, C4) are fulfilled. Moreover, this solution continu-
ously depends on the initial values.

Proof. Let us define the recurrence

z(n) = §

T (n) = £+Z (8)ax(s) + B(s)zk(9(s))+
4(s)
> K(9(s),m)zi(m)), k=0,1,2,...
m=0

We will prove that the estimate

[h(n) = (zk41(n) — 2x(n))] < [€]*, k=0,1,2,... (4.5)

is valid for any n € N. Taking into account condition (HO), for k=1, we have

|h(n) ™ (z1(n) — ©)] < }: 1A(s)[ + [B(s)] + Z K (3(s), m)D)l€]-
m=0
From condition (C4) we obtain
()~ (z1(n) = )] < [€]p-
Suppose that
|h(n) = (zk(n) — 21 (n))| < |€loF, k=0,1,2,...
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Then
n-1
[h(n)~" (21 (n) = ze(m))] < D (1A(S)IIA(s) ™" (z(s) = zh-1(5))]
=0
+a(s)|B(s)|[h(g(s)) " (zx(g(s)) — zx-1(9(s)))|

§(s)
+ Y HIK(5(s),m)||h(m)~ (@i (m) — z4-1(m))])

m=0

then it follows (4.5). The convergence of sequence {z;} is equivalent to the conver-
gence of the series

(5n E(zk+l(n) — zx(n))
k=0

on the space £, From condition (C4), the series Y3° p¥*! is convergent. Hence
the sequence {zy(n)} converges to a bounded function z(n) belonging to the space
£y . Moreover,

i(s)
[A(n)~'z(n)| < Z (IA(S)I +a(s)|B(s)| + HY IK(g(S)ym)I) [l + [1€]1n,

=0 m=0
that is
[h(n)~"z(n)| < pl|z||n + ||€]|a-
o, Ll
h
[lz|ln < )

from whence we obtain the continuous dependence of the solution = on the initial
data £&. The solution z(n) is unique, because if there were two bounded solutions
z(n), y(n), then for z(n) = z(n) — y(n), we would have
9(n)
Az(n) = A(n)z(n) + B(n)z(g(n)) + _ K(3(n),m)z(m)

m=0

which leads us to

n-1 9(m)
= [A(m):(m) + B(m)z(g(m)) + Y_ K(4(m), s)2(s) | -
m=0 =0
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Thus,

n-1 §(m)
W)= z@) < lzls D |A(m)t+a(m)|3<m)|+HZlK(a(m).sn].
=0

m=0
< lzllney
implying ||z||s < ||z|xp, from whence ||z|[; = 0, because p < 1. .
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