$$u (uv) = 0$$

$$u v^{2} = 0$$

$$(uv)^{2} = u^{2} v^{2} = 0$$

$$u_{1} (u_{2} u_{3}) + u_{2} (u_{1} u_{3}) + u_{3} (u_{1}u_{2}) = 0$$

$$x^{2} y^{2} + 2 (xy)^{2} = 0$$

$$x^{2} (xy) = 0$$

It follows that UV \le U; U^2 \le V; V^2 \le U; U^2 = <0>; U^2 2 =<0>. With the above hypothesis the idempotents of A = ke \in U \in V have the form e + u + u^2 , with u \in U arbritrary. From this it follows that dim U is independent of the idempotent e and so also is dim V. They are invariants of A. The core C = kee U \in U² of A is also a Bernstein algebra and A^2 = C. So, the dimension of U^2 is also an invariant of A. Another invariant is dim $(UV + V^2)$, see [5]; Prop. 9.19.

If we have A = ke e U e V and $e_o = e + u_o + u_o^2$ is another idempotent then, the decomposition of A relative to e_o is $Ke_o • U_o • V_o$ where $U_o = \{u + 2uu_o / u \in U\}$ and

$$V_0 = (v - 2(u_0 + u_0^2)v / v \in V).$$

2.- Orthogonality. Holgate introduced the concept of orthogonal Bernstein algebras in [2]. He defined A = KeeUeV to be orthogonal when \mathbf{U}^3 = <0>. This definition depends on the idempotent e. The following example shows that with another idempotent \mathbf{e}_0 , we may have \mathbf{U}_0^3 * <0>.

Take λ = <e, u_1 , u_2 , u_3 , v_1 , v_2 , v_3 > and the following multiplication table:

$$e^{2} = e$$
 $eu_{1} = \frac{1}{2}u_{1}$ $ev_{1} = 0$ (1=1,2,3)
 $u_{1}^{2} = 2v_{1}$ $u_{2}^{2} = v_{2}$ $u_{1}u_{2} = v_{3}$

 $v_1v_2=u_3$ $v_3^2=-u_3$; other products are zero. We see that A is Bernstein and in the decomposition determined by e, $U=\langle u_1,\ u_2,\ u_3\rangle$, $V=\langle v_1,\ v_2,\ v_3\rangle$, $U^3=\langle 0\rangle$. Consider now $e_0=e+u_1+u_1^2$. In the corresponding decomposition, we have $U_0^3\neq\langle 0\rangle$ because

$$(u_1 + 2u_1u_1)(u_2 + 2u_2u_1)^2 = (u_1 + 2u_1^2)(u_2^2 + 4u_2(u_2u_1) + 4(u_2u_1)^2)$$

= $(u_1 + 4v_1)(v_2 - 4u_3) = 4u_3 \neq 0$

Considering this fact, the orthogonality notion is redefined as follows:

Definition: Let A a K-Bernstein algebra. If idempotent $e \in A$ exists such that in the decomposition $A = {}^{*}Ke = U = V$ we have $U^{3} = {}^{3}C_{0}$, then A is said to be orthogonal. Such idempotent e will be called pivotal.

Definition: A K-Bernstein algebra A is said to be totally orthogonal, if all non zero idempotent is pivotal.

Thus, three Bernstein algebra classes can be distinguished: those orthogonal but not totally ortoghonal, those totally orthogonal and those non orthogonal.

Pivotal idempotents are characterized in the following

Theorem: Let $A = Ke \cdot U \cdot V$ a K-Bernstein algebra. An idempotent $e_0 = e + u_0 + u_0^2$, with $u_0 \in U$, is pivotal if and only if

 $ux^2 + 2(uu_0)x^2 = 0$ for all u, x in U.

Proof: Let $e_0=e+u_0+u_0^2$ be pivotal idempotent then, by definition in the decomposition $A=KeeU_0eV_0$ we have $U_0^3=<0>$. Then for all u, $x \in U$ we have $(u+2uu_0)(x+2xu_0)^2 \in U_0^3=<0>$. On the other hand

 $(u+2uu_0)(x+2xu_0)^2 = (u+2uu_0)[x^2+4x(xu_0)+4(xu_0)^2] =$

$$u (uv) = 0$$

 $u v^2 = 0$
 $(uv)^2 = u^2 v^2 = 0$
 $u_1 (u_2 u_3) + u_2 (u_1 u_3) + u_3 (u_1 u_2) = 0$
 $x^2 y^2 + 2 (xy)^2 = 0$
 $x^2 (xy) = 0$

It follows that UV \le U; $U^2 \le$ V; $V^2 \le$ U; $UV^2 = <0>$; $U^2V^2 = <0>$. With the above hypothesis the idempotents of A = ke = U = V have the form $e + u + u^2$, with $u \in U$ arbritrary. From this it follows that dim U is independent of the idempotent e and so also is dim V. They are invariants of A. The core C = kee $U = U^2$ of A is also a Bernstein algebra and $A^2 = C$. So, the dimension of U^2 is also an invariant of A. Another invariant is dim $(UV + V^2)$, see [5]; Prop. 9.19.

If we have $A = ke \cdot e \cdot U \cdot e \cdot V$ and $e_o = e + u_o + u_o^2$ is another idempotent then, the decomposition of A relative to e_o is $Ke_o \cdot v_o \cdot v_o$ where $v_o = (u + 2uv_o / u \cdot e \cdot U)$ and

$$V_0 = (v - 2(u_0 + u_0^2)v / v \in V).$$

2.- Orthogonality. Holgate introduced the concept of orthogonal Bernstein algebras in [2]. He defined A = KeeUeV to be orthogonal when $U^3 = <0>$. This definition depends on the idempotent e. The following example shows that with another idempotent e_a , we may have $U_a^2 \neq <0>$.

Take A = <e, u_1 , v_2 , u_3 , v_1 , v_2 , v_3 > and the following multiplication table:

$$e^{2} = e$$
 $eu_{1} = \frac{1}{2}u_{1}$ $ev_{1} = 0$ (1=1,2,3)
 $u_{1}^{2} = 2v_{1}$ $u_{2}^{2} = v_{2}$ $u_{1}u_{2} = v_{3}$

 $v_1v_2=u_3$ $v_3^2=-u_3$; other products are zero. We see that A is Bernstein and in the decomposition determined by e, $U=\langle u_1,\ u_2,\ u_3\rangle,\ V=\langle v_1,\ v_2,\ v_3\rangle,\ U^3=\langle 0\rangle.$ Consider now $e_0=e+u_1+u_1^2$. In the corresponding decomposition, we have $U_0^3\neq\langle 0\rangle$ because

Considering this fact, the orthogonality notion is redefined as follows:

Definition: Let A a K-Bernstein algebra. If idempotent $e \in A$ exists such that in the decomposition $A = Ke \circ U \circ V$ we have $U^3 = <0>$, then A is said to be orthogonal. Such idempotent $e \in A$

Definition: A K-Bernstein algebra A is said to be totally orthogonal, if all non zero idempotent is pivotal.

Thus, three Bernstein algebra classes can be distinguished: those orthogonal but not totally ortoghonal, those totally orthogonal and those non orthogonal.

Pivotal idempotents are characterized in the following

Theorem: Let A = Ke = U = V a K-Bernstein algebra. An idempotent $e_0 = e + u_0 + u_0^2$, with $u_0 \in U$, is pivotal if and only if

 $ux^2 + 2(uu_0)x^2 = 0$ for all u, x in U.

Proof: Let $e_0^- = e + u_0^+ + u_0^2$ be pivotal idempotent then, by definition in the decomposition λ -KeeU_0eV_0 we have U_0^2 =<0>. Then for all u, $x \in U$ we have $(u+2uu_0)(x+2xu_0)^2 \in U_0^2$ =<0>. On the other hand

 $(u+2uu_0)(x+2xu_0)^2 = (u+2uu_0)[x^2+4x(xu_0)+4(xu_0)^2] =$

 $[ux^2+2(uu_0)x^2+8(uu_0)(x(xu_0))]$ + $4u(x(xu_0))$. Since this expression is nule and belongs to U \circ V, then we have

$$ux^{2} + 2(uu_{0})x^{2} + 8(uu_{0})(x(xu_{0})) = 0 \ \forall \ u, x \in U$$
 (*)

Replacing $u = u_0$, then for all x in U we have

$$u_0 x^2 + 2u_0^2 x^2 + u_0^2 (x(xu_0)) = u_0 x^2 + 2u_0^2 x^2 - 4u_0^2 (u_0 x^2)$$
$$= u_0 x^2 + 2u_0^2 x^2$$

i. e. $u_0 x^2 = -2u_0^2 x^2$, then

$$(uu_0)(x(xu_0)) = -\frac{1}{2}(uu_0)(u_0x^2) = (uu_0)(u_0^2x^2) \in U^2V^2 = <0>.$$

Then in (*) we have $ux^2 + 2(uu_0)x^2 = 0$

Conversely, let us suppose that for all u, x in U we have $ux^2 + 2(uu)x^2 = 0 (**)$

Then for all u, x in U,

 $(u+2uu_0)(x+2xu_0)^2 = [ux^2+2(uu_0)x^2+8(uu_0)(x(xu_0))]+4u(x(xu_0))$

From (**) we have $u_0x^2 + 2u_0^2x^2 = 0$. Then: $(uu_0)(x(xu_0)) = (uu_0)(u_0^2x^2) = 0$ and $u(x(xu_0)) = -\frac{1}{2}u(u_0x^2) = u(u_0^2x^2) \in UV^2 = <0$.

We have $(u+2uu_0)(x+2xu_0)^2=ux^2+2(uu_0)x^2=0$; i.e. $U_0^3=<0>$

Corollary: Let $A = Ke \in U \in V$ be a Bernstein algebra with any e idempotent. If A is orthogonal then U^3 is a subspace of $(U^2)^2$ and dim $(U^2)^2$ is an invariant of A.

Proof. A is orthogonal, then pivotal idempotent exist, $e_0^ e^- + u_0^- + u_0^2$. For all $u, x \in U$ we have $ux^2 = 2(uu_0)x^2$, then U^3 is a subspace of $(U^2)^2$. Besides, in the core of Bernstein's algebra $(C=KeeUeU^2)$ we have $\dim(UU^2+(U^2)^2)=\dim(U^3+(U^2)^2)=\dim(U^3+(U^2)^2)$ is invariant

Definition. A Bernstein algebra $A = Ke \cdot U \cdot V$ is said to be normal if $x^2y = \omega(x)xy$ for all $x, y \in A$.

It is known that the normallity condition is equivalent

to UV = V^2 = <0>. Then, we have that all normal Bernstein algebra is totally orthogonal. It is remarked that the converse of this statement is not true. One example is A= <e,u,v> with e^2 = e, $eu = \frac{1}{2}u$, ev = 0, u^2 =0, uv = u, $v^2 = u$. Definition: A commutative K-algebra A is Jordan if $x^2(yx)$ = $(x^2y)x$ for all x, $y \in A$.

It is known ([1], [6]) that a Bernstein algebra A=KeeUeV is Jordan if and only if $V^2=<0>$ and v(vu)=0 for all $u\in U$, $v\in V$. This is independent of the choice of the idempotent e.

Corollary: Let λ = Ke \circ U \circ V be a Bernstein algebra which is also Jordan. Then is totally orthogonal if and only if $U^3 = \langle 0 \rangle$

The following theorem stablishes the invariance of dim \mathbf{U}^3 . This number may be used for the classification of Bernstein's algebras.

Theorem: Let $A = Ke \circ U \circ V$ be a Bernstein algebra which is also Jordan. Then dim U^3 is an invariant of A.

Proof: Let $e_0 = e + u + u^2$ be an idempotent of A. As A is Jordan we have $(U^2)^2 \le V^2 = <0>$ and $(U_0^2)^2 \le V_0^2 = <0>$. Then the core $C = KeeUeU^2 = Ke_0eU_0eU_0^2$ is Bernstein, so dim $(UU^2 + (U^2)^2) = \dim(U_0U_0^2 + (U_0^2)^2)$ so dim $U^3 = \dim U_0^3$.

References.

- [1] M.T.Alcalde, R.Baeza, C.Burgueño, Autour des algébres de Bernstein, Arch. Math., Vol. 53,134-140 (1989).
- [2] P.Holgate, Genetic algebras satisfying Bernstein's stationarity principle, J. London Math. Soc.(2), 9,

613-623 (1975).

- [3] Yu. I. Ljubich, Bernstein Algebras, Uspekhi Mat. Nauk. 6 (198)32. 261-262 (1977).
- [4] C.Mallol et A.Micali, Sur les algebres de Bernstein III, Universite de Montpellier II, (preprint).
- [s] A.Worz-Busekros, Algebras in genetics, Lectures Notes in Biomatemath, Berlin-Heidelberg-New York 1980.
- [6] A. Wörz-Busekros, Bernstein algebras. Arch. Math. 388-398(1987).

DIRECCION DE LOS AUTORES

na is to improve an od "nemed to Sel linors

César Burgueño M. Universidad de la Frontera.

Depto, de Matemática Casilla 54-D. Temuco M. Neuburg and A.Suazo
Universidad de La Serena
Depto. de Matemática
Renavente 980. La Serena