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ABSTRACT

We classify quasi-Sasakian 3-manifold with proper η-Ricci soliton and investigate its

geometrical properties. Certain results of Yamabe soliton on such manifold are also

presented. Finally, we construct an example of non-existence of proper η-Ricci soliton

on 3-dimensional quasi-Sasakian manifold to illustrate the results obtained in previous

section of the paper.

RESUMEN

Clasificamos 3-variedades cuasi-Sasakianas con solitones η-Ricci propios e investigamos

sus propiedades geométricas. Ciertos resultados sobre el solitón de Yamabe en dichas

variedades también se presentan. Finalmente, construimos un ejemplo de la no exis-

tencia de solitones η-Ricci propios en una 3-variedad cuasi-Sasakiana para ilustrar los

resultados contenidos en el art́ıculo.
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1 Introduction

In 1982, Hamilton [17] introduced the notion of Ricci flow to find a canonical metric on a smooth

manifold. The Ricci flow is an evolution equation for metric gij on a Riemannian manifold defined

as follows:
∂gij

∂t
= −2Rij, (1.1)

where Rij denotes the Ricci tensor of a Riemannian manifold and t is the time. Ricci soliton

are special solution of the Ricci flow equation (1.1) of the form gij = σ(t)Ψtgij with the initial

condition gij(0) = gij, where Ψt is the diffeomorphisms of M and σ(t) is the scaling function.

A Ricci soliton is a natural generalization of an Einstein metric. We recall the notion of Ricci

soliton according to [9]. On a Riemannian manifold M, a Ricci soliton is a triple (g, V, µ) with the

Riemannian metric g, a vector field V , called potential vector field, µ a real scalar and S is the

Ricci tensor such that

(LVg)(X, Y) + 2S(X, Y) + 2µg(X, Y) = 0, (1.2)

where LV is the Lie-derivative along the vector field V on M. It is clear that a Ricci soliton with V

zero or a Killing vector field reduces to an Einstein metric. A Ricci soliton is said to be shrinking,

steady and expanding according as µ is negative, zero and positive, respectively. The Ricci soliton

have been studied by several authors such as ([12],[18],[20],[28],[36]).

As a generalization of a Ricci soliton, the notion of η-Ricci soliton was introduced by Cho and

Kimura [10]. This notion has also been studied in [10] for Hopf hypersurfaces in complex-space-

forms. An η-Ricci soliton is a 4-tuple (g, V, µ, α), where V is a vector field on M, µ and α are real

constants and g is a Riemannian (or pseudo-Riemannian) metric satisfying the equation

(LVg)(X, Y) + 2S(X, Y) + 2µg(X, Y) + 2αη(X)η(Y) = 0, (1.3)

where S is the Ricci tensor associated to g. In particular, if α = 0 then the notion of an η-Ricci

soliton (g, V, µ, α) reduces to the notion of a Ricci soliton (g, V, µ). If α 6= 0, then the η-Ricci soliton

are known as the proper η-Ricci soliton.Thus the notion of η-Ricci soliton have been studied by

many authors like ([7],[8],[31],[32],[33]). The notion of Yamabe flow was introduced by Richard

Hamilton at the same time as the Ricci flow [17], as a tool for constructing metrics of constant

scalar curvature in a given conformal class of Riemannian metrics on (Mn, g)(n ≥ 3). A time-

dependent metric g(·, t) on a Riemannian or, pseudo Riemannian manifold M is said to evolve by

the Yamabe flow if the metric g satisfies

∂g(t)

∂t
= −κg(t), g(0) = g0, (1.4)

on M, where κ is the scalar curvature correspond to g. Ye [35] has found that a point-wise elliptic

gradient estimate for the Yamabe flow on a locally conformally flat compact Riemannian manifold.

In case of Ricci flow, Yamabe soliton or the singularities of the Yamabe flow appear naturally.
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The significance of Yamabe flow lies in the fact that it is a natural geometric deformation to metric

of constant scalar curvature. One notes that Yamabe flow corresponds to the fast diffusion case of

the porous medium equation (the plasma equation) in mathematical physics. In dimension n = 2,

the Yamabe flow is equivalent to the Ricci flow (defined by ∂
∂t
g(t) = −2α(t), where α stands for

the Ricci tensor). However in dimension n > 2, the Yamabe and Ricci flow do not agree, since

the first one preserves the conformal class of metric but the Ricci flow does not in general. Just

as Ricci soliton is a special solution of the Ricci flow, a Yamabe soliton is a special solution of

the Yamabe flow that moves by one parameter family of diffeomorphism φt generated by a fixed

vector field V on M , and homotheries, that is, g(., t) = σ(t)φ∗(t)g0.

A Yamabe soliton is defined on a Riemannian or, pseudo-Riemannian manifold (M,g) by a vector

field V satisfying the equation [6]:

1

2
(LVg)(X, Y) = (κ − λ)g(X, Y), (1.5)

where LV denotes the Lie-derivative of the metric g along the vector field V, κ stands for the scalar

curvature, while λ is a soliton constant. A Yamabe soliton is said to be expanding, steady, or

shrinking, respectively, if λ < 0, λ = 0 or λ > 0. Otherwise, it will be called indefinite. Given

a Yamabe soliton, if V = Df holds for a smooth function f : M → ℜ on M, the equation (1.5)

becomes Hess f = (r − λ)g, where Hess f denotes the Hessian of f and D denotes the gradient

operator of g on Mn. In this case f is called the potential function of the Yamabe soliton and g

is said to be a gradient Yamabe soliton.

The notion of quasi-Sasakian structure was introduced by Blair [4] to unify Sasakian and cosym-

plectic structures. Tanno [30] also added some remarks on quasi-Sasakian structure.The properties

of such manifold have been studied by several authors,viz., Gonzalez and Chinea [16], Kanemaki

[21] and Oubina [26]. Kim [22] studied quasi-Sasakian manifold and proved that fibred Rieman-

nian spaces with invariant fibers normal to the structure vector field do not admit nearly Sasakian

or contact structure but a Sasakian or cosymplectic structure. Recently, quasi-Sasakian mani-

fold have been the subject of growing interest in view of finding the significant of applications

to physics, in particular to supargravity and magmatic theory ([3],[1]). Quasi-Sasakian structure

have wide application in the mathematical analysis of string theory ([2],[14]). On a 3-dimensional

quasi-Sasakian manifold, the structure function β was defined by Olszak [27] and with the help of

this function he has obtained necessary and sufficient conditions for the manifold to be conformally

flat [25]. Next he has proved that if the manifold is additionally conformally flat with β=constant,

then (a) it is locally a product of R and a two-dimensional Kaehlerian space of constant Gauss

curvature ( the cosymplectic case), or, (b) it is constant positive curvature ( the non-cosymplectic

case, here the quasi-Sasakian structure is homothetic to a Sasakian structure).

Now, we give some necessary definition and proposition that are uses in latter section.

Definition1.1[6] A vector field V is said to be conformal for Yamabe soliton if it satisfying the
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equation

LVg = 2ωg, (1.6)

where ω is called the conformal coefficient, that is, ω = (κ− λ). Moreover, if ω = 0, is equivalent

to V being Killing.

Definition1.2[8] A vector field X on an almost contact Riemannian manifold M is said to be

infinitesimal transformation if there exists a smooth function υ on M such that

(LXη)(Y) = υη(Y), (1.7)

for every smooth vector field X and Y. If υ = 0 then X is called a strict infinitesimal transformation.

Proposition1.1[34]On an n-dimensional Riemannian or, pseudo Riemannian manifold (Mn, g)

endowed with a conformal vector field V, we have

(LVS)(X, Y) = −(n− 2)g(∇XDω, Y) + (∆ω)g(X, Y),

(LVκ) = −2ωκ + 2(n − 1)∆ω,

for any vector fields X and Y, where D denotes the gradient operator and ∆ = −divD denotes the

Laplacan operator of g.

The outline of this paper is to consider 3-dimensional quasi-Sasakian manifold with the structure

function β is constant. In Section 2, we recall the basic results of η-Ricci soliton on quasi-Sasakian

3-manifold. In Section 3 and Section 4, we examine the η-Ricci soliton on quasi-Sasakian 3-manifold

admitting codazzi type and cyclic parallel Ricci tensor, respectively. Further, the Section 5, Section

6 and Section 7, deals with an almost pseudo Ricci symmetric, ϕ-Ricci symmetric and conformally

flat with η-Ricci soliton on quasi-Ssakian 3- manifold respectively. The geometrical properties

of a special weakly Ricci symmetric and η-recurrent on quasi-Sasakian 3-manifold are studied in

Section 8 and Section 9, respectively. In Section 10, we deals quasi-Sasakian 3-manifolds with

Q · R = 0 and obtain new results for η-Ricci soliton on such manifold. In Section 11, we deduce

some results related to Yamabe soliton on quasi-Sasakian 3-manifold. At last, we construct an

example of non-existence of proper η-Ricci soliton on quasi-Sasakian 3-manifold.

2 Preliminaries

Let M be a (2n + 1)-dimensional an almost contact metric manifold equipped with an almost

contact metric structure (ϕ, ζ, η, g) consisting of a (1, 1) tensor field ϕ, a vector field ζ, a 1-form

η and a Riemannian metric g, which satisfies

ϕ2 = −I+ η⊗ ζ, (2.1)
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η(ζ) = 1, η ◦ ζ = 0, ϕζ = 0, (2.2)

g(ϕU,ϕV) = g(U,V) − η(U)η(V), η(U) = g(U, ζ), (2.3)

for all U,V ∈ χ(M), whereχ(M) is the Lie-algebra of the vector fields of M2n+1. Let Φ be the

fundamental 2-form of M2n+1 defined by

Φ(U,V) = g(U,ϕV), (2.4)

for all U,V ∈ χ(M). Then Φ(U, ζ) = 0, U ∈ χ(M). M2n+1 is said to be quasi-Sasakian if the

almost contact structure (ϕ, ζ, η, g) is normal and the fundamental 2-form Φ is closed, that is,

every U,V ∈ ℑ2n+1, where ℑ2n+1 denotes the modulus of vector fields on M2n+1.

(i) [ϕ,ϕ](U,V) + dη(U,V)ζ = 0, (ii) dΦ = 0. (2.5)

There are many types of quasi-Sasakian structures ranging from the cosymplectic case, dη =

0(rankη = 1), to the Sasakian case, η∧ (dη)n 6= 0 (rankη = 2n + 1,Φ = dη). The 1-form η has

rank r = 2p if (dη)p 6= 0 and η∧(dη)p=0, and has rank r=2p+1 if (dη)p+1=0 and η∧(dη)p 6= 0.

We also say that r is the rank of the quasi-Sasakian structure. Blair [7], proved that there are no

quasi-Sasakian structure of even rank, some theorems regarding Kaehlerian manifolds and existence

of quasi-Sasakian manifold.

An almost contact metric manifold M2n+1 is a 3-dimensional quasi-Sasakian manifold if and only

if [27]

∇Uζ = −βϕU, U ∈ χ(M), (2.6)

for a certain function β on M, such that ζβ = 0, ∇ being the operator of the covariant differen-

tiation with respect to the Levi-Civita connection on M. Clearly, such a quasi-Sasakian manifold

is cosymplectic if and only if β = 0. Here we have shown that the assumption ζβ = 0 is not

necessary.

As per consequence (2.6), we find that [27]

(∇Uϕ)(V) = β[g(U,V)ζ − η(V)U]. (2.7)

In view of (2.6) and (2.7), we obtain

∇U(∇Vζ) = −(Uβ)ϕV − β2[g(U,V)ζ− η(V)U] − βϕ∇UV. (2.8)

This implies that

R(U,V)ζ = −(Uβ)ϕV + (Vβ)ϕU+ β2[η(V)U− η(U)V ]. (2.9)

Thus from (2.9), we get
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R(U,V,W, ζ) = (Uβ)g(ϕV,W) − (Vβ)g(ϕU,W) − β2[η(V)g(U,W) − η(U)g(V,W)]. (2.10)

Substituting U = ζ in (2.10), we have

R(ζ, V,W, ζ) = β2[g(V,W) − η(V)η(W)] + g(ϕV,W)ζβ. (2.11)

Interchanging V and W of (2.11) it yields

R(ζ,W,V, ζ) = β2[g(W,V) − η(W)η(V)] + g(ϕW,V)ζβ. (2.12)

Since R(ζ, V,W, ζ) = R(W,ζ, ζ, V) = R(ζ,W,V, ζ). Then from (2.11) and(2.12), we obtain

[g(ϕV,W) − g(ϕW,V)]ζβ = 0. (2.13)

Therefore, we can easily verify that ζβ = 0.

In a 3-dimensional Riemannian manifold we have

R(U,V)W = {S(V,W)U− S(U,W)V + g(V,W)QU− g(U,W)QV}

−
κ

2
{g(V,W)U− g(U,W)V}, (2.14)

where S and κ are the Ricci tensor and the scalar curvature, respectively, and Q denotes the Ricci

operator defined by g(QU,V) = S(U,V).

It is well known that the Ricci tensor S of a quasi-Sasakian 3-manifold is given by [28]

S(U,V) =
[κ

2
− β2

]

g(U,V) +
[

3β2 −
κ

2

]

η(U)η(V). (2.15)

As a consequence of (2.15), we find the Ricci operator Q

QU =
[κ

2
− β2

]

U+
[

3β2 −
κ

2

]

η(U)ζ. (2.16)

From (2.15), we obtain

S(U, ζ) = 2β2η(U). (2.17)

Keeping in mind the Equ.(2.12),(2.13),(2.14) and (2.15), we have

R(U,V)ζ = β2[η(V)U− η(U)V ], (2.18)

for all U,V,∈ χ(M). Also from (2.6), we have

(∇Uη)V = g(∇Uζ, V) = −βg(ϕU,V). (2.19)

Again from (2.15), it follows that

S(ϕU,ϕV) = S(U,V) − 2β2η(U)η(V). (2.20)
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Proposition 2.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold with η-Ricci soliton

is an η-Einstein manifold.

Proof. Assume that the quasi-Sasakian 3-manifold admits a proper η-Ricci soliton (g, ζ, µ, α).

Then from (1.3), we have

2S(U,V) = −(Lζg)(U,V) − 2µg(U,V) − 2αη(U)η(V), (2.21)

for all smooth vector fields U,V ∈ χ(M). Of the two natural situations regarding the vector field

V : V ∈ span{ζ} and V⊥ζ, we investigate only the case V = ζ. Our interest is in the expression

for Lζg+ 2S+ 2µg+ 2αη⊗ η.

A straight forward computations give

(Lζg)(U,V) = g (∇Uζ, V) + g (U,∇Vζ) ,

= −β [g(ϕU,V) + g(U,ϕV) ] = 0. (2.22)

Using (2.22) in (2.21), we get

S(U,V) = −µg(U,V) − αη(U)η(V). (2.23)

From the last equation,the proof ends.

Proposition 2.2. If a 3-dimensional non-cosymplectic quasi-Sasakian manifold admits η-Ricci

soliton, then µ+ α = −2β2.

Proof. From (2.15), we have

S(U,V) =
[κ

2
− β2

]

g(U,V) +
[

3β2 −
κ

2

]

η(U)η(V). (2.24)

Comparing (2.24) with (2.23), we get µ = 1
2
[2β2 − κ] and α = 1

2
[κ − 6β2]. In continuation we get

µ+ α = −2β2. From the last equation, the proof ends.

3 Ricci tensor of Codazzi type

Gray [15] introduced the notion of cyclic parallel and Codazzi type Ricci tensors. A Riemannian

manifold is said to possesses a cyclic parallel Ricci tensor if its non-vanishing Ricci tensor S of type

(0, 2) satisfies the condition

(∇US)(V,W) + (∇VS)(W,U) + (∇WS)(U,V) = 0, (3.1)
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for arbitrary vector fields U,V,W on M. Again a Riemannian manifold is said to have a Ricci

tensor of Codazzi type if S is non-zero and satisfies

(∇US)(V,W) = (∇VS)(U,W), (3.2)

for all the vector fields U,V,W on M.

We consider proper η-Ricci soliton on quasi-Sasakian 3-manifold with Ricci tensor of Codazzi type.

Taking covariant derivative of (2.23) along W and using (2.19), we have

(∇WS)(U,V) = −α [(∇W η)(U )η(V) + η(U)(∇Wη)(V)]

= αβ[g(U,ϕW)η(V) + g(V,ϕW)η(U)].
(3.3)

Since the Ricci tensor S of M is of Codazzi type. Then

(∇WS)(U,V) = (∇US)(W,V). (3.4)

Making use of (3.3) in (3.4), we yields

αβ[g(U,ϕW)η(V) + g(V,ϕW)η(U)] = αβ[g(W,ϕU)η(V) + g(V,ϕU)η(W)]. (3.5)

Setting W = ζ in (3.5), we theorize β 6= 0, α = 0, which is a refutation. Thus a non-cosymlectic

quasi-Sasakian 3-manifold with a Ricci tensor of Codazzi type does not admits a proper η-Ricci

soliton. In this way we terminate the following result:

Theorem 3.1. A non-cosymplectic quasi-Sasakian 3-manifold accompanied by Ricci tensor of

Codazzi type does not possess a proper η-Ricci soliton.

Corollary 3.2. For a proper η-Ricci soliton on a non-cosymplectic quasi-Sasakian 3-manifold, the

scalar curvature is constant if and only if the vector field ζ is harmonic.

Corollary 3.3. There exists no constant scalar curvature for a proper η-Ricci soliton of non-

cosymplectic quasi-Sasakian 3-manifold, provided the vector field ζ is non-harmonic.

4 Cyclic parallel Ricci tensor

This section is affectionate to the study of proper η-Ricci soliton on quasi-Sasakian 3-manifold

bearing cyclic parallel Ricci tensor. On that account

(∇US)(V,W) + (∇VS)(W,U) + (∇WS)(U,V) = 0. (4.1)

On the other hand, we have (3.3) and left hand side of (4.1), we have

(∇US)(V,W) + (∇VS)(W,U) + (∇WS)(U,V) = αβ [g(V,ϕU)η(W) + g(W,ϕU)η(V) + g(W,ϕV)η(U)

+g(U,ϕV)η(W) + g(U,ϕW)η(V) + g(V,ϕW)η(U)].

(4.2)
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Taking in hand (2.3) and (4.2), we reached

(∇US)(V,W) + (∇VS)(W,U) + (∇WS)(U,V) = 0. (4.3)

Thus we are in condition to plight the following result:

Theorem 4.1. A quasi-Sasakian 3-manifold bearing proper η-Ricci soliton always satisfies cyclic

parallel Ricci tensor.

5 Almost pseudo Ricci symmetric

Chaki and Kawaguchi [11] introduced the concept of almost pseudo Ricci symmetric manifolds

as an extended class of pseudo symmetric manifolds. A Riemannian manifold (M,g) is called

an almost pseudo Ricci symmetric manifold (APRS)n, if its Ricci tensor S of type (0, 2) is not

identically zero and satisfying the following condition:

(∇US)(V,W) = [A(U) + B(U)]S(V,W) +A(V)S(U,W) + A(W)S(U,V), (5.1)

where A and B are two non-zero 1-forms defined by

A(U) = g(U, ρ1), B(U) = g(U, ρ2). (5.2)

By taking cyclic sum of (5.1), we see that

(∇US)(V,W) + (∇VS)(W,U) + (∇WS)(U,V) = [3A(U) + B(U)]S(V,W)

+[3A(V) + B(V)]S(U,W) + [3A(W) + B(W)]S(U,V). (5.3)

Let M admits a cyclic Ricci tensor, then (5.3) reduces

[3A(U) + B(U)]S(V,W) + [3A(V) + B(V)]S(U,W)

+[3A(W) + B(W)]S(U,V) = 0. (5.4)

Replacing W by ζ in (5.4) and using (2.23) and (5.2), we get

−(µ+ α)[3A(U) + B(U)]η(V) − (µ+ α)[3A(V) + B(V)]η(U)

+[3η(ρ1) + η(ρ2)]S(U,V) = 0. (5.5)

In (5.5), substituting V = ζ and using (2.2), (2.23) and (5.2), we yield

− (µ+ α)[3A(U) + B(U)] − 2(µ+ α)[3η(ρ1) + η(ρ2)]η(U) = 0. (5.6)

Again replacing U by ζ and using (5.2) in (5.6), we obtain

− (µ+ α) [3η (ρ1) + η (ρ2)] = 0, (5.7)
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which implies

3η (ρ1) + η (ρ2) = 0, (5.8)

since (µ+α) 6= 0. In view of (5.6) and (5.8), it follows that 3A(U)+B (U) = 0. Thus we can state

the following result.

Theorem 5.1. There is no almost pseudo Ricci symmetric proper η-Ricci soliton on non-cosymplectic

quasi-Sasakian 3-manifold admitting cyclic Ricci tensor, unless 3A+B vanishes everywhere on M.

Consequently, if we keep in mind from (5.7) that 3η (ρ1) + η (ρ2) 6= 0, in this case µ+ α = 0, but

for η-Ricci soliton on non-cosymplectic quasi-Sasakian 3-manifold α + µ = −2β2. Therefore for

this condition α = −β2 and µ = −β2. Thus we state the following result.

Corollary 5.2. A proper η-Ricci soliton on almost pseudo Ricci symmetric non-cosymplectic

quasi-Sasakian 3-manifold with cyclic Ricci tensor is of type (g, V,−β2,

− β2).

6 ϕ-Ricci Symmetric

This segment is affectionate to the study of ϕ-Ricci Symmetric proper η-Ricci soliton on a quasi-

Sasakian 3-manifold and deduce some result. A quasi-Sasakian 3-manifold is said to be ϕ-Ricci

symmetric if the Ricci operator Q satisfies

ϕ2(∇UQ)V = 0, (6.1)

for all smooth vector fields U,V ∈ χ(M). If X, Y are orthogonal to ζ, then the manifold is said to

be locally ϕ-Ricci symmetric. It is well-known that ϕ-symmetric implies ϕ-Ricci symmetric, but

the converse, is not, in general true. ϕ-Ricci symmetric Sasakian manifolds have been studied by

De and Sarkar [13].

From (2.23), it follows that

QU = −µU− αη(U) ζ, (6.2)

for all smooth vector fields U. Proceeding covariant derivative of (6.2), we acquire

(∇UQ)V = −αβ [g(U,ϕV)ζ− η(V)ϕU]

= αβ[g(ϕU,V)ζ+ η(V)ϕU].
(6.3)

Applying ϕ2 on both sides of (6.3), we get

ϕ2(∇UQ)V = αβη(V)ϕ3U. (6.4)
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Making use of (6.1), from (6.4), it walk behind that β 6= 0, α = 0, which is a counter statement.

Thus we are in a condition to plight the following result:

Theorem 6.1. A ϕ-Ricci symmetric non-cosymplectic quasi-Sasakian 3-manifold does not admits

a proper η-Ricci soliton.

In [24], authors prove that in a 3-dimensional non-cosymplectic quasi-Sasakian mnaifold ϕ-

Ricci symmetric and ϕ-symmetric are equivalent provided β is a constant. Thus using this facts

we state the following result.

Corollary 6.2. A ϕ-symmetric non-cosymplectic quasi-Sasakian 3-manifold does not possess a

proper η-Ricci soliton.

Differentiating (2.16) covariantly along W and applying ϕ2 both side, we get

ϕ2(∇WQ)V =
1

2
[dκ(W)(−V + η(V)ζ) + (6β2 − κ)η(V)ϕ2(∇Wζ)]. (6.5)

If V is orthogonal to ζ, then from (6.4) and (6.5), we have

1

2
dκ(W)V = 0. (6.6)

It implies that dκ = 0. Hence the scalar curvature κ is constant.Thus we state the following

result.

Corollary 6.3. A non-cosymplectic quasi-Sasakian 3-manifold bearing proper η-Ricci soliton is

locally ϕ-Ricci symmetric if and only if the scalar curvature κ is constant.

7 Conformally flat

In this constituent we review conformally flat quasi-Sasakian 3-manifolds with a proper η-Ricci

soliton. Then we have [25].

(∇US)(V,W) − (∇VS)(U,W) =
1

4
[g(V,W)dκ(U) − g(U,W)dκ(V)]. (7.1)

Making use of (2.23) in (7.1), we have

αβ[g(V,ϕU)η(W) + g(W,ϕU)η(V) − g(U,ϕV)η(W) − g(W,ϕV)η(U)]

= 1
4
[g(V,W)dκ(U) − g(U,W)dκ(V)].

(7.2)

Substituting U = ζ in (7.2), we obtain

4αβg(ϕW,V) = −η(W)dκ(V). (7.3)
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That restricted to

4αβϕV = −dκ(V)ζ.

From the above equation it walk behind that 4αβϕ2 V = 0 and hence β 6= 0, α = 0, which is a

counter statement. Therefore we state the following result:

Theorem 7.1. A conformally flat non-cosymplectic quasi-Sasakian 3-manifold does not possess a

proper η-Ricci soliton.

8 Special weakly Ricci symmetric

The notion of a special weakly Ricci symmetric manifold was introduced and studied by Singh

and Quddus [29]. An n-dimensional Riemannian manifold (M,g) is called a special weakly Ricci

symmetric manifold (SWRS)n if

(∇XS)(Y, Z) = 2ε(X)S(Y, Z) + ε(Y)S(X,Z) + ε(Z)S(Y, X), (8.1)

where ε is a 1-form and is defined by

ε(X) = g(X, ρ), (8.2)

where ρ is the associated vector field. Let the Eq.(8.1) and (8.2) hold on quasi-Sasakian 3-manifold.

Taking cyclic sum of (8.1), we get

(∇XS)(Y, Z) + (∇YS)(Z,X) + (∇ZS)(X, Y)

= 4[ε(X)S(Y, Z) + ε(Y)S(Z,X) + ε(Z)S(X, Y)].
(8.3)

Let M admits a cyclic parallel Ricci tensor. Then (8.3) reduces to

ε(X)S(Y, Z) + ε(Y)S(Z,X) + ε(Z)S(X, Y) = 0. (8.4)

Taking Z = ζ in (8.4) and using (2.23) and (8.2), we have

− (α + µ)[ε(X)η(Y) + ε(Y)η(X)] + η(ρ)S(X, Y) = 0. (8.5)

Again, taking Y = ζ in (8.5) and then using (2.23) and (8.2), we get

− (α+ µ)[ε(X) + 2η(ρ)η(X)] = 0. (8.6)

Taking X = ζ in (8.6) and using (8.2), we obtain

− 3(α + µ)η (ρ) = 0. (8.7)

In this case if η (ρ) = 0 and α + µ 6= 0, then from (8.6) we have ε(X) = 0, ∀X ∈ χ(M). Again if

η (ρ) 6= 0, α+ µ = 0 , in this case α = −β2, µ = −β2. It leads to the following result:
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Theorem 8.1. If a special weakly Ricci symmetric non-cosymplectic quasi-Sasakian 3-manifold

with a proper η-Ricci soliton admits a cyclic parallel Ricci tensor, then the 1-form ε is vanish

identically on M.

Corollary 8.2. A proper η-Ricci soliton on a special weakly Ricci symmetric non-cosymplectic

quasi-Sasakian 3-manifold admits cyclic Ricci tensor is of type (g, V,−β2,−β2) if the 1-form ε 6= 0.

Again, if a complete Einstein quasi-Sasakian 3-manifold is compact. Then we have [19].

S(X, Y) = ϑg(X, Y), ϑ = 2β2.

It is well-known that for complete Einstein quasi-Sasakian 3-manifold, (∇XS)(Y, Z) = 0 and

S(X, Y) = ϑg(X, Y). Then (8.1) gives

2ε(X)g(Y, Z) + ε(Y)g(X,Z) + ε(Z)g(Y, X) = 0. (8.8)

Taking Z = ζ in (8.8) and then using (8.2), we get

2ε(X)η(Y) + ε(Y)η(X) + η(ρ)g(Y, X) = 0. (8.9)

Again taking X = ζ in (8.9) and then using (8.2), we get

3η(ρ)η(Y) + ε(Y) = 0. (8.10)

Taking Y = ζ in (8.10) and using (8.2), we obtain

η(ρ) = 0. (8.11)

Making use of (8.11) in (8.10), we get ε(Y) = 0, ∀ Y ∈ χ(M). Finally we have the following result:

Theorem 8.3. A special weakly Ricci symmetric non-cosymplectic quasi-Sasakian 3-manifold can

not be compact if the 1 -form ε 6= 0.

9 η-recurrent

A quasi-Sasakian manifold is said to be η-recurrent if its non-vanishing Ricci tensor S satisfies the

following condition

(∇US)(ϕV,ϕW) = A(U)S(ϕV,ϕW), (9.1)

for all U,V,W ∈ χ(M), where A(U) = g(U, ρ), ρ is the associated vector field of the 1-form A. In

particular, if the 1-form A vanishes identically on M, then it is said to be η-parallel. This notion

for Sasakian manifold was first introduced by Kon [21]. In view of (2.3), (2.19) and (2.23), we have

(∇US)(ϕV,ϕW) = µβ[g(U,ϕV)η(W) + g(U,ϕW)η(V)

−g(U,ϕW)η(V) − g(ϕV,U)η(W)] = 0.
(9.2)
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Making use of (9.2) in (9.1), we get

A(U)S(ϕV,ϕW) = 0. (9.3)

Again using (2.23) in (9.3), we obtain

− µA(U)g(ϕV,ϕW) = 0. (9.4)

This implies that A(U) 6= 0, g(ϕV,ϕW) 6= 0. Therefore, we conclude that µ = 0, that is, the Ricci

soliton is always steady. So we have the following result.

Theorem 9.1. If a non-cosymplectic quasi-Sasakian 3-manifold with proper η-Ricci soliton satis-

fying η-recurrent, then the Ricci soliton is always steady.

Corollary 9.2. The necessary condition for a non-cosymplectic quasi-Sasakian 3-manifold with

proper η-Ricci soliton to be η-parallel, the Ricci soliton is always shrinking.

10 The curvature condition Q · R = 0.

In this section we are going to study, a proper η-Ricci soliton on a quasi-Sasakian 3-manifold that

satisfying the curvature condition Q · R = 0. Then

(Q · R)(U,V)W = 0, (10.1)

for all smooth vector fields U,V,W ∈ χ(M). From (10.1), it is obvious that

Q(R(U,V)W) − R(QU,V)W − R(U,QV)W − R(U,V)QW = 0. (10.2)

Making use of (2.14) and (2.23), Eq. (10.2) reduces to

4αµη(U)η(W)V + 2µ2η(U)η(W)V − 4αµη(V)η(W)U+ ακη(U)η(W)V

−ακη(V)η(W)U+ 2µ[{−µg(V,W) − αη(V)η(W)}U

−{−µg(U,W) − αη(U)η(W)}V + g(V,W){(−µU− αη(U)ζ}

−g(U,W){(−µV − αη(V)ζ}−
κ

2
{g(V,W)U− g(U,W)V}]

−2α2η(V)η(W)U+ αµg(V,W)η(U)ζ + α2g(V,W)η(U)ζ = 0. (10.3)

Putting U = W = ζ in (10.3), we get

4αµV + 2µ2V − 4αµη (V)ζ+ ακV − ακη (V)ζ

+2µ[−µη (V)ζ− αη (V)ζ+ µV + αV − µη(V)ζ

−αη(V)ζ+ µV + αη (V)ζ− κ
2
η(V)ζ+ κ

2
(V)]

−2α2η (V)ζ+ µαη (V)ζ+ α2η (V)ζ = 0.
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Applying the inner product of the above equation with ζ, we obtain

α(µ+ α)η(V) = 0. (10.4)

It walk behind that α 6= 0, which is a counter statement. Thus α+ µ = 0. On other hand for a η-

Ricci soliton on a quasi-Sasakian 3-manifold, α+µ = −2β2. Therefore for this condition α = −β2

and µ = −β2. Thus we sate the following result:

Theorem 10.1. A proper η-Ricci soliton on a non-cosymplectic quasi-Sasakian 3-manifold satis-

fying the curvature condition Q · R = 0 is of type (g, V,−β2,−β2).

As the dissertation of our work, we keep in mind the Corollary 5.2, Corollary 8.2 and Theorem

10.1, we state the following result.

Theorem 10.2. If a proper η-Ricci soliton on a non-cosymplectic quasi-Sasakian 3-manifold M

is of type (g, V,−β2,−β2), then the following conditions are equivalent:

i) Mn is almost pseudo Ricci symmetric with cyclic Ricci tensor,

ii) Mn is special weakly Ricci symmetric and its Ricci tensor is cyclic parallel,

iii) Q · R = 0 holds on Mn.

11 Yamabe solitons

In this section we find some results related to Yamabe soliton on quasi-Sasakian 3-manifolds. We

consider a Yamabe soliton (g, ζ). From (1.5) we have

1

2
(LVg)(X, Y) = (κ − λ)g(X, Y), (11.1)

which implies that

g(∇Xζ, Y) + g(X,∇Yζ) = 2(κ − λ)g(X, Y). (11.2)

Keeping in mind (2.6), Equ.(11.2) reduces to

2(κ − λ)g(X, Y) = 0 (11.3)

Taking X = ζ in (11.3), we get λ = κ. Then equation (1.5) reduces to LVg = 0, that is, V is Killing

vector field. Moreover, λ is constant then the scalar curvature κ is also constant. Thus we state

the following result.

Theorem 11.1. If the metric of a 3-dimensional non-cosymplectic quasi-Sasakian 3-manifold is

a Yamabe soliton then the manifold is space of constant curvature.
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Besides it, from (1.5), we have LVg = 0, thus V is Killing. Differentiating covariently along an

arbitrary vector field X, we have ∇XLVg = 0.

The identity

(∇XLVg)(U,W) = g((LV∇)(X,U),W) + g((LV∇)(X,W), U), (11.4)

can be reduced from the formula [34].

(LV∇X g−∇XLVg−∇[V,X]g)(U,W) = −g((LV∇)(X,U),W) − g((LV∇)(X,W), U).

This implies that

g((LV∇)(W,X), U) + g((LV∇)(W,U), X) = 0. (11.5)

According to equation (11.4) and (11.5), the skew-symmetric property of φ, we get (LV∇) (U,W) =

0, which implies that (LV∇) (ζ, ζ) = 0. Also, using geodesic properties of ζ, we have

(LV∇) (X,U) = −∇X∇UV −∇∇XUV + R(V,X)U,

which yields ∇ζ∇ζV + R(V, ζ)ζ = 0. This means that V is Jacobi along the direction of ζ. So we

have the following result.

Theorem 11.2. If the metric of a non-cosymplectic quasi-Sasakian 3-manifold is a Yamabe soliton,

then the flow vector field V is Killing and is Jacobi along the direction of ζ.

It is well-known that the Reeb vector field ζ is a unit vector field, that is, g(ζ, ζ) = 1.Taking

Lie-derivative of it along the vector fled V and using (1.5), we get

η(LVζ) = −(LVη)(ζ) = (λ− κ). (11.6)

Moreover, in view of ω = (κ− λ), (n = 3) and Proposition 1.1, we obtain

(i) (LVS)(X, Y) = −g(∇XDκ, Y) + ∆κg(X, Y).

(ii) (LVκ) = −2κ(κ − λ) + 4∆κ.

Since g is a Yamabe soliton, then taking the Lie-derivative of (2.15), and using the above equation,

we get

−g(∆XDκ, Y) =
1

2
(LVκ)[g(X, Y) − η(X)η(Y)]

+ [2(
κ

2
− β2)(κ − λ)]g(X, Y)

+ (3β2 −
κ

2
)[(LVη)(X)η(Y) + (LVη)(Y)η(X)].
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Since ζ is Killing, therefore ζκ = 0. Differentiating covariantly along the direction of an arbitrary

vector field X, we have g(∆XDκ, ζ)=(βϕX)κ. Substituting Y = ζ in above equation, we have

− 2β(ϕX)κ = [2(κ − 2β2)(κ − λ) − 2∆κ]η(X) + (6β2 − κ)[(LVη)X+ (κ − λ)η(X)]. (11.7)

Taking X = ζ in (11.9), using (11.6) and Proposition 1.1, we obtain

∆κ = 4β2(κ − λ) (11.8)

In view of (11.9) and(11.10), we yields

(6β2 − κ)(LVη)X = −2β(ϕX)κ − [(κ− λ)(κ − 6β2]η(X) (11.9)

Since κ is constant then from (11.11) one can say that either κ = 6β2 or κ 6= 6β2. In particular

if κ = 6β2 then from (2.15) we have S = 2β2g, that is, M is an Einstein manifold of constant

curvature β2. Thus as per above consequences, we state the following result.

Corollary 11.3. If the metric of a 3-dimensional non-cosymplectic quasi-Sasakian manifold ad-

mits a Yamabe soliton and κ = 6β2 then the manifold is an Einstein.

Corollary 11.4. For a 3-dimensional cosymplectic manifold which admits a Yamabe soliton always

has constant harmonic scalar curvature, that is ∆κ = 0.

Corollary 11.5. If a 3-dimensional non-cosymplectic quasi-Sasakian manifold with constant har-

monic scalar curvature admitting Yamabe soliton then the manifold is space of constant curvature.

On the other hand, if κ 6= 6β2 then from (11.8), we get LVη = 0. Then the equation (1.7)

implies that υ = 0. Thus we state the following result.

Theorem 11.6. If the metric of a 3-dimensional non-cosymplectic quasi-Sasakian manifold is a

Yamabe soliton, then the conformal contact transformation of the conformal vector field is strict.

12 An Example

We consider a 3-dimensional manifold M3 = {(u, v,w) ∈ ℜ3, (u, v,w) 6= (0, 0, 0)}, where (u, v,w)

is the standard coordinate in ℜ3. Let (e1, e2, e3) be linearly independent vector fields at each

point of M, identify by

e1 =
∂

∂v
, e2 =

∂

∂w
, e3 = β

(

∂

∂u
+ v

∂

∂w
−w

∂

∂v

)

and

[e1, e2] = 0, [e1, e3] = βe2, [e2, e3] = −βe1.
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Let the Riemannian metric g on M3 is defined as

g(e1, e2) = g(e2, e3) = g(e1, e3) = 0, g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

and given by

g =
1

β2

[

(1 − β2v2 − β2w2)du⊗ du+ β2dv⊗ dv+ β2dw⊗ dw
]

.

Let η be the 1-form has the significance

η(U) = g(U, e3)

for any U ∈ χ(M3) and ϕ be the (1, 1) tensor field defined by

ϕe1 = −e2, ϕe2 = e1, ϕe3 = 0.

Making use of the linearity of ϕ and g, we have

η(e3) = 1,

ϕ2(U) = −U+ η(U)e3

and

g(ϕU,ϕV) = g(U,V) − η(U)η(V),

for any U,W ∈ χ(M3). Thus for e3 = ζ, the structure (M3, η, ζ, ϕ, g) leads to a contact metric

structure on M3. The Riemannian connection ∇ of metric tensor g is given by the beauty of

Koszul’s formula

2g(∇UV,W) = U(g(V,W)) + V(g(W,X)) −W(g(U,V))

−g(U, [V,W]) − g(V, [U,W]) + g(W, [U,V ]).

Making use of the Koszul’s formula, we get





∇e2
e3 = −βe1, ∇e2

e2 = 0, ∇e2
e1 = −βe3,

∇e3
e3 = 0, ∇e3

e2 = 0, ∇e3
e1 = −βe3,

∇e1
e3 = βe2, ∇e1

e2 = −βe3, ∇e1
e1 = 0.

Consequently (M3, η, ζ, ϕ, g) is an quasi-Sasakian structure that satisfies,

(∇Uϕ)V = β(g(U,V)ζ − η(V)U), ∇Uζ = −βϕU,

where β 6= 0. Hence (M3, η, ζ, ϕ, g) define non-cosymplectic quasi-Sasakian 3-manifold. Therefore,

we find the components of curvature tensor as follows:





R(e2, e3)e3 = β2e2, R(e2, e3)e1 = −β2e3, R(e3, e2)e2 = β2e3,

R(e1, e3)e3 = β2e1, R(e3, e1)e1 = β2e3, R(e2, e1)e1 = β2e2 − β2e1,

R(e1, e2)e2 = β2e1, R(e1, e2)e3 = β2e3, R(e3, e1)e2 = 0.
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From the above we can easily evaluate the value of the Ricci tensor as follows:

{
S(e1, e1) = 2β2, S(e2, e2) = 2β2, S(e3, e3) = 2β2

S(e1, e2) = 0 S(e2, e3) = 0, S(e2, e3) = 0.

Also, the scalar curvature κ is given by:

κ =

3∑

i=1

g(eiei)S(ei, ei) = 6β2

Also from the Equ.(2.23), we get

S(e1, e1) = S(e2, e2) = −µ, S(e3, e3) = −µ− α.

It is clear that µ = −2β2 and α = 0. Thus the manifold does not admits proper η-Ricci soliton.

Hence the Theorem 3.1, Theorem 4.1, Theorem 6.1 and Theorem 7.1 are verified.

Let {e1, e2, e3} be a basis of the tangent space at any point. For any vector X, Y ∈ χ(M2n+1), we

have

X = a1e1 + b1e2 + c1e3 , Y = a2e1 + b2e2 + c2e3,

where ai, bi, ci ∈ ℜ\{0}, for all i = 1, 2, 3.

Thus g(X, Y) = a1a2 + b1b2 + c1c2, and S(X, Y) = 2β2{a1a2 + b1b2 + c1c2 }. Then we obtain

S(X, Y) = 2β2g(X,Y), that is, the manifold M is an Einstein manifold. Hence Corollary 11.3 are

hold.

Remark 12.1. In this example β 6= 0 and µ < 0. Thus the Ricci soliton in a 3-dimensional

non-cosymplectic quasi-Sasakian manifold is always shrinking.
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