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ABSTRACT

In this paper we establish some bounds for the (@, f)-mean difference introduced in the
general settings of measurable spaces and Lebesgue integral, which is a two functions
generalization of Gini mean difference that has been widely used by economists and

sociologists to measure economic inequality.

RESUMEN

En este articulo establecemos algunas cotas para la (@, f)-diferencia media introdu-
cida en el contexto general de espacios medibles e integral de Lebesgue, que es una
generalizacion a dos funciones de la diferencia media de Gini que ha sido ampliamente

utilizada por economistas y socidlogos para medir desigualdad econémica.
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1. Introduction

Let (Q,.A,v) be a measurable space consisting of a set Q, a o -algebra A of subsets of Q and
a countably additive and positive measure v on A with values in R U {oco}. For a v-measurable
function w : Q — R, with w(x) > 0 for v-a.e. (almost every) x € Q and fﬂw(x) dv(x) =1,

consider the Lebesgue space

Ly (Q,v):={f: Q — R, fis v-measurable and J w (x) If (x)]dv (x) < oo}.
Q
Let I be an interval of real numbers and ® : I — R a Lebesgue measurable function on I. For

f: Q — I a v-measurable function with ® o f € L,, (Q,Vv) we define the generalized (@, f)-mean
difference Rg (@, f;w) by

Rg (@, f;w) = %J

J w(x)w (y)[(®of) (x) = (@of)(y)ldv(x)dv(y) (1.1)
QJo

and the generalized (@, f)-mean deviation Mp (@, f;w) by

Mp (@, fiw) := JQW (x) (@ o f) (x) — E (@, fiw)|dv (x], (1.2)

where

E(, fw) = JQ (@ o) (y)w(y) dv (y)

the generalized (@, f)-expectation.

If ® = e, where e (t) =t,t € R is the identity mapping, then we can consider the particular

cases of interest, the generalized f-mean difference

Re (fiw)i=Ra (e, fiw) =3 | [ wiwiFro-flevmey)  (13)
QJO
and the generalized f-mean deviation
Mo (f:w) == Mp (e, f;w) = J w () IF () — E (fw)] dv (x), (1.4)
Q

where E (f;w) := J'Q f(y)w(y) dv (y) is the generalized f-expectation.

If Q = [—o0, 0] and f = e then we have the usual mean difference

] o0 o0
Rg (W) :==Rg (f;w) = ZJ J w(x)w(y) x —yldxdy (1.5)
and the mean deviation

Mp (w) := Mp (f;w) = J'QW (x) [x — E (w)| dx, (1.6)
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where w : R —[0, 00) is a density function, this means that w is integrable on R and fiooo w(t)dt =
1, and
E(w):= J xw (x) dx (1.7)

—00

denote the expectation of w provided that the integral exists and is finite.

The mean difference Rg (w) was proposed by Gini in 1912 [21], after whom it is usually named,
but was discussed by Helmert and other German writers in the 1870’s (cf. H. A. David [13], see
also [26, p. 48]). It has a certain theoretical attraction, being dependent on the spread of the
variate-values among themselves and not on the deviations from some central value ([26, p. 48]).

Further, its defining integral (1.5) may converge when that of the variance o (w),

o(w):= Jjo (X—E(W))ZW(X) dx, (1.8)

does not. It is, however, more difficult to compute than the standard deviation.

For some recent results concerning integral representations and bounds for Rg (w) see [5], [6],
[8] and [9].

For instance, if w: R —[0, 00) is a density function we define by
W (x) ::J w(t)dt, xeR

its cumulative function. Then we have [5], [6]:

Ra (w) =2 Cov (e W) = | (1= W (y)) Wly) dy
=2 - xw (x) W (x) dx — E (w)
2| - Em) W - w e
:zdoooo(x—s) (W(x)—%)w(x)dx (1.9)
for any vy, & € R and [6]:
Raw) = [ [ (e w) (W = Wiy w i) w () axdy. (1.10)
With the above assumptions, we have the bounds [5]:
TMb () < R () < 2sp W (x) v Mp (w) < Mo (w), (1.11)

x€R
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for any v € [0,1], where W (-) is the cumulative distribution of w and Mp (w) is the mean

deviation.

Consider the n-tuple of real numbers a = (aj,...,an) and p = (p1,...,pn) a probability
distribution, i.e. p; > 0 for each i € {1,...,n} with Y {' ; p; = 1, then by taking Q ={1,...,n} and

the discrete measure, we can consider from (1.1) and (1.2) that (see [7])

ZZ 1p] ‘(D al _q)(aj)‘) (112)

N |

and
1

Mbp (a;p) :== z

&IVI=

-2 p®(a) (1.13)
j=1

whereae [":=Ix..xTland ®:1 - R.
The quantity Rg (a;p) has been defined in [7] and some results were obtained.

In the case when ® = e, then we get the special case of Gini mean difference and mean

deviation of an empirical distribution that is particularly important for applications,

ZZ pipj lai — ajl, (1.14)

N |

and
n

] n
ap)::zZpi ai—ijaj . (1.15)
i=1

The following result incorporates an upper bound for the weighted Gini mean difference [7]:

For any a € R™ and any p a probability distribution, we have the inequality:

] mn
- p) < ) < | Clag — < . )
ZMD (a;p) < Rg (a;p) _ylré% LE] pilai vl} < Mp (a;p). (1.16)

The constant % in the first inequality in (1.16) is sharp.

For some recent results for discrete Gini mean difference and mean deviation, see [7], [11], [14]
and [15].
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2. General Bounds

We have:

Theorem 1. Let I be an interval of real numbers and @ : I — R a Lebesque measurable function
on L. If w: Q — R is a v-measurable function with w (x) > 0 for v-a.e. (almost every) x € Q and
J'Q w(x)dv(x) =1 and if f: Q — 1 is a v-measurable function with ® o f € L, (Q,Vv), then

1

7 Mo (@, fiw) < Rg (@, fw) < T(®, fiw) < Mp (@, fiw), (2.1)
where
[(D,f;w):= Wl;Ié%JQW (x)[(@ o f) (x) —yldv (x). (2.2)

Demostracion. Using the properties of the integral, we have

j w ) w (y) (® 0 ) (x) — (@ o ) ()] dv (x) dv (y)
JOJO

w(x)

(o) (xJJ

w(y)dv(y)—J
Q

Wy (@) (y)av (y)‘ dv (x)

w (x)

(@of)(x)—J

LY (y) (@ of)(y)dv (y)‘ dv (x)

and the first inequality in (2.1) is proved.

By the triangle inequality for modulus we have

(@of)(x) = (Dof)(y)l = [(@of)(x)=—y+y—(Pof)(y)l (2.3)
(@ of) (x) =y[+[(Pof)(y)—vl

IN

for any x,y € Q and y € R.
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Now, if we multiply (2.3) by %w (x)w (y) and integrate, we get

w(x)w(y)[(@of)(x) = (Dof)(y)ldv(x)dv(y)
w(x)w (y) [[(@ o f) (x) =y + (o f) (y) — vl dv(x) dv (y)

w(x)w(y)[(®of)(x) —vldv(x)dv(y)

JQ w () w () [(® o ) (y) — ¥l dv (x) dv (y)

o}

[ wool@enm—viavix+ 3| wel@enw-viaviy
Q Q
=] wioloen ) —yiavi (24)

for any vy € R.
Taking the infimum over vy € R in (2.4) we get the second part of (2.1).

Since, obviously

[(D,f;w) = inf J w(x) (D of) (x) —vy|dv(x)
YER |

sj w(x) (@of)(x)—J w(y) (@ o f) (y) dv (y)| dv (x)
O Q

= Mop (O, fiw),

the last part of (2.1) is thus proved. I

By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if (@ o f)z € Ly (Q,v), then we have

[ o

2
gj w (x) {(cbof) (XJ—J w(y) (@ of) (y)dv(y)] av (x)
o o

2
dv (x)}

(@0 f) (x) LW () (® o ) (y) dv (y)

_ J w (%) (@ o ) (x) dv (x)
Q

-2

|

:JQW()((Dof Uﬂw (O of)(x)dv(x)

J w(y) (@of)(y)dv(y w(x) (@ of)(x)dv(x)
Q Q
L)

2
w(y) (@ o) (y } J wi
O

+

2
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By considering the generalized (@, f)-dispersion

o\ 1/2
o(D,f;w):= (JQW (x) (Do f)2 (x)dv (x) — UQW (x) (Do f)(x)dv (x)} ) ,

then we have
Mp (@, f;w) < o (D, f;w) (2.5)
provided (@ o f)z € Ly (Q,v).

If there exists the constants m, M so that
—oco<m<D(t) <M < oo for almost any t € 1 (2.6)

then by the reverse CBS inequality

o(@,fiw) < L (M—m), (27)

by (2.1) and by (2.5) we can state the following result:

Corollary 1. Let I be an interval of real numbers and @ : I — R a Lebesgue measurable function on
I satisfying the condition (2.6) for some constants m, M. If w: Q — R is a v-measurable function
with w(x) > 0 for v -a.e. x € Q and IQW(X) dv(x) =1 and if f : Q — 1 is a v-measurable
function with (@ o f)z € Ly (Q, V), then we have the chain of inequalities

1

<o(d,fiw) <5 (M—m). (2.8)

N —

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16) while for the

univariate case with fojoo w(t) dt =1 we have

Mo () < Rg (w) < I(w) < Mp (w) < 0(0, ) (2.9)
where
I(w):= 11/2% J_Oo w(x) [x —y|dx. (2.10)

If w is supported on the finite interval [a, b], namely fz w (x) dx = 1, then we have the chain
of inequalities

1

EMD W) <Rgw)<Iw)<Mp w)<o(D,f;w)<=(M—m). (2.11)

N —
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3. Bounds for Various Classes of Functions

In the case of functions of bounded variation we have:

Theorem 2. Let @ : [a,b] — R be a function of bounded variation on the closed interval [a,b].
Ifw:Q — R is a v-measurable function with w (x) > 0 for v -a.e. x € Q and IQ w(x)dv(x)=1
and if f: Q — [a,b] is a v-measurable function with ® o f € L, (Q,Vv), then

b
(D, )< = .
Rg fw_z\a/ (3.1)

where \/’f1 (@) is the total variation of ® on [a,b].

Demostracion. Using the inequality (2.4) we have

Re (@, f;w) < LW ()@ o F) (x) — vl dv (x) (3.2)

for any vy € R.

By the triangle inequality, we have

(@o1) (x)—%[@(a)m(bn’

<S1@(a)-@(f(x ))|+ | (b) — @ (f (x))] (3.3)

NI =

for any x € Q.

Since @ : [a,b] — R is of bounded variation and d is a division of [a, b], namely
deD(la,b]) ={d:={a=1t) < t; <..<tnh =D},

then

b
V(@)= suwp Z\@ tip1) = @ (t1)] < oo

deD([a,b])

Taking the division dp :={a = tp < t < t2 = b} we then have

b
(1)~ @ (a)] + @ (b <\ (@
for any t € [a,b] and then
b
|®(f(x))—®(a)|+\®(b)—q)(f(xmS\/(q)) (3.4)

for any x € Q.
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On making use of (3.3) and (3.4) we get

b
(@1 -0+ o b < 3V/(0) (35)

N

for any x € Q.

If we multiply (3.5) by w(x) and integrate, then we obtain

e

Finally, by choosing y = %[CD (a)+ @ (b)] in (3.2) and making use of (3.6) we deduce the
desired result (3.1). I

b
(@) ()~ 3@ () + 0 o) < 3 V(0. (36)

N

In the case of absolutely continuous functions we have:

Theorem 3. Let @ : [a,b] — R be an absolutely continuous function on the closed interval [a,b].
Ifw:Q — R is a v-measurable function with w(x) > 0 for v -a.e. x € Q and IQW (x)dv(x) =1
and if f: Q — [a,b] is a v-measurable function with ® o f € L,,, (Q, V), then

H(DIH[a,b],oo RG (f,W) Zf (DI € I—OO ([(X, B]))

RO S 0 RS (6509) 7 Ly (o, B, &7
p>1, % + % =1,
where the Lebesgue norms are defined by
essUPyeq,p1 19 (H)| if p = oo,
||g||[o(‘[3],p = ; e
(FBlg@rar) ™ ip=1
and Ly ([, B]) := {gl g measurable and HQH[a,m,p < oo} ,p el oo].
Demostracion. Since f is absolutely continuous, then we have
D(t)—D(s)= Jt @’ (u) du
s
for any t, s € [a,b].
Using the Holder integral inequality we have
O (1) —D(s)] = Jt @’ (u) du‘
s
DM, 01,00 It — 8| if p =00, (3.8)

IN

19| g 0. lt—s/"9 ifp > Li+3=1

1
q
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for any t, s € [a,b].

Using (3.8) we then have

(@ of)(x) = (Dof)(y)l

| @’ H[ab If (x) —f(y)l if p = oo, (3.9)
<

H@%mmﬁﬂm—fmwﬂ‘ﬁp>h%+%:1
for any x, y € Q.

If we multiply (3.9) by %w (x)w (y) and integrate, then we get

1J j w ) w (y) (® 0 ) (x) — (@ o ) (y)] dv (x) dv (y)
f(l Q

2
T a0 Jo Jo W (W () IF (x) — F (y)] dv (x) dv (y) if p = oo,
(3.10)

IN

% H(D/H[a,b],p IQ IQW )w(y) If (x) — f(y)|]/q dv (x) dv (y)

ifp>1,3+¢=1
This proves the first branch of (3.7).
Using Jensen’s integral inequality for concave function ¥ (t) = t%, s € (0,1) we have for
s =4 <1 that
Ja Taww @) () = F ()l dv (x) dv (y)
1
< (JoJow W) If (x) = f ()l dv (x) dv (y) ',
which implies that

% 1911001, JQ Jﬂw(x)w(y) I (x) —F ()" dv (x) dv (y)
1/4q
< 310y ([ ] w000 — v av i)

1 1/q
=19 (g.00.5 (zq J Jﬂwmw(y) £ (x) —  (y)| dv (x) dv (y))

11 1/4q
=19l a, 01, (zq—lgjﬂjﬂw(x)w(yﬂf(x)—f(y)dv(x)dv(y))

O[5 (R (W) = O] g0, RS (F5w)

zl/v |

q1|

and the second part of (3.7) is proved. I

The function @ : [a,b] — R is called of r-H-Hoélder type with the given constants r € (0, 1]

and H > 0 if
@ (1) — @ (s)| <HJt—s|"
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for any t, s € [a,b].

In the case when r = 1, namely, there is the constant L > 0 such that
|O(t) =@ (s)| < L[t—s]
for any t,s € [a,b], the function @ is called L-Lipschitzian on [a,b].
We have:

Theorem 4. Let @ : [a,b] — R be a function of r-H-Hoélder type on the closed interval [a,b]. If
w: Q — R is a v-measurable function with w(x) > 0 for v-a.e. x € Q and IQW (x)dv(x) =1
and if f: Q — [a,b] is a v-measurable function with ® o f € L, (Q,Vv), then

1
Rg (®, f;w) < 57 HRG (Fw). (3.11)

In particular, if ® is L-Lipschitzian on [a,b], then

Rg (@, f;w) < LRg (f;w). (3.12)

Demostracion. We have
[(@of) (x) = (D of) (Yl <HIF(x) =yl (3.13)

for any x, y € Q.
If we multiply (3.13) by %w (x)w (y) and integrate, then we get

1

—J J w(x)w ) (@ o f) (x) — (@ o ) (y)] dv (x) dv (y)

2 Jo

ngJ J w () w (W) If (x) — £ (y)I" dv (x) dv (y). (3.14)
2 OJo

By Jensen’s integral inequality for concave functions we also have

j j w () w () If (x) — ()" dv (x) dv ()
ala (3.15)
<

(J | w(x)w(ynf(x)—ﬂy)dv(x)dv(y)) .
oJo

Therefore, by (3.14) and (3.15) we get
Ra (@) < 31 (| ] wowl)ire = rwlavixaviy)
QJO

= 21]—4‘* (% JQ JQW )w (y) If (x) —f(y)ldv (x) dv (g))

1

= 7= HRg (fiw)

and the inequality (3.11) is proved. I
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We have:

Theorem 5. Let @, ¥ : [a,b] — R be continuos functions on [a,b] and differentiable on (a,b) with
W (t) #0 forte (a,b). Ifw:Q — R is a v-measurable function with w (x) >0 for v -a.e. x € Q
and IQW (x)dv(x) =1 and if f: Q — [a,b] is a v-measurable function with ® o f € L,, (Q, V),

then
' (t)
W (t)

@' (1)
v (t)

inf

‘ Rg (¥, f;w). (3.16)
te(a,b)

‘RG (‘{—’, f;w) < RG ((Daf;w) < sup
te(a,b)

Demostracion. By the Cauchy’s mean value theorem, for any t, s € [a,b] with t # s there exists

a & between t and s such that

This implies that

Q' (1)
<elap) | (1) W{t) —¥(s) <@ (t) — D (s)
@’ (1) B
S oy | s (3.17)

for any t, s € [a,b].

Therefore, we have

)
v (7)

1,nf"ce(a,b)

(3.18)

for any x,y € Q.

If we multiply (3.18) by %w (x)w (y) and integrate, we get the desired result (3.16). I

Corollary 2. Let @ : [a,b] — R be a continuos function on [a,b] and differentiable on (a,b). If

w is as in Theorem 5, then we have

inf @' (t)|Rg (f;w) < Rg (@, f;w) < sup [D'(t)|Rg (f;w). (3.19)
tc(a,b) te(a,b)

We also have:

Theorem 6. Let @ : [a,b] — R be an absolutely continuous function on the closed interval [a,b].

Ifw:Q — R is a v-measurable function with w (x) > 0 for v -a.e. x € Q and IQ w(x)dv(x)=1
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and if f: Q — [a,b] is a v-measurable function with ® o f € L, (Q,Vv), then

RG ((D,f,W)
”(DI”[a,b],oo M (f,W) pr = 00,
<
1Ol (q,01,p MV (FW) if p>T1, 54 ¢ =1 (3.20)
% (b—a) ||(D/||[a,b],oo if p = o0,
<
i (0 =) gy P> T g+ =T,
where M (f;w) is defined by
a+b
M (f;w) := J w(x) |f(x) — > ‘ dv (x). (3.21)
Q
Demostracion. From the inequality (3.8) we have
(@0 f) (x) = @ (23°)]
bl -
”q)/”[a,b],oo ‘f (X) - %‘ lfp = 090, (322)

<

1/q .
19 ljq 1 £ 00) = 22T i p > 1,5 4 4 =1
for any x € Q.

Now, if we multiply (3.22) by w (x) and integrate, then we get

b
J w(x) (qnof)(x)—cp(a+ )‘dv(x)
I 2
1914, 101,00 f o W () [ (x) = 52 [ dv (x) i p = oo, (3.23)
<
1/ .
19| 101, f o W () |F(x) — 452 Tav(x) ifp > 1, % + % =1.
By Jensen’s integral inequality for concave functions we have
1/4 1/9
b b
J w) [F0)— 22 avix) < (J wx) | () — & ’dv(x)) . (3.24)
o) 2 o) 2

On making use of (3.2), (3.23) and (3.24) we get the first inequality in (3.20).

The last part of (3.20) follows by the fact that

’f(x)_a—i-b‘ 1

2 Sz(b—a)

for any x € Q.
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4. Bounds for Special Convexity

When some convexity properties for the function ® are assumed, then other bounds can be

derived as follows.

Theorem 7. Let w: Q — R be a v-measurable function with w(x) > 0 for v -a.e. x € Q and
IQW (x)dv(x) =1 and f: Q — [a,b] be a v-measurable function with ® of € L, (Q,Vv). Assume

also that @ : [a,b] — R is a continuous function on [a,b].
(i) If |@| is concave on [a,b], then
Rg (@, f;w) < | (E (fw))], (4.1)

(i) If |®| is convex on la,b], then

1
b—a

Rg (@, fiw) < (b —E(f,w))[® (a)l + (E(f;w) —a) D|(b)]]. (4.2)

Demostracion. (i) If |®] is concave on [a, b], then by Jensen’s inequality we have

J w(x)|(Dof)(x)dv(x) < ‘(D (J' w(x)f(x)dv (x)) ’ . (4.3)
Q Q
From (3.2) for y = 0 we also have

Rg (@, f;w) < J'QW (x) (Do f) (x)|dv (x). (4.4)

This is an inequality of interest in itself.
On utilizing (4.3) and (4.4) we get (4.1).
(ii) Since |®| is convex on [a, b], then for any t € [a, b] we have

O ()] = |@ <(b—t)a+b(t—a)) _ (b=1[@ (a)l +(t—a) P |(b)|
- b—a N b—a )

This implies that
(b—f(x)) @ (a)l + (f(x) —a) D(b)|
b—a

(@ of) (x)] <
for any x € Q.

If we multiply (4.5) by w(x) and integrate, then we get

w (x) [(@ o f) (x)[dv (x)

Qb1 [( J w(x) dv (x) — J w(x) f (x) dv (x ))(D(GJI
([ werrone—of wores) ot
(4.

4), produces the desired result (4.2). 1

IN

which, together with
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In order to state other results we need the following definitions:

Definition 1 ([19]). We say that a function f: 1 — R belongs to the class P (1) if it is nonnegative
and for all x,y € 1 and t € [0, 1] we have

fitx+ (1—-1ty) < f(x)+f(y).

It is important to note that P (I) contains all nonnegative monotone, convex and quasi convex

functions, i.e. functions satisfying

f(tx+ (T —t)y) < max{f (x),f(y)}
for all x,y € T and t € [0,1].

For some results on P-functions see [19] and [28] while for quasi convex functions, the reader
can consult [18].

Definition 2 ([3]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00) is said to be

s-convez (in the second sense) or Breckner s-convez if
flox+ (1 -ty <t FX) +(1-1)°f(y)
for all x,y € [0,00) and t € [0,1].

For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25], [27] and [29)].

Theorem 8. Let w: Q — R be a v-measurable function with w(x) > 0 for v -a.e. x € Q and
J'Q w(x)dv(x) =1 and f: Q — [a,b] be a v-measurable function with ® of € L, (Q,v). Assume

also that @ : [a,b] — R is a continuous function on [a,b].

(i) If |@| belongs to the class P on [a,b], then

Rg (@, f;w) < (@ (a)[+ @ |(b)]; (4.6)

(i) If |®| is quasi convex on [a,b], then

Rg (@, fiw) < méx{|® (a)|, @ |(b)[}; (4.7)

(iii) If |®| is Breckner s-convex on [a,b], then

1 s
Re (0, iw) < oo |19 ()] | wix) (b= ()" av (o)
+0l(B) | w0 (7(x) - )" av ()]
< s (@ (@I (b —E(fiw))" av (v

+@|(b)| (E (f;w) —a)® dv (x)] . (4.8)
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Demostracion. (i) Since |®@| belongs to the class P on [a, b], then for any t € [a, b] we have

o w)=|o (=12 <o @)+ o).
—a
This implies that
(@0 ) ()] <10 (a)l + @ (b) (4.9)

for any x € Q.

If we multiply (4.9) by w (x) and integrate, then we get
| wool@en wlavix < al+ o), (1.10)
Q
which, together with (4.4), produces the desired result (4.6).

(ii) Goes in a similar way.

(iii) By Breckner s-convexity we have

o w)=|o (L= < (20) @i+ ((=2) olw)

for any t € [a, b].

This implies that

(@ of) (x)] < (b—f(x)°|® (a)l + (f (x) — a)* @(b)]] (4.11)

o [
(b—a)®
for any x € Q.

If we multiply (4.11) by w (x) and integrate, then we get
[, ol n a6 < s [0 @l w0 )" av (o)
Q (b—a) Q

+<D|(b)\J

w(x) (f(x) —a)® dv (x)] , (4.12)
Q

which, together with (4.4), produces the first part of (4.8).

The last part follows by Jensen’s integral inequality for concave functions, namely

J w(x)(b—1f(x))*dv(x) < (b—J w(x)f(x)dv(x))s
Q Q

and

J wix)(f(x)—a)fdv(x) < (J' w(x)f(x) dv(x)—a)s,
Q Q

where s € (0,1). 11
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5. Some Examples

Let f: Q — [0,00) be a v-measurable function and w : Q — R a v-measurable function with
w(x) >0 for v-ae x € Q and IQW (x) dv (x) = 1. We define, for the function @ (t) =tP, p >0,
the generalized (p,f)-mean difference Rg (p, f;w) by

1
RG (p, f;w) == EJ

j w () w () I (x) — 1 ()] dv (x) dv (y) (5.1)
QJO

and the generalized (p,f)-mean deviation Mp (p, f;w) by

Mb (p, f:w) = JQ w (%) [fP (x) — E (p, f; )] dv (), (5.2)
where
E(p, fw) = JQ £ (y) w (y) dv () (5.3)

is the generalized (p,f)-expectation.

If f: Q — [a,b] C [0,00) is a v-measurable function, then by (3.1) we have

1
R (p, f;w) < 3 (b? —aP). (5.4)
By (3.7) we have
RG (pa f;w) < p6p ((l, b) RG (f,W) ) (55)
where
bPifp > 1,
5p (a,b) ==
ar! ifpe(0,1)
and y
P px(p—1)+1 _ aoc(pfl)Jr] & 18
R f: < R f: .
G(p) ’W)—z]/(x (X(p_])_’_] G (aw)v (56)

wherecx>1,%(+1g:1.

From (3.20) we also have

Re (p)f;w)

Sp (a,b) M (fiw),
<

(p—1)+1_ _a(p—1)+1\ 1/ )
p (B DY MR () > 1, =
(5.7)

%(b_a)ép ((l,b),

<
1 a(p—1)+1_ _a(p—1)+1\ /&
21%(b—a) /Bp(b P “(piﬁﬂp ) lf0€>1)%.¢+1ﬁ:]’
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where M (f;w) is defined by (3.21).
If p € (0,1), then the function |® (t)| = tP is concave on [a,b] C [0,00) and by (4.1) we have
Rg (p, f;w) < EP (fyw). (5.8)

For p > 1 the function |® (t)| = tP is convex on [a, b] C [0,00) and by (4.2) we have
1

RG (P)f)W) S b—a

[(b—E(f;w))aP + (E(f;w) —a) bP]. (5.9)

Let f: Q — [0,00) be a v-measurable function and w : Q — R a v-measurable function with
w(x) > 0 for v -a.e. x € Q and [, w(x)dv(x) = 1. We define, for the function @ (t) = Int, the
generalized (In, f)-mean difference Rg (In, f;w) by

1
Rg (In, fyw) = ZJ

J w (%) w (y) [Inf (x) — Inf (y)] dv (x) dv (y) (5.10)
OJo

and the generalized (p,f)-mean deviation Mp (In, f;w) by

Mp (In, f;w) == J w(x)[Inf (x) — E (In, f;w)| dv (x), (5.11)
Q
where
E (In, f;w) ::J w(y)lnf(y)dv(y) (5.12)
Q

is the generalized (In,f)-expectation.

If f: Q — [a,b] C [0,00) is a v-measurable function, then by (3.1) we have

Rg (In, fyw) < % (Inb—1Ina). (5.13)
By (3.7) we have
Rg (In, f;w)
TRa (W),
- (5.14)
s (i) T RY T (fw) ip > 1, L =1,
By (3.20) we have
Rg (In, f;w)
IM(f;w),
<
(m;f,”;,,)w M9 (fw) ifp>1, 1+ 1 =1 515
21,
<
o)/ (e L) s,
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Now, observe that the function |® (t)| = |Int| is convex on (0,1) and concave on [1,00). If
f:Q —[a,b] C (0,1) is a v-measurable function, then by (4.2) we have

1

Rg (hla f;w) <
b—a

[(b—E (f;w))[Inal + (E(f;w) —a)[Inb]] (5.16)
and if f: Q — [a,b] C [1,00), then by (4.1) we have

Rg (In, f;w) < In (E (f;w)). (5.17)

The interested reader may state similar bounds for functions ® such as @ (t) = expt, t € R
or @ (t) =tlnt, t > 0. We omit the details.
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