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ABSTRACT

In this paper, we investigate the existence and uniqueness of solutions for the Darboux
problem of partial differential equations with Caputo-Katugampola fractional deriva-

tive.

RESUMEN

En este articulo investigamos la existencia y unicidad de soluciones para el problema
de Darboux de ecuaciones diferenciales parciales con derivada fraccional de Caputo-

Katugampola.
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1 Introduction

To investigate many different fields of science and engineering, the fractional calculus represents a
powerful tool, with many applications in mathematical physics, hydrology, finance, astrophysics,
thermodynamics, statistical mechanics, biophysics, control theory, cosmology, bioengineering and
so on, [5, 6].

In recent years, there has been an important works in ordinary and partial fractional differential
equations. For the Caputo fractional-order ordinary differential equations case, see Kilbas et al.
[7], Miller and Ross [8]. In addition, Yunru Bai and Hua Kong have treated the existence of
solution for nonlinear Caputo-Hadamard fractional differential equations in [9]. For the Caputo
fractional-order partial differential equations case, see the work of Tian Liang Guo and KanJian
Zhang in [10]. Furthermore, Xianmin Zhang has investigated the Caputo-Hadamard partial frac-
tional differential equations in [11]. The choice of an appropriate fractional derivative (or integral)
depends on the considered system, and for this reason there are a large number of works devoted

to different fractional operators.

Recently, U. Katugampola presented new types of fractional operators, which generalize both
the Riemann-Liouville and Hadamard fractional operators [4]. Although the Katugampola frac-
tional integral operator is an Erdélyi-Kober type operator [13] author in [14] argued that is not
possible to obtain Hadamard equivalence operators from Erdélyi-Kober type operators. In this
sense, Almeida, Malinowska and Odzijewicz [2] introduced a new fractional operator, called the
Caputo-Katugampola derivative, which generalizes the concept of Caputo and Caputo-Hadamard
fractional derivatives. It turns out that, the new operator is the left inverse of the Katugam-
pola fractional integral and keeps some of the fundamental properties of the Caputo and Caputo-
Hadamard fractional derivatives. Such derivative is the generalization of the Caputo and Caputo-
Hadamard fractional derivative. The existence and uniqueness of the solution of the ordinary
Caputo-Katugampola differential equations is given in [3]. A. Cernea in [12] studied a Darboux
problem associated to a fractional hyperbolic integro-differential inclusion defined by Caputo-

Katugampola fractional derivative and several existence results for this problem are proved.

In this paper, we study the existence and uniqueness of solutions of the following partial

differential equation with Caputo-Katugampola fractional derivative

CDZ"fu (z,y) = f(x,y,u(x,y)), (x,y) € J =la1,b1] X [az,ba], (1.1)

gp(x) y X € [alvbl]a
=¥ (y), y € [az, bo], (1.2)
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where f: J xR = R, ¢:[a1,b1] = R and ¢ : [az, b2] = R are given continuous functions.

The rest of the paper is organized as follows. Some definitions and preliminaries are presented

in Sect. 2. Finally, the existence and uniqueness results, is given in Sect. 3.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout

this paper.

Definition 1. /2, 3, /] Given o > 0, p > 0 and an interval [a,b] of R, where 0 < a < b. The
Katugampola fractional integral of a function u € L'([a,b]) is defined by

t
(s)
I u (1) —ds,
() J (tr —sr)!

where I' is the Gamma function.

Definition 2. /2, 3, /] Given o > 0, p > 0 and an interval [a,b] of R, where 0 < a < b. The
Katugampola fractional derivative is defined by

t
. P, d [ s u(s)
Pu(t) = —t—ttr— [ ———"1g
U=y dt/(tﬂ—sp)o‘ s

Definition 3. [2, 3, 4] Given 0 < a < 1, p > 0 and an interval [a,b] of R, where 0 < a <b. The
Caputo-Katugampola fractional derivative is defined by

©D%Pu (1) =DEP[u (t) — u (a)]

o d [ us) — u(a)]
TTr(- a)tl E/ (tr — s)* ds.

Definition 4. Let 0 < a; < b;, i = 1,2 reals numbers, a = (a1,az2) and u : [a1,b1] X [ag,b2] = R
be an integrable function. The mized Katugampola fractional integrals of order a = (a1, as), and

parameter p = (p1,p2) is defined by

1 ozl 1 o Splfltpgfl
I u(z,y) = / / — ——u (s, t)dtds.
af

(xPr — SPl)l U (yp2 — tp2)1 @2

where a1, ag, p1 and py are strzctly positives.

Definition 5. Let 0 < a; < b;, i = 1,2 reals numbers, a = (a1,a2) and u : [a1,b1] X [az,bs] — R

be a function. The mized Katugampola fractional derivative of order = (a1, 2), and parameter
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p = (p1,p2) is defined by

Defule,y) = 2Py D2 I (a,y)
_ glmPryl=p2 pou po D2 /m /U gP1—1p2—1
T —anT(—a) ¥ Jr Juz o —om)™ (e — 7)™

xu (s,t) dtds.

Where (a1, az) € (0,1)%, D:, = ag—zy and pi1, p2 are strictly positives.
Definition 6. Let 0 < a; < b;, i = 1,2 reals numbers, a = (a1,az2) and u : [a1,b1] X [ag2,b2] = R

be a function. The mized Caputo-Katugampola fractional derivative of order a = (a1, 2), and

parameter p = (p1,p2) is defined by
DY u(z,y) = Dyl (u(z,y) —u(z,a2) —u(a1,y) + u (a1, az))
where (a1, as) € (0,1)% and py, py are strictly positives.

Lemma 2.1. Let 0 < a; < b;, i = 1,2 reals numbers, a = (a1,az2) and w : [a1,b1] X [az,ba] — R is
an absolutely continuous function. The mized Caputo-Katugampola fractional derivative of order

a = (a1, a2), and parameter p = (p1, p2) is given by

Dyfu(zy) = L7 («'Py' D], (x y))
T o2 u(s,t
_ P1 P2 t (s:t) = dtds
P(l—a)T(1—as) (xPr — 1) (yP2 — tr2)

88—2 and p1, p2 are strictly positives.

almost everywhere, where (a1, as) € (0,1)%, Dz?, o

Lemma 2.2. Let 0 < a; < b;, i = 1,2 reals numbers, a = (a1,a2) and u : [a1,b1] X [az,ba] = R be

an integrable function. Then
ISP TS u (2 y) = I8 u (2, y) (2.1)

almost everywhere, where a = (a1, a2), 8= (81, B2) and parameter p = (p1, p2). If additionally u

is a continuous function, then the identity (2.1) holds everywhere.
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Proof. Using Fubini’s Theorem we get

1 (¥1 1 2 P1 1 P2 1I,8P S1.8
I8P () = / / 1 - (51, 2)17a2d52d51
L
_ pi 51[); B2 1 ay 1 g / / ;1)17155271 y
(ﬁl) (52) .I'pl _ SPl l1—ay (yp2 o )1 (e
tPl 1tP2 1
/a / p1 tpl 1— ,81( oo tp2)l ,32 (t17t2) dtodtidsadsy
1

1 61 1— ,82 1 @1 1 s
= TErET / / 5 (b, ) (2.2)

/ / st 502 dsodsy dtadty
ts xPl —S 1 1— (5] (yp2 _ )l (!2( tpl)l ﬂl( P2 tp2)l ﬂg

Using the change of variables

B (S? _t?)l*ﬁl B (82 tpz)l B2
T= g andy——mla,
(o — ) =)

we get

splsh ! 1
dsad
/ /2 .Tp] _ SP] 1—aq (sz _ )l (%) ( tpl)l B1 ( tp2)1 Ba S20dS81

/131 1 Y 52 1
= — dSl X/ — d82
/n (wpr — &)1 (s — gyt b (yre —sh?)' O (s — th7)t R

(@ =) W2 =15 [ it o [ et
P1 P2 /0(1 %) v dx/o 4=y v
1 _ 4P 2 _ P2

_ @)y )B(Oélqﬁl)B(a%B?)
£1 P2

@ =) (" — ) T (@) (B) T (a)T (B) 23)
p1 p2 T(a1+61) T(ag+ o) .

From (2.2) and (2.3) we obtain (2.1). O

Lemma 2.3. Let 0 < a; < b;, i = 1,2 reals numbers, a = (a1,a2) and u : [a1,b1] X [az,b2] = R be
an integrable function. Then
DAI%Pu (2,y) = u (z,y)

almost everywhere, where a = (a1, o) € (0,1)°and parameter p = (p1, p2).

Proof. From Lemma (2.2), we get

DI ur,y) = 2Py DR I ()
= 2" plyl p2D§ yIa+ (517 y)

= u(z,y).
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3 Existence and uniqueness results

For the existence and uniqueness of solutions for the problem (1.1)-(1.2) we need the following

lemma.

Lemma 3.1. The function u € C(J) is a solution of fractional order problem (1.1)-(1.2) if and
only if
u(z,y) = ¢ @) +¢y) —ela)+ L5 (@ y,u(y). (3.1)

Proof. First suppose that u is a solution of the integral equation (3.1). Applied “D}}” and using
Lemma 2.3 we obtain that u solves the the equation (1.1). Since the integral is zero when x = a4,
or y = ag, then the initial conditions in (1.2) are satisfied. Hence u solves the problem (1.1)-(1.2).

Conversly, if v is a solution of the problem (1.1)-(1.2). Let

h(xvy) = f(:z:,y,u(x,y))
= Dy (u(z,y) —u(z,a2) —u(a1,y) +u(ar,az))
= 2!yt D2 LT u(x,y) —u (@ a2) —ular,y) +ulanaz)] . (3.2)

Applying the operator I;f to (3.2), we get
I;th (x,y) = Ii:o"p [u(z,y) —u(x,a2) —u(ar,y) +u(a,az)l.
Applying the operator Di;a"p to this equation we find

[u (@,y) —u(@,az) —u(ary) +ular,a2)] = D™ I h(z,y)
= (2Ty ) DI LR ()

z, Yy at
= I h(z,y).

Hence, the proof is complete. O

3.1 Existence of solutions

In this subsection we study the existence of solutions for the problem (1.1)-(1.2).

Theorem 3.1. Let k > 0,h] > a1 and hi > as.
Define
G= {(:Cay?u) : (.T,y) € [alahﬂ X [a27h§] ’ |u - (p(l') - ¢ (y) + (P(a/l)l < k}v

M= sup |f(x,y,u)
(z,y,u)EG



CUBO

(2020, On Katugampola fractional order derivatives and Darboux ... 131
22, 1 (2020

and

(hi,h3) if M =0,

hi, ho) = P a 1. a5
(h1, ha) <min <hl(%“‘“)) 1>’mm <h2(%@+1>) )) herise.
2 2

Then, there exists a function u € C [a1, h1] X [a2, ha] that solves the problem (1.1)-(1.2).

Proof. If M = 0 then f (z,y,u) =0, for all (z,y,u) € G. In this case it is clear that the function
u : [ar, h1] X [az, ko] = R with u (z,y) = ¢ () + ¥ (y) — ¢ (a1) is a solution of the problem (1.1)-
(1.2).
For M # 0, using Lemma 3.1 we obtain that the problem (1.1)-(1.2) is equivalent to the Volterra
integral equation (3.1).
Define the function T by
T(2z,y) = ¢ (@) +¢y) —¢(a). (3:3)

and the set U by

U={ueC(lar,h] x [az, h]), |u—T|, < k}. (3.4)

The set U is nonempty since T' € U. It is clear that U is a closed and convex subset of the Banach
space of all continuous functions on [ay, h1] X [az, ha).
We define the operator A on this set U by
1—as 1 a2 p1—=1yp2—1 t, t
(A0) () = T (o) + BB / / : flobulst) g (35

(xPr — sP1) ! (yr2 — tp2)1 @2

We have to show that A has a fixed point. This is done through the Schauder’s Fixed Point
Theorem.
It is easy to see that A is continuous. Now we show that A is defined to U into itself, let u € U
and (x,y) € [a1, h1] X [az, ha] then
-1 1—as p1—1yp2—1
S t f(s,t,u(s,t
(Aw) (2,) = T (2,)] = 7/ / Fontulo g,

xPl _ SPl 1-on (ypz _ tpz)l @2

l—ay 1-ap g1 —1ppa—1

< 17/ / — ———dtds
af (xPr —sp1) "% (yr2 —tp2) T2
< (o (ot
- T+ 1) ['(az+1) 1 p2
< M hl{lalhpzaz
ol (e + 1) (e + 1)
M

< By g
S T+ DT () 2
3 M ko 3T (a1 + DT (a2 + 1)
15T (an + 1) T (e + 1) M
< k.
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Thus, we have Au € U if u € U. We will now show that AU = {Au : u € U} is relatively compact.
This is done by the using Arzela-Ascoli Theorem.
Firstly, we show that A(U) is uniformly bounded. Indeed, let v € U and (z,y) € [a1, h1] X [az, hs]

and from the previous step we get
[Aull o < Tl + %

Secondly, we show that A(U) is equicontinuous. Indeed, let (x1,y1) € [a1, h1] X [az, ha], (z2,y2) €
[a1, h1] X [a2, ho] such that x1 < x2 and y1 < Yo, we have

|(Au) (21,y1) — (Au) ($27y2)|

i 041 1 as Y1 gP1—1yp2—1
< |T(zq, — T (x2, + == / /
< T (z1,51) = T (22, 92)] ) (g )
p1—1yp2—1
- o ——dtds
G e

1 041 1 [ p1—1yp2—1
1 s

/ / 1 j—— T dtds

— sP1) (y — tP2)
plme1pl-a p1—1ypa—1
S t
/ / T oo dtds
aj (bt —sPr) T (yhr —te2) T

% O41 1 a2 Y2 Spl 1tpz 1
/ p 1—aq 1—a2
1
Y1 — Spl (y _ tpz)

< |T(x1,y1) T($2ay2)|
3M

P11 p2*T (an) T (az)
Hence, A(U) is equicontinous, since T is uniformly continuous in [a1, k1] X [az, ha]. As a consequence
of the Schauder’s Fixed Point Theorem, we deduce that A has a fixed point » in U. This fixed
point is the required solution of the problem (1.1)-(1.2). Hence, the proof is complete. O

+ (@8 —al™)™ (57 — yf)™ + (y5* — ab?)™ (2" — af")™]

3.2 Uniqueness of solutions

In this subsection we discuss the uniqueness results for the problem (1.1)-(1.2).
Let Uy, U € O([al,hl] X [ag,hg]), and (117,1]) S [al,hl] X [CLQ, hg]

Suppose there exists a constant L > 0 independent of z,y,u1, and us such that

|f (zyy,u1) = f (2,9, u2)] < Llug — ugl, (3.6)

then we have

L ||’LL1 _ u2||C([ xPl (o5 P2\ X2
) 4 < ay,@]X[az,y]) [ L vy . 3.7
1CAu1) = (Au2)ll ooy, ax oz, < —F (a+ DT (e+1) \p; p2 &7
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Indeed, let ui,us € C([a1,h1] X [az, ha]), (x,y) € [a1,h1] X [az, he] and (v, w) € [a1,2x] X [az,y],

we have
[(Aur) (v, w) — (Auz) (v, w)]
B 1 o 1 a2 / / s P2 f (st ug (s,t)) — f (s, t,u2 (S’tmdtds
o UPl _ SPl)l a1 (wpz _ th)lfoQ
1 al 1 [ Splfltpgfl
< _
- / / ’Upl — SP] l1-as (wpz — tpz)l_az |U1 (S’t) U2 (S’t)l dtds
plmen pl-oz g1 —1ppa—1
< Zr P2
> ( ) ( ) ||U1 UQHC ([a1,x] ag,y])/ / Upl _ Spl 1—a; (’LUP2 _ tp2)17a2 dtds
L P L P2
<
S FE T rETD M et (G > (%)
L
<

Pl yp2
(o + 1T (g +1) lur = tzlle ar ol x oz N P2

From the above inequality we get (3.7).

L ||U1 — UQHC([ 1| 2P\ ¢t yP? @2
Auy) — (A < aveixfaz,yl) (T
1(Au1) = (Au)llo(fay 0 ¢ az,ul) S L +1)T (a2 +1) p1 p2

Next, we have the following result

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Also let j € N, (z,y) €
[a1, 1] X [az, ha] and uy,us € U. Suppose f satisfies the Lipschitz condition with respect to the third
variable with the Lipschitz constant L. Then

IRNEY) P2 azj
P1 P2

x| x[az,y]) < L (1+ay)T(1+az)) [[ua —U2||c ([a1,2]x[az,y]) *

[ATus AjWHc([a], (38)

Proof. We will prove (3.8) by induction. In the case j = 0, the inequality holds. Assume (3.8) is
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true for j — 1 € Ny then for all (z,y) € [a1, h1] X [ag, he] and (v, w) € [a1,x] X [az,y] we have

‘(Ajul) (v, w) — (Ajug) (v, w)‘
= ‘(AAJ 1u1) (v, (AAJ ! ) (v,w)’

_ p% " py / / S f (s, AT (5,0) = f (5,8 AT (1)
o (’Upl _ SP])I_O” (wpz _ th)l_o‘z 5
< } a1 1 0‘2/ / sPr— 12— 1‘A3 Lug (s,t) — A7 Luy (s,t)’dtds
- (vPr — SPl)l (w2 — tﬂz)lf‘m
1 1 1 j—1
_ } a1 1 az/ /w sP1TAtP2— HA7 uy — A7 UQHC ([a1,8]x[az,t]) dtds
= 1—a; 1—ao
‘11 a ’Upl — Spl) (wpz — tpz)
LJ 1 a1j 1—asj

< L - llur = 2]l e (ar 0 faa )

['(o1)T (a2) T (1+a1(J—1))F(1+a U=1) aiany

W gprtaipi(§—1)—1ypatazpz(j—1)—1
/ / - oo dtds
(vPr — sP1) T (P2 — tP2) T2
L7 1 a1 1—asj

< L - llur = 2ll e (ar 0 faa )

I'(on)T (e 2)F(1+a1(J—1))F(1+a2(J—1)) amiany

(Lla) Do) T (L4 a1 (j = D)T (1 +az (j — 1)) @] yreeed

rQa +Oélj) (14 azj) pL P2
21\ @10 yP2 ) 42
(%) (p—)
T T+l (1+a: ‘ul ~ Uallo(ay ) faz ) -
Hence, the proof is complete. O

Theorem 3.3. Let k,hi and h} are positive numbers, define the set G as in Theorem 3.1 and
assume that the function f : G — R satisfies a Lipschitz condition with respect to the third variable
with the Lipschitz constant L. Then, there exists a unique solution u € C ([a1,h1] X [az, ha]) for
the problem (1.1)-(1.2). Where hq, ha are the same as in Theorem 3.1.

Proof. According to Theorem 3.1, the problem (1.1)-(1.2) has a solution. To prove the uniqueness,
we adopt Theorem 3.2, we use the operato A as defined in (3.5), the function T as defined in (3.3)
and the set U as defined in (3.4). We will apply Weissinger’s Fixed Point Theorem to prove that
A has a unique fixed point.

Let j € Nand uy,us € C ([a1, h1] X [az, ha]) . From (3.8) and taking the norms on [a1, hi] X [az, ha],

we get

Y yP2 azj
P1 P2

U2l o(ay i fasha)) S T Tt o) T 1™~ 2ot mdanna

ALy — 49
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@P1 \Y1J (yP2 \¥2]
Let wj = ()™ () . It is clear that

P(14o01 )T (1+az5)
= e ()T )Y
1 p2 2P\ ¢ (ypz)o‘2 )
wj = . =~ =E( (i, 1),21 25 — ,
JZ::O ! ; [+ )T (1+ azj) (( i1 (< p1 ) P2 )
hence the series converges. This completes the proof. O

4 Conclusion

Here we have studied the existence and uniqueness of the solutions for the Darboux problem of

partial differential equations with Caputo-Katugampola fractional derivative.
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