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ABSTRACT

In this paper, we introduce the following (a, b, c)-mixed type functional equation of the

form

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3) +

2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)] + a[g(x1)− g(−x1)] +

b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)] = 4g(ax1 + cx3) + 2g(−bx2) + 2g(bx2)

where a, b, c are positive integers with a > 1, and investigate the solution and the

Hyers-Ulam stability of the above functional equation in Banach spaces by using two

different methods.
RESUMEN

En este art́ıculo introducimos la siguiente ecuación funcional de tipo (a, b, c)-mixta de

la forma

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3) +

2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)] + a[g(x1)− g(−x1)] +

b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)] = 4g(ax1 + cx3) + 2g(−bx2) + 2g(bx2)

donde a, b, c son enteros positivos con a > 1, e investigamos la solución y la estabilidad

de Hyers-Ulam de la ecuación funcional anterior en espacios de Banach usando dos

métodos diferentes.
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1 Introduction

The stability problem of functional equations originated form a question of Ulam [28] concerning

the stability of group homomorphisms. Hyers [12] gave a first affirmative partial answer to the

question of Ulam [28] for Banach spaces. Hyers theorem was generalized by Aoki [3] for additive

mappings and Rassias [12] for quadratic mappings. During the last three decades the stability

theorem of Rassias [26] provided a lot of influence for the development of stability theory of a large

variety of functional equations (see [1, 2, 4, 7, 9, 11, 14, 17, 18, 21, 22, 23, 27]). One of the most

famous functional equations is the following additive functional equation

g(x+ y) = g(x) + g(y) (1.1)

In 1821, it was first solved by Cauchy in the class of continuous real-valued functions. It is

often called Cauchy additive functional equation in honour of Cauchy. The theory of additive func-

tional equations is frequently applied to the development of theories of other functional equations.

Moreover, the properties of additive functional equations are powerful tools in almost every field

of natural and social science ([6, 24, 26]). Every solution of the additive functional equation (1.1)

is called an additive mapping.

The function g(x) = x2 satisfies the functional equation

g(x+ y) + g(x− y) = 2g(x) + 2g(y) (1.2)

and therefore, the functional equation (1.2) is called quadratic functional equation. The Hyers-

Ulam stability theorem for the quadratic functional equation (1.2) was proved by Skof [25] for the

mapping g : E1 → E2, where E1 is a normed space and E2 is a Banach space.

Moslehian and Rassias [20] studied the Hyers-Ulam stability problem in non-Archimedean

normed spaces. Mirzavaziri and Moslehian [19] studied the Hyers-Ulam stability of a quadratic

functional equation in Banach spaces by using the fixed point method and Ciepliński [5] sur-

veyed the Hyers-Ulam stability of functional equations by using the fixed point method. Ebadian,

Ghobadipour and Eshaghi Gordji [8] proved the Hyers-Ulam stability of bimultipliers and Jordan

bimultipliers in C∗-ternary algebras by using the fixed point method for a three variable additive

functional equation.

Motivated by Ebadian et al. [8], we introduce the following three variable generalized additive-

quadratic functional equation of the form Dg(x1, x2, x3) :=

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)

+ 2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)]

+ a[g(x1)− g(−x1)] + b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)]
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− [4g(ax1 + cx3) + 2g(−bx2) + 2g(bx2)] = 0 (1.3)

where a, b, c are positive integers with a > 1, and investigate the solution and the Hyers-Ulam

stability of the three variable generalized additive-quadratic functional equation (1.3) in Banach

spaces by using the direct method and the fixed point method.

2 Solution of the functional equation (1.3): when g is odd

In this section, we investigate the solution of the functional equation (1.3) for an odd mapping

case. Throughout this section, let X and Y be real vector spaces.

Theorem 1. If an odd mapping g : X → Y satisfies the functional equation (1.1) if and only if

g : X → Y satisfies the functional equation (1.3).

Proof. Assume that g : X → Y satisfies the functional equation (1.1).

Since g is odd, g(0) = 0.

Replacing (x, y) by (x, x) and by (x, 2x) respectively in (1.1), we obtain

g(2x) = 2g(x) and g(3x) = 3g(x) (2.1)

for all x ∈ X . In general for any positive integer d, we have

g(dx) = dg(x) (2.2)

for all x ∈ X . It is easy to verify from (1.1) that

g(d2x) = d2g(x) and g(d3x) = d3g(x) (2.3)

for all x ∈ X . Replacing (x, y) by (ax1 + bx2, cx3) in (1.1), we get

g(ax1 + bx2 + cx3) = g(ax1 + bx2) + g(cx3) (2.4)

for x1, x2, x3 ∈ X . Replacing x1 by −x1 in (2.4), we get

g(−ax1 + bx2 + cx3) = g(−ax1 + bx2) + g(cx3) (2.5)

for x1, x2, x3 ∈ X . Replacing x2 by −x2 in (2.4), we have

g(ax1 − bx2 + cx3) = g(ax1 − bx2) + g(cx3) (2.6)

for x1, x2, x3 ∈ X . Replacing x3 by −x3 in (2.4), we obtain

g(ax1 + bx2 − cx3) = g(ax1 + bx2) + g(−cx3) (2.7)
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for x1, x2, x3 ∈ X . By (2.4), (2.5), (2.6), (2.7), (1.1) and (2.3), we get

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)

= 2ag(x1)− 2bg(x2) + 2cg(x3) (2.8)

for x1, x2, x3 ∈ X . Adding 2ag(x1)− 2bg(x2) + 2cg(x3) + 2a2g(x1) + 2b2g(x2) + 2c2g(x3) to both

sides and using the oddness of g, we get (1.3).

Conversely, assume that g satisfies (1.3). Letting x3 = 0 in (1.3), we have

g(ax1 + bx2 + cx3)− g(−ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)

+ 2a2[g(x1) + g(−x1)] + 2b2[g(x2) + g(−x2)] + 2c2[g(x3) + g(−x3)] + a[g(x1)− g(−x1)]

+ b[g(x2)− g(−x2)] + c[g(x3)− g(−x3)]

= 2g(ax1 − bx2) + 2ag(x1) + 2bg(x2)

for all x1, x2 ∈ X , since g is odd. So

2g(ax1 − bx2) + 2ag(x1) + 2bg(x2) = 4g(ax1) (2.9)

for all x1, x2 ∈ X . Letting x2 = 0 in (2.9), we have 2g(ax1) + 2ag(x1) = 4g(ax1) and so g(ax1) =

ag(x1) for all x1 ∈ X . Letting x1 = 0 in (2.9), we have −2g(bx2) + 2bg(x2) = 0 and so g(bx2) =

bg(x2) for all x2 ∈ X . It follows from (2.9) that

2g(ax1 − bx2) + 2g(ax1) + 2g(bx2) = 4g(ax1)

for all x1, x2 ∈ X and so

g(x− y) + g(y) = g(x)

for all x, y ∈ X . Letting z = x − y in the above equation, we get g(z) + g(y) = g(z + y) for all

z, y ∈ X .

3 Solution of the functional equation (1.3): when g is even

In this section, we investigate the solution of the functional equation (1.3) for an even mapping

case. Throughout this section, let X and Y to be real vector spaces.

Theorem 2. If an even mapping g : X → Y satisfies the functional equation (1.2) if and only if

g : X → Y satisfies the functional equation (1.3).

Proof. Assume that g : X → Y satisfies the functional equation (1.2).

Setting x = y = 0 in (1.2), we get g(0) = 0.
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Replacing (x, y) by (x, x) and by (x, 2x), respectively, in (1.2), we obtain

g(2x) = 4g(x) and g(3x) = 9g(x) (3.1)

for all x ∈ X . In general for any positive integer d, we have

g(dx) = d2g(x) (3.2)

for all x ∈ X . It is easy to verify from (1.2) that

g(d2x) = d4g(x) and g(d3x) = d6g(x) (3.3)

for all x ∈ X . Replacing (x, y) by (ax1, cx3) in (1.2), we get

g(ax1 + cx3) + g(ax1 − cx3) = 2g(ax1) + 2g(cx3) (3.4)

for x1, x2, x3 ∈ X .

Multiplying 2 on both sides and using (3.3), we get

2g(ax1 + cx3) + 2g(ax1 − cx3) = 4a2g(x1) + 4c2g(x3) (3.5)

for x1, x2, x3 ∈ X .

Adding 2g(ax1 + cx3) to (3.5) on both sides and using (3.3), we obtain

2g(ax1 + cx3) + 2g(ax1 − cx3) + 2g(ax1 + cx3) = 4a2g(x1) + 4c2g(x3) + 2g(ax1 + cx3) (3.6)

for x1, x2, x3 ∈ X . So

4g(ax1 + cx3) = 4a2g(x1) + 4c2g(x3) + 2g(ax1 + cx3)− 2g(ax1 − cx3). (3.7)

Adding and subtracting 2g(bx2) to (3.7), we get

4g(ax1 + cx3) = 4a2g(x1) + 4c2g(x3) + g(ax1 + cx3 + bx2) + g(ax1 + cx3 − bx2)

− g(ax1 − cx3 + bx2)− g(ax1 − cx3 − bx2) (3.8)

for x1, x2, x3 ∈ X .

Adding 4g(bx2) to (3.8) on both sides, we obtain

4g(ax1 + cx3) + 4g(bx2) = 4a2g(x1) + 4c2g(x3) + g(ax1 + cx3 + bx2) + g(ax1 + cx3 − bx2)

− g(ax1 − cx3 + bx2)− g(ax1 − cx3 − bx2) + 4g(bx2) (3.9)

for x1, x2, x3 ∈ X . By (3.9) and (3.3), we get

4g(ax1 + cx3) + 4g(bx2) = 4a2g(x1) + 4c2g(x3) + 4b2g(x2) + g(ax1 + cx3 + bx2)

+ g(ax1 + cx3 − bx2)− g(ax1 − cx3 + bx2)− g(−ax1 + cx3 + bx2) (3.10)
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for x1, x2, x3 ∈ X . Using (3.10), (3.3) and the evenness of g, we get

g(ax1 + bx2 + cx3) + g(ax1 − bx2 + cx3)− g(ax1 + bx2 − cx3)− g(−ax1 + bx2 + cx3)

+ 4a2g(x1) + 4b2g(x2) + 4c2g(x3) = 4g(ax1 + cx3) + 4g(bx2) (3.11)

for all x1, x2, x3 ∈ X .

Conversely, assume that g : X → Y satisfies the functional equation (1.3).

Replacing (x1, x2, x3) by
(

x
a
, 0, y

c

)

in (1.3), we get

g(x− y)− g(−x+ y) + g(x+ y)− g(x− y) + 4g(x) + 4g(y) = 4g(x+ y) (3.12)

for all x, y ∈ X . Using (1.3) and the evenness of g, we get

g(x+ y) + g(x− y) = 2g(x) + 2g(y),

which is quadratic.

4 Stability results for (1.3): Odd case and direct method

In this section, we present the Hyers-Ulam stability of the functional equation (1.3) for an odd

mapping case.

Theorem 3. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function such that

∞
∑

k=0

α(akjx1, a
kjx2, a

kjx3)

akj
< ∞

for all x1, x2, x3 ∈ X. Let g : X → Y be an odd mapping satisfying the inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (4.1)

for all x1, x2, x3 ∈ X. There exists a unique additive mapping A : X → Y which satisfies the

functional equation (1.3) and

‖g(x)−A(x)‖ ≤
1

2

∞
∑

k= 1−j
2

α(akjx1, 0, 0)

akj
(4.2)

for all x1 ∈ X. The mapping A(x) is defined by,

A(x) = lim
k→∞

g(akjx1)

akj
for all x ∈ X

Proof. Assume that j = 1. Replacing (x1, x2, x3) by (x, 0, 0) in (4.2) and using the oddness of g,

we get

‖2g(ax)− 2ag(x)‖ ≤ α(x, 0, 0) (4.3)
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for all x ∈ X . It follows from (4.3) that
∥

∥

∥

∥

g(ax)

a
− g(x)

∥

∥

∥

∥

≤
1

2a
α(x, 0, 0) (4.4)

for all x ∈ X . Replacing x by ax in (4.4) and dividing by a, we obtain
∥

∥

∥

∥

g(a2x)

a2
−

g(ax)

a

∥

∥

∥

∥

≤
1

2a2
α(ax, 0, 0) (4.5)

for all x ∈ X . It follows from (4.4) and (4.5) that
∥

∥

∥

∥

g(a2x)

a2
− g(x)

∥

∥

∥

∥

≤
1

2a

[

α(x, 0, 0) +
α(ax, 0, 0)

a

]

(4.6)

for all x ∈ X . Similarly, for any positive integer n, we have

∥

∥

∥

∥

g(x)−
g(anx)

an

∥

∥

∥

∥

≤
1

2a

n−1
∑

k=0

α(akx, 0, 0)

ak
≤

1

2a

∞
∑

k=0

α(akx, 0, 0)

ak
(4.7)

for all x ∈ X . In order to prove convergence of the sequence
{

g(akx)
ak

}

, replacing x by amx and

dividing am in (4.7) for any m,n > 0, we get
∥

∥

∥

∥

g(amx)

am
−

g(am+nx)

am+n

∥

∥

∥

∥

=
1

2am

∥

∥

∥

∥

g(amx)−
g(amanx)

an

∥

∥

∥

∥

≤
1

2a

n−1
∑

m=0

α(am+nx, 0, 0)

am+n

≤
1

2a

n−1
∑

m=0

α(am+nx, 0, 0)

am+n

→ 0 as m → ∞.

Hence the sequence
{

g(anx)
an

}

is a Cauchy sequence. Since Y is complete, there exists a mapping

A : X → Y such that

A(x) = lim
n→∞

g(anx)

an
, ∀x ∈ X. (4.8)

Letting n → ∞ in (4.8), we see that (4.8) holds for x ∈ X .

To prove that A satisfies (1.3), replacing (x1, x2, x3) by (anx, anx, anx) and dividing an in (4.1),

we obtain
1

an
‖Dg(anx, anx, anx)‖ ≤

1

an
α(anx, anx, anx)

for all x1, x2, x3 ∈ X . Letting m → ∞ in the above inequality and using the definition of A(x), we

see that DA(x1, x2, x3) = 0. Hence A satisfies (1.3) for all x1, x2, x3 ∈ X .

To show that A is unique, let B(x) be another additive mapping satisfying (4.2). Then

‖A(x)−B(x)‖ =
1

an
‖A(anx)−B(anx)‖

≤
1

an
{‖A(anx)− g(anx)‖ + ‖g(anx)−B(anx)‖}

→ 0 as n → ∞.
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Hence A is unique.

Assume that j = −1. Replacing x by x
a
in (4.3), we get

∥

∥

∥
ag(x)− a2g

(x

a

)∥

∥

∥
≤ α

(x

a
, 0, 0

)

(4.9)

for all x ∈ X . The rest of the proof is similar to the proof of the case j = 1. This completes the

proof of the theorem.

The following corollary is an immediate consequence of Theorem 3 concerning the stability of

(1.3).

Corollary 1. Let ǫ and p be nonnegative real numbers. Let g : X → Y be an odd mapping

satisfiying the inequality

‖Dg(x1, x2, x3)‖ (4.10)

≤















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ; p > 1 or p < 1

ǫ
(

‖x1‖
p + ‖x2‖

p + ‖x3‖
p + ‖x1‖

3p‖x2‖
3p‖x3‖

3p
)

; p > 1
3 or p < 1

3

for all x1, x2, x3 ∈ X. Then there exists a unique additive mapping A : X → Y such that

‖g(x)−A(x)‖ ≤















ǫ
2|a−1| ;
ǫ‖x‖p

2|a−ap| ; p > 1 or p < 1
ǫ‖x‖3p

2|a−a3p| ; p > 1
3 or p < 1

3

(4.11)

for all x ∈ X.

Proof. Letting

α(x1, x2, x3) =















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ;

ǫ
(

‖x1‖
p + ‖x2‖

p + ‖x3‖
p + ‖x1‖

3p‖x2‖
3p‖x3‖

3p
)

for all x1, x2, x3 ∈ X , we can get the result.

5 Stability results for (1.3): Even case and direct method

In this section, we discuss the Hyers-Ulam stability of the functional equation (1.3) for an even

mapping case by using the direct method.
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Theorem 4. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function such that

∞
∑

k=0

α(akjx1, a
kjx2, a

kjx3)

akj
< ∞ (5.1)

for all x1, x2, x3 ∈ X. Let g : X → Y be an even mapping satisfying g(0) = 0 and the inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (5.2)

for all x1, x2, x3 ∈ X. There exists a unique additive mapping Q : X → Y which satisfies the

functional equation (1.3) and

‖g(x)−Q(x)‖ ≤
1

4a2

∞
∑

k= 1−j
2

α(akjx, 0, 0)

a2kj
(5.3)

for all x ∈ X. The mapping Q(x) is defined by

Q(x) = lim
n→∞

g(akjx)

a2kj
(5.4)

for all x ∈ X.

Proof. Assume that j = 1. Replacing (x1, x2, x3) by (x, 0, 0) in (5.2), we get

‖4g(ax)− 4a2g(x)‖ ≤ α(x, 0, 0) (5.5)

for all x ∈ X . It follows from (5.5) that

∥

∥

∥

∥

g(ax)

a2
− g(x)

∥

∥

∥

∥

≤
1

4a2
α(x, 0, 0) (5.6)

for all x ∈ X . Replacing x by ax in (5.6) and dividing by a2, we obtain

∥

∥

∥

∥

g(a2x)

a4
−

g(ax)

a2

∥

∥

∥

∥

≤
1

4a4
α(ax, 0, 0) (5.7)

for all x ∈ X . It follows from (5.6) and (5.7) that

∥

∥

∥

∥

g(a2x)

a4
− g(x)

∥

∥

∥

∥

≤
1

4a2

[

α(x, 0, 0) +
α(ax, 0, 0)

a2

]

(5.8)

for all x ∈ X . Inductively, we have

∥

∥

∥

∥

g(x)−
g(anx)

a2n

∥

∥

∥

∥

≤
1

4a2

n−1
∑

k=0

α(akx, 0, 0)

a2k
≤

1

a3

∞
∑

k=0

α(akx, 0, 0)

a2k
(5.9)
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for all x ∈ X . In order to prove convergence of the sequence
{

g(akx)
a2k

}

, replacing x by amx and

dividing am in (5.9) for any m,n > 0, we get

∥

∥

∥

∥

g(amx)

a2m
−

g(am+nx)

a2(m+n)

∥

∥

∥

∥

=
1

a2m

∥

∥

∥

∥

g(amx)−
g(amanx)

a2n

∥

∥

∥

∥

≤
1

a3

n−1
∑

m=0

α(am+nx, 0, 0)

a2(m+n)

≤
1

a3

n−1
∑

m=0

α(am+nx, 0, 0)

a2(m+n)

→ 0 as m → ∞.

Hence the sequence
{

g(anx)
a2n

}

is a Cauchy sequence. Since Y is complete, there exists a mapping

Q : X → Y such that

Q(x) = lim
n→∞

g(anx)

a2n
, ∀x ∈ X. (5.10)

Letting n → ∞ in (5.10) we see that (5.10) holds for x ∈ X .

To prove that Q satisfies (1.3), replacing (x1, x2, x3) by (anx, anx, anx) and dividing a2n in (5.2),

we obtain
1

a2n
‖Dg(anx, anx, anx)‖ ≤

1

a2n
α(anx, anx, anx)

for all x1, x2, x3 ∈ X . Letting n → ∞ in the above inequality and using the definition of Q(x), we

see that DQ(x1, x2, x3) = 0. Hence Q satisfies (1.3) for all x1, x2, x3 ∈ X .

To show that Q is unique, let B(x) be another quadratic mapping satisfying (5.4). Then

‖Q(x)−B(x)‖ =
1

a2n
‖Q(anx) −B(anx)‖

≤
1

a2n
{‖Q(anx)− g(anx)‖ + ‖g(anx) −B(anx)‖}

→ 0 as n → ∞.

Hence Q is unique.

Assume that j = −1. Replacing x by x
a
in (5.5), we get

∥

∥

∥
ag(x)− a2g

(x

a

)∥

∥

∥
≤

1

4
α
(x

a
, 0, 0

)

(5.11)

for all x ∈ X . The rest of the proof is similar to the proof of the case j = 1. This completes the

proof of the theorem.

The following corollary is an immediate consequence of Theorem 4 concerning the stability of

(1.3).
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Corollary 2. Let ǫ and p be nonnegative real numbers. Let gq : X → Y be an even mapping

satisfiying g(0) = 0 and the inequality

‖Dg(x1, x2, x3)‖ (5.12)

≤















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ; p > 2 or p < 2

ǫ
(

‖x1‖
p‖x2‖

p‖x3‖
p + {‖x1‖

3p‖x2‖
3p‖x3‖

3p}
)

; p > 2
3 or p < 2

3

for all x1, x2, x3 ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

‖g(x)−Q(x)‖ ≤















ǫ
4|a2−1|
ǫ‖x‖p

4|a2−ap|
ǫ‖x‖3p

4|a2−a3p|

(5.13)

for all x ∈ X.

Proof. Letting

α(x1, x2, x3) =















ǫ;

ǫ (‖x1‖
p + ‖x2‖

p + ‖x3‖
p) ;

ǫ
(

‖x1‖
p‖x2‖

p‖x3‖
p + {‖x1‖

3p‖x2‖
3p‖x3‖

3p}
)

;

for all x1, x2, x3 ∈ X , we get the result.

6 Stability results of (1.3): Mixed case

In this section, we establish the Hyers-Ulam stability of the functional equation(1.3) for a mixed

mapping case.

Theorem 5. Let j ∈ {−1, 1} and α : X3 → [0,∞) be a function satisfying (1.3) for all x1, x2, x3 ∈

X. Let g : X → Y be a mapping satisfying the inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (6.1)

for all x1, x2, x3 ∈ X. There exist a unique additive mapping A : X → Y and a unique quadratic

mapping Q : X → Y which satisfies the functional equation (1.3) and

‖f(x)−A(x)−Q(x)‖ ≤
1

2

{[ 1

2a

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

akj
+

α(−akjx, 0, 0)

akj

]

]

+
1

4n2

[

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

a2kj
+

α(−akjx, 0, 0)

a2kj

]

]}

for all x ∈ X. The mapping A(x) and Q(x) are defined in (4.2) and (5.10), respectively.
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Proof. Let go(x) = ga(x)−ga(−x)
2 for all x ∈ X . Then go(0) = 0 and go(−x) = −go(x) for all

x ∈ X .

Hence

‖Dgo(x1, x2, x3)‖ ≤
1

2

{

‖Dga(x1, x2, x3)‖+ ‖Dga(−x1,−x2,−x3)‖
}

≤
α(x1, x2, x3)

2
+

α(−x1,−x2,−x3)

2

for all x1, x2, x3 ∈ X . By Theorem 3, we have

‖go(x) −A(x)‖ ≤
1

4a

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

akj
+

α(−akjx, 0, 0)

akj

]

(6.2)

for all x ∈ X .

Let ge(x) =
gq(x)+gq(−x)

2 for all x ∈ X . Then ge(0) = 0 and ge(−x) = ge(x) for all x ∈ X .

Hence,

‖Dge(x1, x2, x3)‖ ≤
1

2

{

‖Dgq(x1, x2, x3)‖+ ‖Dgq(−x1,−x2,−x3)‖
}

≤
α(x1, x2, x3)

2
+

α(−x1,−x2,−x3)

2

for all x1, x2, x3 ∈ X .

By Theorem 4, we have

‖ge(x) −Q(x)‖ ≤
1

8a2

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

a2kj
+

α(−akjx, 0, 0)

a2kj

]

(6.3)

for all x ∈ X . Then

g(x) = ge(x) + go(−x) (6.4)

for all x ∈ X . It follows from (6.2), (6.3) and (6.4) that

‖g(x)−A(x)−Q(x)‖ = ‖ge(x) + go(−x)−A(x) −Q(x)‖

≤ ‖go(−x)−A(x)‖ + ‖ge(x) −Q(x)‖

≤
1

4a

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

akj
+

α(−akjx, 0, 0)

akj

]

+
1

8a2

∞
∑

k= 1−j
2

[α(akjx, 0, 0)

a2kj
+

α(−akjx, 0, 0)

a2kj

]

for all x ∈ X . Hence the theorem is proved.

Using Corollaries 1 and 2, we have the following corollary concerning the stability of (1.3).
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Corollary 3. Let λ and s be a nonnegative real numbers. Let gq : X → Y be a mapping satisfiying

the inequality

‖Dg(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s); s 6= 1, 2

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}; s 6= 1
3 ,

2
3

(6.5)

for all x1, x2, x3 ∈ X. Then there exist a unique additive function A : X → Y and a unique

quadratic mapping Q : X → Y such that

‖g(x)−A(x) −Q(x)‖ ≤



















λ
2

[

1
|a−1| +

1
2|a2−1|

]

λ‖x‖S

2

[

1
|a−aS| +

1
2|a2−aS|

]

λ‖x‖3S

2

[

1
|a−a3S | +

1
2|a2−a3S |

]

(6.6)

for all x ∈ X.

7 Fixed point stability of (1.3): Odd mapping case

The following theorems are useful to prove our fixed point stability results.

Theorem 6. [12] (Banach Contraction Principle) Let (X, d) be a complete metric space and

consider a mapping T : X → X which is strictly contractive mapping.

(A1) d(Tx, T y) ≤ Ld(x, y) for some (Lipschitz constant) L < 1.

(i) The mapping T has one and only fixed point x∗ = T (x∗);

(ii) The fixed point for each given element x∗ is globally contractive, that is,

(A2) limn→∞ T nx = x∗ for any starting point x ∈ X;

(iii) One has the following estimation inequalities

(A3) d(T nx, x∗) ≤ 1
1−L

d(T nx, T n+1x), ∀n ≥ 0, ∀x ∈ X;

(A4) d(x, x∗) = 1
1−L

d(x, x∗), ∀x ∈ X.

Theorem 7. [12] (Alternative Fixed Point Theorem) Suppose that for a complete generalized

metric space (X, d) and a strictly contractive mapping T : X → X with Lipschitz constant L. Then

for each given element x ∈ X,

(B1) d(T nx, T n+1x) = ∞, ∀n ≥ 0;

(B2) there exists a natural number n0 such that
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(i) d(T nx, T n+1x) < ∞, ∀n ≥ 0;

(ii) The sequence {T nx} is convergent to a fixed point y∗ of T ;

(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ Y : d(T n0 , y) < ∞};

(iv) d(y∗, y) ≤ 1
1−L

d(y, T y) for all y ∈ Y .

In this method, we investigate the Hyers-Ulam stability of the functional equation (1.3) for

an odd mapping case by using fixed point method.

Theorem 8. Let g : W → B be an odd mapping for which there exists a function α : W 3 → [0,∞)

with the condition

lim
n→∞

α(aki x1, a
k
i x2, a

k
i x3)

aki
= 0, (7.1)

for ai =











a i = 0

1
a

i = 1,
such that the functional inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (7.2)

for all x1, x2, x3 ∈ W . If there exists L = L(i) such that the function x → β(x) = 1
2α

(

x
a
, 0, 0

)

has

the property
1

ai
β(aix) = L (β(x)) (7.3)

for all x ∈ W . Then there exists a unique additive function A : W → B satisfying the functional

equation (1.3) and

‖g(x)−A(x)‖ ≤
L1−i

1− L
β(x) (7.4)

for all x ∈ W .

Proof. Consider the set X = {P |P : W → B,P (0) = 0} and introduce the generalized metric on

X .

d(p, q) = inf{k ∈ (0,∞) : ‖p(x)− q(x)‖ ≤ β(x), x ∈ W}

It is easy to see that (X, d) is complete.

Define T : X → X by Tp(x) =
1
ai
p(aix) for all x ∈ W . Now p, q ∈ X ,

d(p, q) ≤ k

⇒ ‖p(x)− q(x)‖ ≤ kβ(x), x ∈ W.

⇒

∥

∥

∥

∥

1

ai
p(aix)−

1

ai
q(aix)

∥

∥

∥

∥

≤
1

ai
kβ(aix), ∀x ∈ W

⇒ ‖Tp(x)− Tq(x)‖ ≤ Lkβ(x), ∀x ∈ W

⇒ d(Tp, Tq) ≤ Lk.
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This implies d(Tp, Tq) ≤ Ld(p, q) for all p, q ∈ X . That is, T is a strictly contractive mapping on

X with Lipschitz constant L. It follows from (4.3) that

‖2g(ax)− 2ag(x)‖ ≤ α(x, 0, 0) (7.5)

for all x ∈ W . It follows from (7.5) that,
∥

∥

∥

∥

g(x)−
g(ax)

a

∥

∥

∥

∥

≤
1

2a
α(x, 0, 0) (7.6)

for all x ∈ W . Using (6.2), for this case i = 0, it reduces to
∥

∥

∥

∥

g(x)−
g(ax)

a

∥

∥

∥

∥

≤
1

a
β(x) (7.7)

for all x ∈ W . Thus

d(ga, T ga) ≤
1

a
= L = L1 < ∞.

Again replacing x by x
a
in (7.5), we get

∥

∥

∥
g(x)− ag

(x

a

)
∥

∥

∥
≤

1

2
α
(x

a
, 0, 0

)

(7.8)

for all x ∈ W .

By using (7.3) for the case i = 1, it reduces to
∥

∥

∥
g(x)− ag

(x

a

)∥

∥

∥
≤ β(x). (7.9)

That is, d(g, T g) ≤ 1 ⇒ d(g, T g) ≤ 1 = L0 < ∞. In the above case, we have d(g, T g) ≤ L1−i.

Therefore (B2(i)) holds. From (B2(ii)), it follows that there exists a fixed point A of T in X such

that

A(x) = lim
i→∞

ga(a
k
i x)

aki
, ∀x ∈ W. (7.10)

In order to prove A : W → B is additive, replacing (x1, x2, x3) by (aki x1, a
k
i x2, a

k
i x3) in (7.2)

and dividing aki , it follows from (7.3) and (7.10) that A satisfies (1.3) for all x1, x2, x3 ∈ W . By

(B2(iii)), A is the unique fixed point of T in the set, Y = {g ∈ X : d(Tg,A) < ∞}.

Using the fixed point alternative result, A is the unique function such that

‖g(x)−A(x)‖ ≤ kβ(x)

for all x ∈ W and k > 0. Finally, by (B2(iv)), we obtain

d(g,A) ≤
1

1− L
d(g, T g).

That is, d(g,A) ≤ L1−i

1−L
. Hence we conclude that

‖g(x)−A(x)‖ ≤
L1−i

1− L
β(x)

for all x ∈ W . This completes the proof of the theorem.
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Corollary 4. Let g : W → B be an odd mapping and assume that there exist real numbers λ and

s such that

‖Dga(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s);

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}

(7.11)

for all x1, x2, x3 ∈ X. Then there exists a unique additive mapping A : W → B such that

‖g(x)−A(x)‖ ≤















λ
2|a−1| ;
λ‖x‖s

2|a−as| ; s 6= 1
λ‖x‖3s

2|a−a3s| ; s 6= 1
3

(7.12)

for all x ∈ X.

Proof. Let

α(x1, x2, x3) =















λ;

λ(‖x1‖
S + ‖x2‖

S + ‖x3‖
S);

λ(‖x1‖
S + ‖x2‖

S + ‖x3‖
S) + {λ(‖x1‖

3S + ‖x2‖
3S + ‖x3‖

3S)};

for all x1, x2, x3 ∈ W .

Now,

α(aki x1, a
k
i x2, a

k
i x3)

aki

=































λ

aki
;

λ

aki
(‖aki x1‖

S + ‖aki x2‖
S + ‖aki x3‖

S);

λ

aki
(‖aki x1‖

S + ‖aki x2‖
S + ‖aki x3‖

S) + {‖aki x1‖
3S + ‖aki x2‖

3S + ‖aki x3‖
3S}

=















→ 0 as k → ∞

→ 0 as k → ∞

→ 0 as k → ∞.

(7.13)

That is, (7.1) holds. But we have β(x) = 1
2α

(

x
a
, 0, 0

)

. Hence

β(x) =
1

2
α
(x

a
, 0, 0

)

=















λ
2

λ
2aS (‖x‖

S)

λ
2aS (‖x‖

S).
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Also

1

ai
β(ai, x) =















λ
2ai

λ
2ai

(‖aix‖
S)

λ
2ai

(‖aix‖
S)

=















a−1
i β(x)

aS−1
i β(x)

a3S−1
i β(x).

Hence the inequality (7.7) holds. Either L = a−1 for s = 0 if i = 0 and L = 1
a−1 for s = 0 if

i = 1.

Either L = as−1 for s < 1 if i = 0 and L = 1
as−1 for s > 1 if i = 1.

Either L = a3s−1 for s < 1 if i = 0 and L = 1
a3s−1 for s > 1 if i = 1.

Now from (7.2), we prove the following cases:

Case: 1 L = a−1, i = 0

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a−1)1−0

1− a−1

λ

2
=

λ

2(a− 1)
. (7.14)

Case: 2 L =
(

1
a

)−1
, i = 1

‖ga(x) −A(x)‖ ≤
L1−i

1− L
β(x) =

(a)1−1

1− a

λ

2
=

λ

2(1− a)
. (7.15)

Case: 3 L = as−1, s < 1, i = 0

‖ga(x) −A(x)‖ ≤
L1−i

1− L
β(x) =

(as−1)1−0

1− aS−1

λ

2aS
‖x‖S =

λ‖x‖S

2|a− aS |
. (7.16)

Case: 4 L =
(

1
a

)S−1
, S > 1, i = 1

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a1−s)1−1

1− a1−S

λ

2aS
‖x‖S =

λ‖x‖S

2(aS − a)
. (7.17)

Case: 5 L = a3s−1, S < 1
3 , i = 0

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a3S−1)1−0

1− a3S−1

λ

2a3S
‖x‖S =

λ‖x‖S

2(a− a3S)
. (7.18)

Case: 6 L =
(

1
a

)−1
, i = 1

‖ga(x)−A(x)‖ ≤
L1−i

1− L
β(x) =

(a1−3S)1−1

1− a1−3S

λ

2a3S
‖x‖S =

λ‖x‖S

2(a3S − a)
. (7.19)

Hence the proof of the corollary is completed.

8 Fixed point stability of (1.3): Even mapping case

In this method, we investigate the Hyers-Ulam stability of the functional equation (1.3) for an even

case mapping by using fixed point method.
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Theorem 9. Let g : W → B be an even mapping for which there exists a function α : W 3 → [0,∞)

with the condition

lim
n→∞

α(aki x1, a
k
i x2, a

k
i x3)

a2ki
= 0 (8.1)

for ai =











a i = 0

1
a

i = 1,
such that the functional inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (8.2)

for all x1, x2, x3 ∈ W . If there exists L = L(i) such that the function

x → β(x) =
1

2
α
(x

a
, 0, 0

)

(8.3)

has the property
1

a2i
β(aix) = L (β(x)) (8.4)

for all x ∈ W , then there exists a unique quadratic mapping Q : W → B satisfying the functional

equation (1.3) and

‖g(x)−Q(x)‖ ≤
L1−i

1− L
β(x) (8.5)

for all x ∈ W .

Proof. Consider the set X = {P |P : W → B,P (0) = 0} and introduce the generalized metric on

X .

d(p, q) = inf{k ∈ (0,∞) : ‖p(x)− q(x)‖ ≤ β(x), x ∈ W}

It is easy to see that (X, d) is complete.

Define T : X → X by Tp(x) =
1
a2

i

p(aix) for all x ∈ W . Now p, q ∈ X ,

d(p, q) ≤ k

⇒ ‖p(x)− q(x)‖ ≤ kβ(x), x ∈ W.

⇒

∥

∥

∥

∥

1

a2i
p(aix)−

1

a2i
q(aix)

∥

∥

∥

∥

≤
1

a2i
kβ(aix), ∀x ∈ W

⇒ ‖Tp(x) − Tq(x)‖ ≤ Lkβ(x), ∀x ∈ W

⇒ d(Tp, Tq) ≤ Lk.

This implies d(Tp, Tq) ≤ Ld(p, q) for all p, q ∈ X . That is, T is a strictly contractive mapping on

X with Lipschitz constant L.

Replacing (x1, x2, x3) by (x, 0, 0) in (9.1) and using the evenness of g, we get

‖4g(ax)− 4a2g(x)‖ ≤ α(x, 0, 0), (8.6)
∥

∥

∥

∥

g(x)−
g(ax)

n2

∥

∥

∥

∥

≤ 1
4a2α(x, 0, 0) (8.7)
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for all x ∈ W . By using (8.4), for this case i = 0, it reduces to
∥

∥

∥

∥

g(x)−
g(ax)

a2

∥

∥

∥

∥

≤
1

2a2
β(x) (8.8)

for all x ∈ W . That is,

d(g, T g) ≤
1

a2
⇒ d(g, T g) ≤

1

a2
= L = L1 < ∞.

Again replacing x by x
a
in (8.6), we get

∥

∥

∥
g(x)− a2g

(x

a

)∥

∥

∥
≤

1

4
α
(x

a
, 0, 0

)

(8.9)

for all x ∈ W . That is,

d(g, T g) ≤
1

2
< 1 ⇒ d(g, T g) ≤ 1 = L0 < ∞.

In above case, we get d(g, T g) ≤ L1−i.

The rest of the proof is similar to that of the previous theorem. This completes the proof of

the theorem.

Corollary 5. Let g : W → B be an even mapping and assume that there exist real numbers λ and

s such that

‖Dg(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s); s 6= 2

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}; s 6= 1
3

(8.10)

for all x1, x2, x3 ∈ X. Then there exists a unique quadratic mapping Q : W → B such that

‖gq(x) −Q(x)‖ ≤















λ
4|a2−1| ;
λ‖x‖s

4|a2−as|
λ‖x‖3s

4|a2−a3s|

(8.11)

for all x ∈ X.

9 Fixed point stability of (1.3): Mixed mapping case

In this method, we present the Hyers-Ulam stability of the functional equation (1.3) for a mixed

mapping case by using fixed point method.

Theorem 10. Let g : W → B be a mapping for which there exists a function α : W 3 → [0,∞)

with the condition (7.1) and (8.1) for ai =











a i = 0

1
a

i = 1,
such that the functional inequality

‖Dg(x1, x2, x3)‖ ≤ α(x1, x2, x3) (9.1)



252 V. Govindan, C. Park, S. Pinelas & T. M. Rassias CUBO
22, 2 (2020)

for all x1, x2, x3 ∈ W . If there exists L = L(i) such that the function

x → β(x) =
1

2
α
(x

a
, 0, 0

)

satisfies (7.3) and (8.3) for all x ∈ W , then there exist a unique additive mapping A : W → B and

a quadratic mapping Q : W → B satisfying the functional equation (1.3) and

‖g(x)−A(x) −Q(x)‖ ≤
L1−i

1− L
[β(x) + β(−x)]

holds for all x ∈ W .

Proof. It follows from (6.2) and Theorem 8 that

‖go(x)−A(x)‖ ≤
1

2

L1−i

1− L
[β(x) + β(−x)]. (9.2)

Similarly, it follows from (7.5) and Theorem 9 that

‖ge(x)−Q(x)‖ ≤
1

2

L1−i

1− L
[β(x) + β(−x)] (9.3)

for all x ∈ W . Then g(x) = go(x) + ge(x) for all x ∈ W .

From (8.11), (9.2) and (9.3), we have

‖g(x)−A(x) −Q(x)‖ = ‖ge(x) + go(x) −A(x)−Q(x)‖

≤ ‖go(x) −A(x)‖ + ‖ge(x)−Q(x)‖

=
L1−i

1− L
[β(x) + β(−x)]

for all x ∈ W . Hence the theorem is proved.

Corollary 6. Let g : W → B be a mapping and assume that there exist real numbers λ and s such

that

‖Dg(x1, x2, x3)‖ ≤















λ;

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s); s 6= 1, 2

λ(‖x1‖
s + ‖x2‖

s + ‖x3‖
s) + {‖x1‖

3s + ‖x2‖
3s + ‖x3‖

3s}; s 6= 1
3 ,

2
3

for all x1, x2, x3 ∈ X. Then there exist a unique additive mapping A : W → B and a unique

quadratic mapping Q : W → B such that

‖g(x)−A(x) −Q(x)‖ ≤















λ
2|a−1| +

λ
4|a2−1|

λ‖x‖S

2|a−aS | +
λ‖x‖S

4|a2−aS |
λ‖x‖3S

2|a−a3S | +
λ‖x‖3S

4|a2−a3S |

for all x ∈ X.
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