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On the conformally k-th Gauduchon condition
and the conformally semi-Kahler condition on
almost complex manifolds
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RESUMEN

Introducimos la k-ésima condicién de Gauduchon en va-
riedades casi complejas. Mostramos que si la k-ésima
condicién de Gauduchon conforme y la condicién semi-
Kaéhler conforme se satisfacen ambas, entonces la variedad

es cuasi-Kéahler conforme.
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1 Introduction

S. Ivanov and G. Papadopoulous introduced the conditions on the Hermitian form such that
W AN OOwF =0 for 1 < k+1 < n — 1, which is called the (I|/k)-SKT condition. They have proven
that every compact conformally balanced (I|k)-SKT manifold, ¥ < n — 1, n > 2, is Kéhler (cf.
[5]). J. Fu, Z. Wang and D. Wu introduced and investigated the generalization of Gauduchon
metrics, which is called k-th Gauduchon. The k-th Gauduchon condition is the case [ =n —k — 1,
1 <k <n-—1ofthe (1|k)-SKT condition. By definition, (n—1)-th Gauduchon metrics are the usual
Gauduchon metrics, astheno-Kéahler metrics are examples of (n — 2)-th Gauduchon metrics, and
pluriclosed metrics are in particular 1-st Gauduchon. They proved that there exists a non-Kéahler
3-fold which can support a 1-Gauduchon metric and a balanced metric simultaneously (cf. [2]).
Since K. Liu and X. Yang have shown that if a compact complex manifold is k-th Gauduchon for
1 <k <n—2 and also balanced, then it must be Kéhler, a 1-Gauduchon metric and a balanced
metric on a non-Kéhler 3-fold which Fu, Wang and Wu discovered must be different Hermitian
metrics. Liu and Yang also have shown that the conformally Ké&hlerianity is equivalent to that
both the conformally k-th Gauduchon for 1 < k£ < n — 2, and the conformally balancedness are
satisfied (cf. [7]). Our aim in this paper is to generalize the Liu-Yang’s equivalence [7, Corollary

1.17] to almost Hermitian geometry.

Let (M?",J) be an almost complex manifold with n > 3 and let g be an almost Hermitian metric
on M. Let {Z,} be an arbitrary local (1,0)-frame around a fixed point p € M and let {("} be
the associated coframe. Then the associated real (1,1)-form w with respect to g takes the local
expression w = /—1g,z(" A ¢ k. We will also refer to w as to an almost Hermitian metric. We

introduce the definition of a Gauduchon metric and we define a k-th Gauduchon metric as follows.

Definition 1.1. Let (M?",J) be an almost complex manifold. A metric g is called a Gauduchon
metric on M if g is an almost Hermitian metric whose associated real (1,1)-form w = \/—_19i3CiA<3
satisfies d*(Jd*w) = 0, where d* is the adjoint of d with respect to g, which is equivalent to
d(Jd(w™ 1)) =0, or (W™ ') = 0. When an almost Hermitian metric g is Gauduchon, the triple
(M?",J, g) will be called a Gauduchon manifold. For 1 <k <mn — 1, an almost Hermitian metric
w is called k-th Gauduchon if it satisfies that 0Ow® A w™~*F=1 = 0.

Notice that the condition d0w”* A W™ #~1 =0 for 1 < k < n — 2 is not equivalent to d(Jd(w"*)) A
whk=1 =0 for 1 < k < n—2 since there exist A and A parts of the exterior differential operator d
in the almost complex setting (Note that these conditions are equivalent in the case of k =n—1 as
we confirmed in Definition 1.1 since then we have A(w"~!) = A(w"~!) = 0.). Hence the condition
HOwk ANw k1 =0 for 1 <k <mn—1 can be regarded as a natural extension of the Gauduchon

condition on almost complex manifolds.

We next introduce the definition of a semi-Kéahler metric.
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Definition 1.2. Let (M?",J) be an almost complex manifold. A metric g is called a semi-Kdihler
metric on M if g is an almost Hermitian metric whose associated real (1,1)-form w = \/—1gi3Ci/\(3
satisfies d(w™ 1) = 0. When an almost Hermitian metric g is semi-Kdhler, the triple (M>", J,w)

will be called a semi-Kdhler manifold.

Recall that on an almost Hermitian manifold (M, J,g), a quasi-Kéhler structure is an almost
Hermitian structure whose real (1,1)-form w satisfies (dw)(1?) = dw = 0, which is equivalent to
the original definition of quasi-Kéahlerianity: DxJ(Y) 4+ D xJ(JY) = 0 for all vector fields X,Y
(cf. [4]), where D is the Levi-Civita connection associated to g. It is important for us to study
quasi-Kéahler manifolds since they include the classes of almost K&hler manifolds and nearly Kahler
manifolds. An almost Kéhler or quasi-Kéhler manifold with J integrable is a Kéhler manifold. We

define some conformally conditions.

Definition 1.3. Let (M, J,w) be an almost Hermitian manifold. We say w is conformally k-th
Gauduchon (resp. semi-Kdahler, quasi-Kdhler) if there exist a k-th Gauduchon (resp. semi-Kdahler,

quasi-Kdhler) metric & and a smooth function F € C*°(M,R) such that w = e¥'®.

Our main result is as follows.

Theorem 1.4. On a compact almost Hermitian manifold (M, J,w), the following are equivalent:

(1) (M, J,w) is conformally quasi-Kdhler.

(2) (M, J,w) is conformally k-th Gauduchon for 1 <k <n —2, and conformally semi-Kdahler.
In particular, the following are also equivalent:

(a) (M, J,w) is quasi-Kdhler.

(b) (M, J,w) is k-th Gauduchon for 1 <k < n— 2, and conformally semi-Kdhler.

This paper is organized as follows: in the second section, we recall some basic definitions and
computations. In the last section, we will give a proof of the main result. Notice that we assume

the Einstein convention omitting the symbol of sum over repeated indexes in all this paper.

2 Preliminaries

2.1 The Nijenhuis tensor of the almost complex structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure on M is

an endomorphism J of TM, J € T'(End(TM)), satisfying J?> = —Idrp. The pair (M, J) is called
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an almost complex manifold. Let (M, J) be an almost complex manifold. We define a bilinear

map on C°(M) for X,Y € I'(TM) by
AN(X,Y) := [JX, JY] - JJJX,Y] - J[X, JY] — [X,Y], (2.1)

which is the Nijenhuis tensor of J. The Nijenhuis tensor N satisfies N(X,Y) = —N(Y, X),
N(JX,Y) = -JN(X,Y), N(X,JY) = —JN(X,Y), N(JX,JY) = —=N(X,Y). For any (1,0)-
vector fields W and V, N(V,W) = —[V,W]OD N(V,W) = N(V,W) = 0 and N(V,W) =
—[V,W]19 since we have AN(V,W) = —2([V,W] + V=LJ[V,W]), AN(V, W) = —2([V, W] —
V—=1J[V,W]). An almost complex structure .J is called integrable if N = 0 everywhere on M.
Giving a complex structure on a differentiable manifold M is equivalent to giving an integrable
almost complex structure on M. Let (M, J) be an almost complex manifold. A Riemannian
metric g on M is called J-invariant if J is compatible with g, i.e., for any X, Y € I'(T M),
g(X,Y) = g(JX,JY). In this case, the pair (J,g) is called an almost Hermitian structure. The
fundamental 2-form w associated to a J-invariant Riemannian metric g, i.e., an almost Hermitian
metric, is determined by, for X,Y € I'(TM), w(X,Y) = ¢g(JX,Y). Indeed we have, for any
X, Y eI(TM),

w(YvX) =g(JY, X) :g(J2K JX) = —g(JX,Y) = —w(X,Y) (2'2)

and w € 1"(/\2 T*M). We will also refer to the associated real fundamental (1,1)-form w as an
almost Hermitian metric. The form w is related to the volume form dV; by n!dV, = w". Let a local
(1,0)-frame {Z,} on (M, J) with an almost Hermitian metric g and let {¢"} be a local associated
coframe with respect to {Z,}, i.e., ('(Z;) = 0% for 4,j = 1,...,n. Since g is almost Hermitian, its
components satsfy g;; = g; =0 and 9i5 = 95: = Gij-

We write TRM for the real tangent space of M. Then its complexified tangent space is given
by T°M = TR®M @ C. By extending J C-linearly and g, w, C-bilinearly to TCM, they are also
defined on TCM and we observe that the complexified tangent space TCM can be decomposed as
TM = T MaT% M, where THOM, T%1 M are the eigenspaces of .J corresponding to eigenvalues

v—1 and —v/—1, respectively:

THM ={X - V-1JX|X e TM}, T"'M ={X+V-1JX|X € TM}. (2.3)

Let A'"M = @, = A
r-forms into (p, q)-forms, where AP¢M = AP(AYOM) @ AI(A%I M),

PAM for 0 < r < 2n denote the decomposition of complex differential

AYM ={a+V=1Jaja e A'M}, A"'M ={a—-V-1Ja|a e A'M} (2.4)
and A'M denotes the dual of TM. For any o € A'M, we define Ja(X) = —a(JX) for X € TM.

Let (M2, J,g) be an almost Hermitian manifold. An affine connection D on TM is called almost
Hermitian connection if Dg = DJ = 0. For the almost Hermitian connection, we have the following

Lemma (cf. [3, 9, 11]).
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Lemma 2.1. Let (M, J,g) be an almost Hermitian manifold with dimg M = 2n. Then for any
given vector valued (1,1)-form © = (©%)1<;<,, there exists a unique almost Hermitian connection

D on (M, J,g) such that the (1,1)-part of the torsion is equal to the given ©.

If the (1,1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the
connction is called the second canonical connection or the Chern connection. We will refer the

connection as the Chern connection and denote it by V.

Note that for any p-form 1, there holds that

p+1
dq/}(Xla"pr+1) = Z(—1)1+1X,L-(1/)(X17..,7XZ',...,XP+1))
=1
Y (D) T(X X X X X X)) (25)

i<j

for any vector fields X1,..., Xp41 on M (cf. [11]). We directly compute that
S 1 S S I 1 S k r
dg :_§Bkl<k/\<l—Bkick/\cl—i_i]vl’cick/\(l' (2.6)

According to the direct computation above, we may split the exterior differential operator d :

APM ®r C — APTIM ®g C, into four components

d=A+0+0+A (2.7)
with
O APIM — APYLAN 90 APIM — AP (2.8)
A APIM — APT297IN A AP — APTLOT2 ) (2.9)
since we have
A(T(A™M)) C DA™ 2510 @ ATV M @ AT+ M @ A7 15 +2)). (2.10)

In terms of these components, the condition d?> = 0 can be written as
A2 =0, 0A+A0=0, 0A+A0=0, A%2=0,

AD+0*+0A =0, AA+00+00+AA=0, 0A+I*+ Ad=0. (2.11)
Notice that J is integrable if and only if A = 0, equivalently, if and only if 9% = 0.

For any real (1,1)-form o = v/—10;;¢" A ¢7, we have
bo= Y~ (Z;(a,ﬁ) — Zi(o43) — Bisos + B0 + B%akg)g’f AN,

0o =Y~ (Zi(UjE) — Zj(oiz) — B0 — Biojs + Bfko'ig)é'i ACTACE)
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From these computations above, we have

3 v—1 s s 5 i J v—1 Q j
Ow = T(Zﬁ(glﬁ)—ZE(%)—Bkggsj+Bk3952+3539k§)4k/\4 NG 5 SnCPAC A (2.12)
and
V-1 s 5 5 i j k V-1 i j k
Oow = T(Zi(gj;)—Zj(gig)—Bijgsg—Bi;;gjﬁBﬂ;gig)C INSINGES —5 TijiC AGIACF, (2.13)

where T is the torsion of the Chern connection. For any ¢ € C*°(M,R), a direct computation

yields

_ 1 ) -
V=100 = i(decp)(l’l) =V—1(Z:;Z; — [Z:, Z;) ") (@) A ¢ (2.14)
so we write locally

0:050 = (Z:Z; — [Z:, Z;) V) p. (2.15)

For basic definitions and computations about the torsion and the curvature on almost Hermitian

manifolds, see [6, Section 2].

3 Proof of Theorem 1.4

We need the following lemmas in order to prove Theorem 1.4. Here we introduce the following

characterizations of quasi-Kéahlerianity and semi-Kéahlerianity.

Lemma 3.1 (c¢f. [8, Lemma 2.4]). An almost Hermitian manifold (M?>",g,J) is quasi-Kdhler if
and only if TZ-];- = 0 for all i,j and k when a local unitary (1,0)-frame is fized, where T is the

torsion of the Chern connection V.

Here, we define w, := T?; and the torsion (1, 0)-form n := T} (" = —w, (" (¢f. [10]), where T = (T*?)
is the torsion of the Chern connection V.

Lemma 3.2 (c¢f. [6, Lemma 4.3]). An almost Hermitian manifold (M?*",J,w) is semi-Kdihler if

and only if n = 0.

Proof. We have w = gTijECi ACIACF as we see (2.12), (2.13). Then a direct calculation shows
that

oWt =(n—-1)owAw" 2= —pAw", (3.1)
where we used that n = —w;(* = —(n — 1)% Similarly, we obtain that
W
oWt = —-1)0wAw" 2= —gAw", (3.2)

_ - - - g /\ n—2
since we have Jw = @ngk ANCAC and 7= —w;(* =—(n — 1)%

wn
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Recall that the metric g is said to be semi-Kéhler if w™~! is closed. These identities (3.1), (3.2)
show that g is semi-Kéhler if and only if n = 0. O

Proof of Theorem 1.4. Assume that w is conformally k-th Gauduchon and conformally semi-K&hler.
Then since w is conformally semi-K&hler, there exist an semi-Kéhler metric wg and a smooth func-
tion F' € C°°(M,R) such that w = efwp. By the conformally k-th Gauduchon condition, there
exist a k-th Gauduchon wg and a smooth function F € C°(M,R) such that w = eFwa. Set

f=F-— F, then we have wg = efwp. Since wg is k-th Gauduchon, we get
(efwp)" k=t A dd(efwp)F =0,
and then
Wi A 0d(efwp)k = 0. (3.3)

Since wp is semi-Kihler, 0 = d(wph ') = (0 + A+ A+ ) (wi™") = (0 + 9)(wh "), which tells us
that d(wlk ') = d(wr™") = 0, where we have used that A(wp ") = A(wp™) = 0. Hence we see
that

k
WERLAO(WE) = kw2 A dwp = ma(wgfl) =0. (3.4)
Then from (3.3), we have
Wt R A 9dwhy 4+ Wikt A 98(eM ) = 0. (3.5)
Therefore, we obtain
/ TR A 90(Wh) = —/ Wi A 99 (ekT)
M M
1 D0(er ) AWkt
- 1 / n DN
n M OJB
1
= —= [ Ag(e*Hwi =0 (3.6)

Applying (3.4) and (3.6), we obtain

0 =

[ Myt noaeh)
= [ A D)) = DM A A Bw) = M) A D)
[ M A Dwh)) - Mol Ad(wh)
k

- (n—k—l)/ eFT W3 A dwp A dwp
M

TLANT 5 AW
_ —k(n—k—l)/ ekt ZBRE BRYE  m
M wh
kn—k—1) kf P
- Te(Th AT g)w™
6n(n—1)(n —2) /Me (Te A T'5)wp

_ k(n —k—1) ek (Glwnl? — 112),n
T [ ¢ Gl = 3Thp 65.7)
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which gives that 2 [,, e/ Jwp[?w = [, e |T5|2wh, where we used wiy "' A d(wh) = 0 from
(3.4), (0 + A+ A) (MW 1 A d(wh)) = 0, and that dwp = Tj since we have (OwB) ik =
9j(98)ir — O1(9B) ;5 = (TB);1 from (2.13). Note that as in [1, Chapter 2],

(T AT B)ikmitn = (TB)imi(TB)ink + (T8)imi(TB)ajr + (TB)ima(TB)ji
+(TB)mi; (TB)ini + (TB)mei(TB)7j: + (TB)mkn(TB) i1
+(TB)ki; (TB)imm + (TB)kir(TB)ajm + (TB)kin(TB)5im

and

Te(Tp AT'B) = g9 6" g™ ™ (T AT B)ijmiin = 6lwi|? — 3|TH /%,

where (wg), = (Tg); and ng = (Tg):, (" = —(wp),(" is the torsion (1,0)-form of wp. Since

the metric wp is semi-Kéhler, which is equivalent to that ng = 0 from Lemma 3.2. Since ng =0

implies that (wg), =0 for all r = 1,...,n, we get
/ M |TpPw = 2/ M wpPwl = 0.
M M
Hence we have T'; = 0, which is equivalent to the quasi-Kéahlerianity from Lemma 3.1. Notice that
since wp is now quasi-Kahler, we have that from (3.5),

99(e*) AW

Ap(eM)=mn- wh

207

which implies that f is constant. The converse is obvious. The equivalence of (a) and (b) in
the statement of Theorem 1.4 follows by the same argument under the condition w = wg and

f=F. O
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