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Basic asymptotic estimates for powers of Wallis’
ratios
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For any a € R, for every n € N, and for n-th Wallis’ ratio
Slovenia, EU.

wy = [[p_, 2&2L, the relative error r,(a,n) = (v,(a,n) —
vito. lampret@quest.arnes.st a a . . a —a/2

wy) /wih of the approximation wy ~ v,(a,n) = (wn)

is estimated as |7‘0 (a, n)‘ < 4=. The improvement wy ~

v(a,n) = (7n)~/? (1 == %) is also studied.

RESUMEN

Para cualquier a € R, para todo n € N, y para el n-

ésimo cociente de Wallis w, = [];_, 2’;—;1, el error re-
lativo r,(a,n) := (v,(a,n) — wi)/wy de la aproximacién
w? ~ vy(a,n) = (7n)"¥? se estima como |r0(a,n)’ <

1
4n”

—a/2 a a,2
(mn) =/ (1 ~ & 128n2)'

También se estima la mejora w;, =~ v(a,n) :=
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1 Introduction

The sequence of Wallis' ratios

Do%k—1 (2n-1D!  _ /2n
w"::H 2k (2n)!! =4 (n) (L.1)

k=1

is often encountered in pure and applied mathematics, in physics, and in several other exact sciences

too. For example, the perimeter P(a,b) of an ellipse having semi-axes of length a and b < a is

/2 0 2
P(a,b) = 4a/0 \/1—¢e2sin?(7) dr = 2am <1 - Z 2]:)5 152k> (1.2)
k=1

[20], where e = 4/1 — 2—2, the eccentricity of an ellipse.

Similarly, the period T of a simple pendulum, located in the gravitational field with the acceleration

given as

¢ and having the length L and the amplitude of the oscillation « € (0,7), is determined by the

L [7/? L >
T = 4\[/ S 271'\/7 (1 + Zwi€2k> (1.3)
gJo /1 —e2sin®(r) g k=1

[21, p. 26], where ¢ = sin(«/2). Not only in mechanics, but also in other parts of physics, the

formula

Wallis ratio has several interesting roles, see for example [9] and [12].

In mathematics, the sequence of the Landau constants G,,, important in the theory of analytic

functions, see [1], is also defined by the Wallis ratios as
G, = sz (n €N). (1.4)
k=1

The Wallis ratio attracts mathematicians also because of its direct connections with Catalan num-

2
bers ¢,, 1= — (:

s ), also important objects for pure and applied mathematics [15, 29]. In fact, the

Wallis ratio, i.e. the sequence n — w,, was investigated by many researches, see for example the

papers [2, 3, 4, 5, 6, 7, 8, 11, 14, 16, 22, 23, 26, 27, 28, 29, 31, 33].

In 2007 was presented [33] aesthetically pleasing double inequality

(1.5)

1 1 n—ﬁ 1 1 n-— 12n1+16
— (1 4+ — < w, < 1+ —
Vvern < * 2n) = vern < + 2n>
true for all n € N.

In 2013 was demonstrated [10] the estimate

e 1\"vn—-1 4 1\"vn-1
A= (1= — n<-(1—— , 1.6
7r( 2n) n v _3< 2n> n (16)

1John Wallis, 1616 — 1703
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true for n > 2.

In 2015 was derived [11] the inequalities

9 3/2 1 n+1/2 —1/2 1 n+1/2 —1/2
() (-2) (=3 =weyi(m2) (-3) 0 w0
n ™ n

valid for n > 2. At the same time, in [28, Theorems 4.2 and 5.2] were presented the estimates

ws (1o 1Y . t 1 (1.8)
n —(1-— X .
- m P92 ™ 4803 T 1600t T 960n5
e 1 n+1/3
N — (1= ___ 1.9
Wn = 7m< 2(n+1/3)) (1.9)
and
o ——1 e L (1.10)
Yn S\ T 2(n + 1/3) P\ Taams ) '

all true for n > 1.

In the mentioned formulas for the perimeter of an ellipse and the period of a simple pendulum, as
well as for the Landau sequence, see (1.2)—(1.4), we met the second powers of the Wallis ratios.
This fact initiated our desire to approximate any power of the Wallis ratio. But, all the inequalities
(1.5)—(1.10) are less suitable for estimating the power w? for a € R. Fortunately, the approximation
formula for the Wallis ratio, presented in [19], is more convenient for this task. In this contribution
we shall show the first two steps how to approximate simply and accurately the powers of the

Wallis ratios having real exponents.

2 Basic discussion

The sequence of Wallis’ ratios was estimated recently [19] as

wy, = \/% exp (— sp(n) + 6,(n)) (n €N), (2.1)

where i,

Se(n) = m (n,r €N) (2:2)

and, for any n,r € N, the error d,.(n) is estimated as

|B2r+2| |Bzr+2|
— < (=1)"6, < . 2.3
D@+ e < OV < e (23)
Here By = %, By = —%, Bg = 4—12, ... are the Bernoulli numbers, defined by the identity
=5 = Z;iij% (|z| < 2m).

We obtain the basic approximation by using r = 1,

w = ()2 exp (—as1(n) + adi(n)) (a €R,neN), (2.4)
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with, for n € N,

s1(n) :%>O (2.5)
and
1 1 1
- — ) —. 2.
80 = 28808 ~ 1 < Tgons (2:6)
Thus, due to (2.5),
- a
asi(n) = n (aeR,neN). (2.7)
Moreover, thanks to (2.5)—(2.6), we estimate, for n € N,
1 1 1
—81 i ’61 ’ —81 ‘(51 | > _8777, — m > _% (28)
and
1 1
—351(n) £ |61(n)| < =51(n) + [61(n)] < < ——. (2.9)

8n 180n3 9In
Therefore, —% < a( —51(n) £01(n)) < —¢&, for a > 0 and —% > a( — 51(n) £ 61(n)) > —&,
for a < 0. Thus,

min {—2, - &1 <a(—351(n i’él |) <max{—Z, - L} (a#0,n €N). (2.10)

Hence, considering (2.4), together with the equality min(—S) = —max(S), for every S C R, we

derive the following theorem.

Theorem 2.1. For a € R~ {0} and n € N, the following double inequality holds:

—a/2

(mn) exp (—max {2, £1) <wl < (mn)~/? exp (—min {&, &1). (2.11)

Figure 1 shows? the graphs of the function a — w$ and its approximation (dashed line) a
(m-2)"9/2,

n=2
AN
X
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Figure 1: The graphs of the function a — w$ and its approximation (dashed line) a s (- 2)~%/2,

2All graphics and calculations in this paper are made using the Mathematica [32] computer system.
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< (mn)~

< (mn)™ exp (12

From Theorem 2.1 there follows the next corollary.

Corollary 2.3. For every a € R~ {0} and for any positive integer n > a we have

wd > g(m)—aﬂ. (2.12)

Proof. For k > a > 0, using (2.11), we obtain® w > (7k)~%/2exp ( — ) > (mk)~%/?(1 —
) > (wk)*“ﬂ(l - %) = g(wk)*“/z. Furthermore, for a < 0, due to (2.11), we estimate wj >
(mk)~%/? exp ( — &) = (1k)~%? exp (Ial) > (rk)=%/% - 1. O

Lemma 2.4. Let real numbers a, B, v and w satisfy the inequalities af > 0, f < %, v >0 and

e®v < w < e’v. Then we have [v — w| < 3v - max{|al,|B]}.

Proof. Supposing that all conditions of Lemma 2.4 are satisfied, we have only two possibilities

a< fB<0or0<ac<f, together with the estimate
(e —1w<w—v< (e =1

Therefore, in case a < 0, we have (1 —e®)v > v —w > (1 —e’)v > 0. Thus, see Footnote 3,
lv—w| < —a = |a|. Additionally, using the first order Taylor’s formula and the estimate 0 < 8 < 1,
in case a > 0, we obtain, 0 < (e* —1)v < —(v—w) < (e? —1)v < B+2ePB2 < B+ 2el/21p < 3ﬁ

Hence, in both cases we have |[v — w| < v - max{|al, 2||}. O

Corollary 2.5 (relative error). For every a € R~ {0} and for any positive integer n > a the

relative error ro(a,n) = (w2 — vo(a,n))/we of the approzimation we ~ vy(a,n) = (wn)~*? is
roughly estimated as
ro(a,n)| < i
4dn
Proof. Thanks to Theorem 2.1 and Lemma 2.4, using the notations a = —max{%n, gin}v 8=

a/2

—min {£, L} v =vy(a,n) = (mn)~*? and w = w?, we obtain

ev(asm) — ] < Sy /2 e { s {5 1] min {2, )]}
Thus, according to the identity max { [max {z, y}|, [min {z,y}| } = max {|z[,|y|}, we get

™)~ a/Q.M

‘voan n’< -

3considering the well-known estimate e* > 1 + z, true for z € R\ {0}.
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Hence, using Corollary 2.3,

lvo(a,n) —wi| 3 —aj2lal T, la
we < 2(7m) ™ 6(7m) N

n

lal
dn

Figure 2 shows, on the left — the graph of the actual relative error function a + ro(a,n) and on

the right — the graphs of the functions a — rg(a,n) and a — Lal (dashed line).
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Figure 2: Left — the graph of the actual relative error function a — r¢(a, 1000); Right — the graphs

of the actual relative error a — ro(a, 1000) and its approximation (dashed line) a — % .

3 Improvement

The relations (2.4)—(2.6) can be exploited more accurately to derive the next theorem.

Theorem 3.1. For any a € R and every integer n > %, we have
w? = v(a,n) +(a,n), (3.1)
where )
o —a/2 a a
v(a,n) == (wn)~ (1 —g t W) , (3.2)
and the error e(a,n) is estimated as
* . —a/2 a’2 1 : a a ‘a’|
|le(a,n)| < e*(a,n) := (7n) m—&-ﬁexp(—mm{?n,g—n}) Ton3 (3.3)
1 lal\ _lal
< —a/2( & 1 i
< (mm) <100 TR (m)) 10n3
< e*(a,n) := (7n)"¥?( a® + 39 _lal (3.4)
- T 2 /) (10n)3 " ’
Proof. Using the second order Taylor’s formula, we have
~ a a 1 a \2
exp (—asy(n)) = exp ( - 87n) =1- o + 3 (_8771) + Ry(a,n) (3.5)
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Ry(a,n) = %exp (—19~ gin) (—ﬁf : for some ¥ = 9J(a,n) € (0,1).

Therefore, for a € R and n >

Similarly,

exp (adi(n)) =1+ exp (9 - adi(n)) - ady(n), (3.7
for some ¥ = J(a,n) € (0,1).
Thanks to (3.7), (2.10) and (2.6), we estimate, using some 6 = 6(a,n) € (0,1),

‘exp (—a31(n) +adi(n)) —exp (— a'svl(n))’ =exp (—asi(n)) - | exp (6 - ady(n)) - adi(n)|

=A(a,n)

< exp (—a3i(n)) - exp (|adi(n)]) - |adi (n)|
= exp (a( = 51(n) £ 01(n)]) )al| 61 (n)

(2.10)
2 e ({09

Consequently, according to (2.4) and (3.5), we obtain

2

—a a a
(mn)~/? (1 -3 + Tog2 + Ra(a,n) —&—A(am)),

—exp(—asi1(n))

o (24)

w? (Wk)_“/Q(exp (—a§1(n)+a51(n))) (3:5)

where, considering (3.6) and (3.8), for « € R and n > 19 " we estimate the error e(a,n) =

8
(mn) /2 (Rg(a, n) + A(a, n)) as

etam] < ()22 [ e (—min {2, ) ]
| 1000n ™’ 9nJ) / 180n
= (7n)~/2 -%20 + 1—18 exp ( — min {%, %} )} 1|OC;|L3
< |55+ 150 (5 3)] st
<WUW<$+émM1®%$3
swm%”(£;+iglgg- m

2
Remark 3.2. The sequence n +— W, := #ﬂ (szl %) , called the Wallis sequence, is closely
connected to the sequence of the Wallis ratios w,, by the identity W, = w, 2/(2n+1). So, W,, can

be estimated easily using Theorem 3.1, e.g. its consequence (3.14).
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Remark 3.3. According to Theorem 3.1, the constant m can be easily approzimated using certain

rational functions R+(n). For example, from (3.14) we get, for any n € N,

l —2 L 1_~_i_|_ 1 _1< <l *2+i 1_|_i_~_ 1 o
n \n 5n? 4n  32n2 = \Wn 5n? dn ~ 32n2 ’

Directly from Theorem 3.1 and Corollary 2.3, from (3.4) and (2.12), we read the next corollary.

Corollary 3.4 (relative error). For every a € R and for any positive integer n > |a| the relative

error of the approximation w? ~ v(a,n),

w? —v(a,n)
== ’ 3.9
r(a,n) P (3.9)
is a priori estimated as
13 7|al
* L 2
|T(a,n)’ S T (a, n) = <a —+ 2) W . (310)

For any a € R and all integers n > |a| the rough estimate r*(a,n) < 8.2 %o holds true.

Figure 3 shows the graphs of the actual relative error functions a — r(a,n), for n € {10, 100}.

0.0003 | 1, b
0.0003 -
b = I'(a,10) _
0.0002 | b = I'(a,100)
0.0002 -
0001
0.000 0.0001 |-
‘ ‘ : a ‘ ‘ :
-10 -5 5 10 ~100 -50 50 100

Figure 3: The graphs of the actual relative error functions a — r(a,n) for n € {10, 100} .

Figures 4-5 compare the actual relative error functions a — r(a,n) and their approximations

a — r*(a,n), for n € {1, 3, 10, 100}.

\ - . / \ 0.0020 - ,
AN 0.008 ¢ b=r@n, \ i b=r"@3y
[ \ [
\ / /
— 0.0015 |-
\ 0.006 - 4 N I /
N L ] / \ r /
N r n= 7 \ [ _
[ Y i n=3 /
\\ 0.004 1 7 b=t \\ 0.0010 F y
N [ 4 N [ /
N [ 7 N i P /
r % 0.0005 |-
N\ Q.ooz i y N [ 7 b=1@3)
< I 7 ~ [ ~
‘ ‘ N ‘ a ‘ ‘ s ‘ a
-1.0 -0.5 0.5 1.0 -3 -2 -1 1 2 3

Figure 4: The graphs of the actual relative error functions a — r(a,n) and their approximations

a— r*(a,n), for n € {1, 3}.
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\ 0.0008 | . \ b /
\ — b=7r"(,10), \ 0.0010 | b= F*@100)
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\ r n=10 / \ i n=100 /
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. ; \ 0.0004
N 00002 ’
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N [
~ L
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Figure 5: The graphs of the actual relative error functions a — r(a,n) and their approximations
a — r*(a,n), for n € {10, 100} .

Usinga € {1, -1, 2, =2, L 5, ™, —2m} in Theorem 3.1, considering (3.1) and (3.4), we obtain several

inequalities for Wallis’ ratios, presented in the next corollary.

Corollary 3.5. For every® positive integer n we have

—_

1
1 1 1 1 1 1
— (1— 5 + m577) — 557z < Wn < N (1-&+5ks) + 522, (3.11)

1 1 1 1
vVTn (1 tan T 128712) - 3055/2 < — < Vﬂ'n( 8n 128n2) + 300577 (3.12)

1
1 2 1 1 1
7rn(1_7+32”2)_73"4<w"<7rn (1_E+32n2)+w’ (3.13)
1
1 1 1 1 1 1
(7T7’L) (1 + 4n + 32n2) T Tn2 < w2 < (7T7’L) (1 + 4n + 32n2) + 7n2> (314)
n
! — 1 1 1 1
T (1 - 1on + 51302) — Toonmo7m Wn Jrn (1 167 + 51207) + Too0077 > (3.15)
1 1 T 1 2 1
7rn)7r/2 (1 128n2> = Topstaz S W < (mn)™/2 (1 ~&n T 127T8n2) + oz (3.16)
(en)™ (14 5+ oz ) — Un™ P <y < (rn) (14 5 + oz ) + 140" % (3.17)

Remark 3.6. In case a > 0, the inequalities in Corollary 3.5 can be slightly improved using (3.3)

instead of (3.4). For example, due to (3.3), we have, for a € {1, 2},
le(1,n)| < e*(1,n) = (wn)~1/2 (fhs + = -1

1 1
100 18 ) 10n3 < 270n7/2

e2,n)] <e*(2.n) = (mn) ™! (35 + 15 1) 167 < TounT -

4For 1 < n < |a| the inequalities are approved directly.
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