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Entropy solution for a nonlinear parabolic problem
with homogeneous Neumann boundary condition
involving variable exponents
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In this paper we prove the existence and uniqueness of an
entropy solution for a non-linear parabolic equation with ho-
mogeneous Neumann boundary condition and initial data in
Ouagadougou, Burkina Faso. 1 . . . . .
L". By a time discretization technique we analyze the ex-
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istence, uniqueness and stability questions. The functional
setting involves Lebesgue and Sobolev spaces with variable

exponents.

RESUMEN

En este articulo probamos la existencia y unicidad de una
solucion de entropia para una ecuaciéon parabdlica no lineal
con condiciones de borde Neumann homogéneas y data ini-
cial en L'. Usando una técnica de discretizacion del tiempo,
analizamos las preguntas de existencia, unicidad y estabili-
dad. El contexto funcional involucra espacios de Lebesgue y

Sobolev con exponentes variables.
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1 Introduction and main result

Let © be a smooth bounded open domain of R?, (d > 3) with Lipschitz boundary 02, T is a fixed
positive number, in this paper we study the existence and uniqueness of an entropy solution for

the following nonlinear parabolic problem

% — diva (2, Vu) +b(u) = f in Qr =10, T[x4,

(P) a(z,Vu).n=0on > . =]0,T[x0Q,

u(0,.) = up in Q,

where f € LY (Qr), b: R = R, a(z,¢) : © x R? — R is Carathéodory function and verifying some

assumptions which will be given later, n denotes the unit vector normal on 9f).

The usual weak formulations of parabolic problems in the case where the initial data are in L' do
not ensure existence and uniqueness of solutions. For this reason, new formulations and types of
solutions are given in order to obtain existence and uniqueness. For that, three notions of solution
have been adopted: solutions named SOLA (Solution Obtained as the Limit of Approximations)
defined by A. Dall’Aglio (see [10]); renormalized solutions defined by R. DiPerna and P.-L. Lions
(see [12]); and entropy solutions defined by Ph. Bénilan et al. in [8]. In this paper, we will be

interested in the entropy formulation.

The stationary version of the problem for the problem (P) has been already studied by Bonzi et
al. (cf. [9]), where they proved the existence and uniqueness of an entropy solution for the initial

data in L'.

The study of parabolic equations with variable exponents is a very active field (see [1, 2, 20, 21,
23, 27, 29]), in these papers, the authors consider the homogeneous Dirichlet boundary conditions,
which permit them to use many results in the generalized Sobolev space W?()(Q) and the many
results concerned the differential equation in the literature to achieve there works. In particular
in the case of p(z)-Laplace, where b = 0, Bendahmane et al. (see [6]) have proved the existence
and uniqueness of renormalized solution. We can also point out that the well-posedness of triply
nonlinear degenerate elliptic- parabolic-hyperbolic problems: b(u), —diva(z, Vé(u)) +1(u) = f in

a bounded domain with homogeneous Dirichlet boundary conditions by K. H. Karlsen et al. in [3].

Unfortunately, in this paper, due to the Neumann boundary condition, we cannot use the ideas
developed in these papers and also some functional analysis results which play and important role

in the a priori estimation, in particular the famous Poincaré inequality.

To overcome these difficulties we apply a time discretization of given continuous problem by the

Euler forward scheme. Let’s recall that this method has been used in the literature for the study
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of some nonlinear parabolic problems, we refer for example to [7, 13, 16, 17] for some details. This
scheme is usually used to prove existence of solutions as well as to compute numerical approxima-

tions.
In this paper, our assumptions are the following;:

p():Q — R isa continuous function such that

I<p. < py <+oo,

where p_ := ess inf p(z) and py := esssup p(x) and
e xeQ
b:Q — R is a continuous, nondecreasing function, surjective such that b(0) = 0. (1.2)

Also, we assume that a(x, &) : Q x RV — RY is Carathéodory such that:

e there exists a positive constant C; with

lae,€)| < C1 (i) + ) (13)

for almost every z € Q and for every ¢ € RV, where j is a nonnegative function in Lp,(')(Q) with
1 1

p@) P

)

e there exists a positive constant Cy such that for every z € Q and every &, & € R? with

& # &9, the following two inequalities hold

(a(z,&) —alz,&2)) - (& — &) >0 (1.4)

a(z,€) € > ColeP™. (1.5)

The rest of the paper is organized as follows: after some preliminary results in Section 2, we
introduce the Euler forward scheme associated with the problem (P) in Section 3. We analyze

the stability of the discretized problem and we study the existence of an entropy solution to the

parabolic problem (P) in the Section 4.

2 Preliminaries

We define the Lebesgue space with variable exponent LP() (Q) (see [11]) as the set of all measurable

functions u : Q — R for which the convex modular

Pp() (u) = /Q u[™) dz

is finite.

If the exponent is bounded, i.e., if p; < 400, then the expression

[ull () == inf {A>0:pp0) (u/A) <1}
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defines a norm in LP) (), called the Luxembourg norm.
The space (Lp(‘) (Q), ||.||p(_)> is a separable Banach space. Moreover, if 1 < p_ < p; < 400, then

LP1) (Q) is uniformly convex, hence reflexive and its dual space is isomorphic to L” () (Q) , where
1

-+ —
p(z)  p (@)
Finally, we have the Holder type inequality

/ uvdx
Q

for all u € L) () and v € L7 ) (Q) .
Let

1 1
<l —+—)|lu vy, 2.1
(o5 + ) Bl Tl (2.)

w0 (@) i= {ue L0 Q) : |Vl € L0 ()},
which is Banach space equipped with the following norm
lully py = llull,cy + 1Vl ) -

The space (Wl’p(') @), 14 p(i)) is a separable and reflexive Banach space.
An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the

modular p,.y of the space LPO) (). We have the following result.

Proposition 2.1 (see [14, 28]). If un,u € o) (Q) and py < oo, the following properties hold

true:

i) ullygy > 1= [l < ppy () <l

(i) ullyy < 1= Null2f) < ppcy (@) < ull%s)
(iti) |[ull, ) <1 (respectively =1;> 1) < py) (u) <1 (respectively = 1;> 1);
() [lunll,y = 0 (respectively — +00) < pp() (un) <1 (respectively — +00);
(0) ooy (u/ ) =1

For a measurable function u : 2 — R we introduce the following notation:

P1p( (u) = / |u|p(m) dx + / \Vu|p(m) dz.
Q Q
Proposition 2.2 (see [25, 26]). If u € W'PL) (Q), the following properties hold true:
(i) Nl py > 1= lully ) < prpe) () <l s

(id) lull oy < 1 = Nl < ooy () < ull?

(iti) [lully ) <1 (respectively =1;> 1) < py p) (u) <1 (respectively =1;>1).
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Put
N -1
o 8 ( )p(a:)7 if p(x) <N
p7(z) == (p(x))” = N -p(z)

oo, if p(z)> N.

Proposition 2.3 (see [26]). Let p € C (Q) and p— > 1. If ¢ € C (99Q) satisfies the condition
1<q(z)<p?(z) VaedQ,

then, there is a compact embedding WPL) (Q) < LIV (99).
In particular, there is a compact embedding WHPL) (Q) — LPG) (5Q).

Following [29], we extend a variable exponent p :  — [1,+00) to Qr = [0,T] x Q by setting
p(t,z) =p(z) for all (t,z) € Qr.

We may also consider the generalized Lebesgue space
L’ (Q) = {u : Q@ — R measurable such that // u (t, 2)[P™ d (t,z) < oo}
Q

endowed with the norm

||u||L:n(.)(QT) ;= inf {)\ > O7 //
T

which share the same properties as LP) ().

U (t, 1‘) p(z)

d(t,z) < 1},

For a measurable set U in R?, meas(U) denotes its measure, C; and C will denote various positive

constants. For a Banach space X and a < b, L9(a,b; X) is the space of measurable functions

w: [a,b] = X such that
1
b q
(/ lull dt) = lJull Lo a,px) < 00 (2.2)

For a given constant k > 0 we define the cut-off function 7}, : R — R by

s it |s| <k
Tk(S) = . .
k sign(s) if |s| >k
with
1 if s>0
sign(s) := 0 if s=0
-1 if s<0.

Let J, : R — RT defined by
() = / Ti(s)ds
0
(J is a primitive of Ty). We have (see [15])

<‘3:7Tk(3)> _ % (/Q Jk(v)d:v> in 210, 7))
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which implies that

/Ot<gq;’Tk(s>> :/Qj(v(t))dfﬂ—/QJ(v(O))dx

For all u € WHP() (Q) we denote by 7 (u) the trace of u on dQ in the usual sense.
In the sequel, we will identify at the boundary, v and 7 (u) .
Set

TP (Q) = {u : Q0 — R, measurable such that T} (u) € W'PH) (Q), for any k > 0} .

Proposition 2.4 (see [8]). Let u € THP() (Q). Then there exists a unique measurable function
v:Q — RY such that VTy (u) = VX {|u|<k}> for all k > 0. The function v is denoted by Vu.
Moreover, if u € WP (Q) then v € (LPL) (Q))N and v = Vu in the usual sense.

We denote by ﬁi’p(') (Q) (cf [4, 5, 18, 19]) the set of functions u € THP() (Q) such that there

exists a sequence (uy),, .y C w0 (Q) satisfying the following conditions:

i) up, — u a.e. in Q.
it) VT (un) = VT (u) in (L' ()" for any k > 0.

i4i) There exists a measurable function v on 99, such that u, — v a.e. on 9.

The function v is the trace of u in the generalized sense introduced in [4, 5]. In the sequel, the
trace of u € ﬁi’p(') () on 9Q will be denoted by tr (u). If u € WPL) (Q), tr (u) coincides with
7 (u) in the usual sense. Moreover u € 7;}!1’(') (Q) and for every k > 0, 7 (T (u)) = T (tr (u)) and
if o € WL (Q) N L (Q) then (u — @) € 7;1,”7(') (Q) and tr (u — @) = tr (u) —tr(v).

3 The semi-discrete problem

In this section, we study the Euler forward scheme associated with the problem (P):

U" —rdiva (z, VU") + 70 (U") = 7f" + U 1 in Q

(Pn) 4§ a(x,VU™).n =0 on 0Q,

U% = ugin

where NT=T,0<7<1,1<n <N and

fal) = l/m f(s,)ds in Q.
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Definition 3.1. An entropy solution to the discretized problems (P,) is a sequence (U™)o<n<n

such that U° = ug € L (Q) and U™ is defined by induction as an entropy solution to the problem

U™ —rdiva (z,VU") + 70 (U") = 7f, + U1 in Q

a(z,VU™).n =0 on 2
ie. U™ € ﬁi’p(')(ﬂ), b(U™) € LY(Q), and for every k >0
T/ a(x, VU").VT,(U" —p)dx + / (r(U™)+U™) T (U™ — p)dx < / (Tfo + U DTH(U" — @)da
Q Q

Q
(3.1)
for all o € WHPL(Q) N L®(Q).

We have the following result

Lemma 3.2. Let hypotheses (1.3) — (1.5) be satisfied. If (U™)o<n<n 1S an entropy solution of
problems (Py,), then U™ € LY(Q) for alln=1,...,N.

Proof. For n =1, we take ¢ =0 in (3.1), to get,

T/ a(x,VUl).VTk(Ul)dx+/(Tb(U1)+U1)Tk(U1)dx < /(Tf1+uo)Tk(U1)dx,
Q Q Q

which is equivalent to

T/Qa(;c,VTk(Ul))VTk(Ul)dx+/QTb(Ul)Tk(Ul)der/

U'Ty(UYYde < /(Tf1 + o) Ty (U1 ) de,
Q

Q

(3.2)
By the assumption (1.5) and the properties of the function b, we have
7'/ a(x, VIL,(UY))VTL(UY ) dx + / H(UNTL(UY)dz > 0,
Q Q
then it follows that
| U0 de < ke il + ol
Q
Since
N
D 7l fally < -
n=1
Then, it follows that
| U@ e < (151, + o), (33)
Since )
T,
tim 01 B
k—0 k

Then dividing (3.3) by & and letting k¥ — 0; we deduce by Fatou’s lemma that

HU1H1 < (IF 1+ lluolly) (3.4)
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Theorem 3.3. Let hypotheses (1.3) — (1.5) be satisfied. Then for all N € N, the problems (P,)
have unique entropy solution U™ € ﬁl’p(')(Q) NLYQ) for alln=1,...,N.

r

Proof. The problem (P;) can be rewritten in the following form

—7diva (z, Vu) + b(u) = F; in Q

a(x, Vu).n =0 on 99
with
b(s) :=71b(s)+s, F1:=7f1+uo.

From the assumption (Hs), we have F; € L'(f2), and using the properties of b, we obtain b is a
continuous, nondecreasing function, surjective such that b(0) = 0. Hence, using [9, Theorem 4.3],

we have the existence of unique entropy solution U! € 7;11’)(')(9), b(U') € LY(Q).

Thanks to Lemma 3.2, by induction, we deduce that for n =2,..., N, the problem

u— 7diva (z, Vu) + Ta (u) = 7f, + U1 in Q
a(z,Vu).n=0on o,

has an unique entropy solution U" € 7;1’1’(‘)(9) NLYQ), b(U™) € L*(Q). O

4 Stability

This section is devoted to the a priori estimates for the discrete entropy solution (U™)1<p<n. These

result are essentials for the study of the convergence of the Euler forward scheme.

Theorem 4.1. Let hypotheses (1.3)—(1.5) be satisfied. Then there exist positive constants C(ug, f),
C(ug, f,Q) depending on the data but not on N such that for alln =1,..., N, we have

1 ]|U™|; < Cluo, f)

2.7 el < Cluo, )

S U = U, < o)

4o T 31 Pp() (VTR(UY)) < kC(uo, )

5. 73 Ju<m VU P~ dx < kC(uo, f,Q)

Proof. 1 and 2. For ¢ = 0 as a test function in (3.1), we have

T i i Te(U7) i T(UY)
E/Qa(m,VTk(U))VTk(U )d:c—l—/QU Td:c—l—/ﬂrb(U)Tdm

< 7lIfilly + [Jo ], da.
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Since
/ a(x, VI (U))VT(U)dz > 0.
Q

Then, it follows that

[ B [ e de < i, + o)
Q k Q k

Then letting £ — 0 and using Fatou’s lemma, we deduce that

Ui, + 7 @), < lfilly + [0, - (4.1)

Now, we sum (4.1) from ¢ = 1 to n to obtain
10"l +7 3@, < 171+ lluolly (4.2)
i=1
which give, the inequalities 1 and 2.

3. For k > 1, we take ¢ = T, (U* —sign(U* —U*"1)), (h > 1) as a test function in (3.1), then letting

h — oo, for k > 1, we obtain,

7 im Z(k,h) + |0 = U] <7 (1l + [@)]),)

h— 00
where
I(k,h) = /a(x,VUi)VTk(Ui—Th(Ui—sign(Ui—Ui—l)))dx
Q
= / a(z, VU)VU dx
Qi N (k)
and
Qe = {JU = T,(U" —sign(U' = U™ 1)) < k}
Qk) = {|U" —sign(U'—U""")|>h}.

Then by the hypothesis (1.3), we have

lim Z(k,h) > 0.

h—o0

Then, it follows that
o = U=ty < ke (il + [o@9)],) - (43)

Then, summing (4.3) from ¢ = 1 to n and by the stability result 2, we obtain the stability result 3.

4. We take ¢ = 0 as a test function in 3.1 to get

. ( / a(WTk(Ui))vn(Ui)dx) < kr(1fill + [p@],) + & U~ U,
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Therefore, using the assumption (1.5) it follows that
7000 (VTe(U) < Cslkr (1 illy + [[o@)]],) + k[T — U1, (4.4)

Now, summing (4.4) from ¢ = 1 to n and using the stability results 1, 2, 3, we get

=1

IN

£l +7 > @), + Y [Jvr =,
=1 =1
< kC(f,uo)- (4.5)

5. According to (4.5), we get from the above estimate

|U?|<k}

TZ/ VU P@ dz < kC(ug, f). (4.6)
171

Now, note that

/ VU dr = / VU d + / VU da
{lUé|<k} {lU|<k, VUi >4} {lvi|<k |VUi<4}

- 1
< VU |P-dx + Nmeas(Q)

[[IUiISkn VU >4}

; 1
< / VU P dg + —meas(9).
{lUs|<k) N
By the inequalities above, thanks to (4.6), we obtain

n . . .
TZ; /{|U1,|<k} |VU ‘p dr < kC(UOa f) + Nmeas(Q)
< kC(ug, f) +meas(2) < k(C(ug, f) + meas(Q)) (47)

for all £ > 1. O

5 Convergence and existence result

In this section, we prove the existence of an entropy solution of problem (P). First of all, we
introduce the appropriate spaces for the entropy formulation of the nonlinear parabolic problem

(P).
We define the space:
V= {ve L’ (0,T;W»0(Q)) : Vo e (IPV(Qr))"},
and
THO(Qr) = {u : Q % (0, T); measurable | Tj,(u) € LP-(0,T; WP (Q))

with VT (u) € (LP)(Qr))?¢ for every k > O} .
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Definition 5.1. An entropy solution to problem (P) is a function u € TP (Qr)NC(0,T; L' (Q))
such that and for all k > 0 we have

// (z, Vu)VT(u— ¢ // w)Ti(u — )
<[ <gfj,mu—go>>+AJk<u(o>—w(o>>—AJk<u<t>—so(t))
+/Ot/Qka(u—<P)

for all o € L>(Q) NV NnWHY0,T; LY(Q)) and t € [0,T).

Our main result is

Theorem 5.2. Let hypotheses (H1) — (H3) be satisfied. Then the nonlinear parabolic problem (P)

has an entropy solution.

Proof. The proof is divided into two steps

Step 1: The Rothe function. We introduce a piecewise linear extension:

uN(0) = wy,
(5.1)
uN(t) = UnTl4 (U - unmtyett
for all t €]t"~1,t"], n=1,---, N, in Q and a piecewise constant function
av(0) = wo,
(5.2)
av(t) = UM vtet L, n=1,--- N, inQ,
where t" := n7 and (U")1<n<n an entropy solution of (P,).
By Theorem 3.3, for any N € N; the solution (U™)yen of problems (P,) is unique. Thus, v’ and

" are uniquely defined. Consequently, by the Theorem 4.1, we deduce the existence of a constant

C(T, up, f) not depending on N such that for all N € N, we have

Iz —

1
UNHLl(Q ) < NC(Ta anf)

||uN||L1(Q ) < C(T,Uo,f)

[z < C(T,u, f) (5.3)
u’
ot
[b(@")

I+ @m
S C(Tv U, f)

LY (Qr)

HLl(QT) < C(T7 Ug, f)
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Moreover combining Proposition 2.1 and Young inequality, we get

VT ™))

IN

max{pp<w><VTk<UN>>,pr<m> <VTkUN>P+}
o) (VTR(UN)) + p1 p(a) (VTRUN ) PF

p- p—
Poa) (VTR (UN)) + == py(ay (VTR (UN)) +1 = == (5-4)
P+ P+

IN A

IN

20p(0) (VIR(UN)) + 1.
Thanks to Poincaré-Wirtinger inequality, we have

||Tk(UN)Hp(w) < Cmeas(Q) HVT;C(UN)H + k|1

p(x) p(z)?

which implies that
I @™M)|[2,, < 277 ((Cmeas(@) [VTUUY) [, + k2= 12, ) (5.5)
then it follows that,

IT@™|f},, < 27 [(Cmeas(ﬂ))p* (2pp(e) (VTR(UN)) + 1) + kP~ |\1||§(—x)] (5.6)
+2pp(w)(VTk(UN)) + 1

Therefore,
T
/ | Te(UN) H1 () < 27-71 | (Cmeas(2))P- (2/ pp(_)(VTk(UN))dtJrT)
0
T
TR |17y | + 2/ Py (VTL(UN))dt + T
0
< op--1 [(Cmeas (22 / VTk(UN))dt—FT)
n—1(n— 1)‘r
+TRP= |10, | +2 Z/ pp() (VT (UN))dt + T (5.7)
< 2P-~1 | (Cmeas(Q))P- (2 Z Tpp() (VT (U™)) + T)
n=1
N
TR 10 | 42D 7p1p0) (T(U™) + T
n=1
Consequently from stability result 4 it follows that
HTk HLP (0,T;Wir@)(Q)) = C(T k ; U0, f7 ) (58)

Lemma 5.3. Let hypotheses (1.3) — (1.5) be satisfied. Then the sequence (W™ )nen converges in

measure and a.e. in Qr.
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Proof. Let e, 7,k be positive numbers. For N, M € N, we have the inclusion

(@ =@ >} © {7 > kpu{a¥] > &)

u {[@" <k, @M <k @V —aM| >}

Firstly, we have

1
meas {[u"| > k} < = ||uN||L1(QT) < +C(T o, f). (5.9)
Similarly, we have
1
meas {[7| > k} < - HuNHLl(QT) < EC(T’ ug, f)- (5.10)
Therefore, for k large enough, we have
meas({[7| > k} U {|a™| > k}) < % (5.11)

Secondly, by the Proposition 2.1 and Young inequality, we have

1
< {( / / VT (u |p<’”>dxdt) ( / / VT (w |p<’”>dxdt) +}
Lr()(Qr)

fore”|

N
< (/ /|VTk |p(z)dxdt> ) (/ /\VTk \p(z)dxdt> !
and also, we have
T T N nT
/ / VT (@) P dadt = / P (T(VEY)) = / Poo (VTH(U™))dt
0o Ja 0 n=1"(n—1)7
N
< Do) (VTR(U™)).
n=1
Therefore, using the stability result 4 and Proposition 2.1, it follows
1 1
(heaxcali < (KC(uo, £))7 + (kC(uo, )7+ (5.12)

(LP@)(Qr))d

Since by the Poincaré-Wirtinger inequality, we have

N —N
HTk(u )‘ (@) < Cmeas(Q2) HVTk(u )) Lo (@) + k1 o) (0 »
then by (5.12), we get
1 1
|70, < Crneas(@d) (KCCuo, )7 + Cu0 )7 ) 4 kMM iy (513
T

Hence, the sequences (T%(@"))nen are bounded in LP)(Qr). Then, there exists a subsequence, still
denoted by (Tk(@"))nen, that is a Cauchy sequence in LP)(Qr) and in measure. Thus, there exists
No € N such that for all N, M > Ny, we have

meas ({|u | <k, @ <k, [a" —a"| > r}) < % (5.14)

Then, by (5.11) and (5.14), (@) ven converges in measure. Therefore there exists an element v € M (Qr)
such that

¥ S u ae. inQr. O
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Now, by (5.12)
(VT3 (@) yen is uniformly bounded in, (LP¢)(Qr))<. (5.15)

Hence there exists a subsequence, still denoted by
(VT (@) veny  converges weakly to an element V in LPC)(Qr).

Since

Te(@™) converges weakly to Ty (u) in LPO(Qr).

Then
VT, (@") converges weakly to V7T (u) in (LPO(Qr))%. (5.16)

and by (5.8) we conclude that

Ti(u) € LP-(0,T; WHPL(Q)) for all & > 0.

In the sequel, we need the following Lemma (see [22]).

Lemma 5.4. Let (vy,),~, be a sequence of measurable functions in Q. If (vy),~, converges in
measure to v and is uniformly bounded in LP1)(Q) for some 1 << p(.) € L=(Q), then (v,), s, — v
strongly in L*(9).

Now, we have the following result

Lemma 5.5. Let hypotheses (1.3) — (1.5) be satisfied. Then

(i) (VT (@N))nen converges in measure to VT (u);

(ii) (a(z, Ti(@N)))nen converges strongly to a(x, VT (u)) in (LY(Q7))? and weakly in (Lpl(') (Qr))<.

Proof. (i) Let h > 1, from the Holder type inequality, we have

meas {|VT;(@) — VIi(u)| > h} < %/ VT (EY) — VT ()| deds
1 1 1 _
= h (p_ * p+> HVTk(UN) N VT’“(U)HI;(_) ”1”,,/(.) (5.17)

L <pl N (pl)) (IFT@™)| .y + 19Tl ) Il -

So by (5.15), meas {|VT,(a") — VTi(u)| > h} — 0 as h — oo for any fixed k > 0 and the proof
of (i) is complete.
As a consequence of (i), up to a subsequence, we can assume that V7 (") — VTj(u) a.e in Q.

(ii) Since a(z, ) is continuous with respect to & € RY then by (i) we deduce that

(a(z, Tp(@"))) Nen converges in measure to a(x, VTj(u)) and a.e. in Q7.
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Moreover, using the hypotheses (1.3) and (5.12) one shows that (a(z, VT (@")))nen is uniformly
bounded in (LF' O (Qr))®.

Consequently, in the one part thanks to Lemma 5.4 it follows that (a(z, T (@™))) yen — a(z, VTk(u))
strongly in (Ll(QT))d.

On the other part, we can extract a subsequence still denoted by (a(z,VTk(u")))nen such
that a(z, VI (@) — ¢ in (L) (Qr))%. Since each of the convergence implies the weak L!-
convergence, (i, can be identified with a(x, VIk(u)), thus a(z, VT (u)) € (LP ) (Qr))%. This com-
pletes the proof. O

Lemma 5.6. (@) yen converges a.e. in Y.

Proof. We know that the trace operator is compact from W' (Q) into L' (99), then there exists

a constant C' such that
T T
/O | T (@ (1)) — Tk(u(t))HLl(BQ) dt < C’/O 1 T% (@™ (1)) — Tk(u(t))”Wl,l(Q) dt.
Since W1PL) (Q) < W1 (Q) for all p(.) > 1, then by the Holder type inequality, we deduce that
Te(@" (t)) = Ti(u)in L' (Z7) and a.e. on L.

So, there exists A C Y7 such that T (u™ (t)) converges to Ty (u(t)) on X7 \ A with meas(A) = 0.

For every k > 0, we set

Ap = {(t,z) € B : [Te(u(t)| <k}, and B=3p\ | 4.
k=1

We have, by Hélder’s inequality

meas (B) < %/B|Tk(u)|dcr

1 T
< 1] 1Dl oo
1 T
< 1 D@l de (5.18)
0
<

[ ] @i+ vTw)
1

1 1
1 (4 ) Mo (1T @l gy + IV ) o)

Thanks to (5.12) and (5.13), for all k¥ > 0, we have
I
T3 (EN)HLm)(Q) + VT, (EN)H(LP(JC)(Q))d < 2 (kp’ + k”) (5.19)

XmaX{C(UOap—i—vfa g)H7C(UO,p+,f, g)ﬂ}
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We now use the Fatou’s lemma in (5.19) to get

1 1
1T @l oo @ + IVT (W) oo ga < 2 (K7 +577)

xma‘X{C(UOap-i-afv g)ﬁvc(u()ap-‘rafa g)ﬁ} )

and (5.18) becomes

1 1 1 1
1_ L +k1_1) maX{C(uo,p+,f,g)p+,C(uo,p+,f,g)P+}. (520)
P Pt

meas (B) < 2 (k

Therefore, we get by letting & — oo in (5.20) that meas (B) = 0.

Let us now define on 0%, the function v by
v(t,x) = T (u(t))(z) if (z,t) € Ag.
We take (z,t) € X7 \ (AU B); then there exists k > 0 such that (z,t) € Ay and we have
a (t, @) — v (t,2) = @ (t2) = Te(@" (1) (2)) + (Tu(@ (t)(z) — Ti(u(t))(2)).

Since (z,t) € Ay, we have [Ty (u™ ())(x)| < k from which we deduce that Ty, (u (t))(z) =u (t, ).
Therefore,

@l (t,x) — v (t,z) = (Th(@ () (x) — Th(u(t))(z)) = 0, as N — oc.
This means that (EN) converges to v a.e. on Y. O

Lemma 5.7. The sequence (") yen converges to u in C(0,T; L' (Q)).

Proof. Let (" = n7y)Y_; and (™ = m7y )M, be two partitions of the interval [0,7] and let

(uN (), a™N (), (u™(t);u™(t)); be the semi-discrete solutions defined by (5.1), (5.2) and corre-
sponding to the respective partitions. Let ¢ € L>(Q) NV N WLL1(0,T; L1 (Q)). We rewrite (3.1)

in the forms
t/oulN N t N N
6—7Tk(u — ) )ds+ a(z, Vu" ) VT (u" — p)dzds
0 & 0 JQ
¢
—|—/ b(@" )Ty (@ — p)dzds
0o Jo
t
< [ [ it - o)dods (5.21)
0o Jo

and
t 8’U,M t ’
/ <6,Tk(uM—g0)>d8+/ /a(m,VﬂM).VTk(EM—go)da;ds
0 s 0 JQ
t
+ / / b(@M") Ty (@M — p)dads
0o JQ

¢
< / T (@ — @)dxds (5.22)
o Ja
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where
vt z) = folx) vt ejtnL tn)

fau(t, ) = f(z) vt el "]

Let h > 1, in inequality (5.21) we take ¢ = T (@) and in inequality (5.22) we take ¢ = T}, (u').

Summing both inequalities, we get, for k =1,

/Ot <8(“N8;“M),T1(uN - uM)> ds + In s (h)
)

+/Ot/Qb(u T (@ — Ty (@™))dxds

+
Q

/otzw’m“]v _UM)> - <aaiv’T1(“N—Th(“M))>ds (5.23)

/Ot <agM,T1(uM Th(uN))>d5

+/0 /Q[fNTl @ — T, (@) + fu T (@ — Ty, (@) dzds

b(@M) T (@ — Ty, (@) dzds
N

IN

where
Ina(h) = /Ot/Q“(WuNWTl(uN—Th(uM»dxds
+/Ot/ﬂa(x,VuM).VT1(uM—Th(uN))d:vds.
We have
A L I e T
< 2C(T, f,uo) || Ty (u® — uM)||L°°(QT) :

Since

. N_ M _
w7 = el g =0
Then it follows that
¢ N _ .M
lim  lim / <8(UU),T1(UN - uM)> ds =0. (5.24)
h—so0 N,M—c0 J 0s

Similarly, we show that

lim  lim (/Ot <8g:,T1(uN — Th(uM))> + <8;i{,T1(uM — Th(uN))> ds) =0

h—o0 N,M— o0

h—o0 N,M—o00

lim  lim / t / T @Y = Th(@™) + farTy (@ — Ty @) dads = 0
0 Q
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and
lim  lim / / — Ty (@M))dxds +/ / M — Ty, (@"))dxds = 0.
h—o0 N,M — o0
Then, letting N, M — oo and h — oo, in (5.23)we get
t N _ M
lim  lim <a(uu),T1(uN - )> ds + hrn lim Iy (k) <O0. (5.25)
h—so0 N,M—c0 [ 0s h—00 N,M—s00

Since

<g:,:rk(v)> :%/QJk(v) in 21(]0, T),

inequality (5.25) becomes
lim TN () —uM(t))dr + lim  lim Iy (h) <O0. (5.26)

N,.M—oo Jo h—o00 N,M —oco

Now, we show that

li li 1 > 0.
A T () 2 0

We consider the decomposition

where

// a(x, Va¥).VT (@ — Ty (@))dzds

+ / / a(z, Va). VT, (@M — T, (@"))dxzds
0 JQi(h)

and

Qu(h) = {[a¥| < h [ <} Qu(h) = {[B] < h, 7] > b}
Qa(h) = {[a¥] > h, [@"| < B} () = {[a¥] > h, [@] > h}.

On the one hand, thanks to assumption (1.4) we have

t
Li(h) = / / [a(z, Vi) — a(z, Var)].V (@ —aM)dzds > 0.
0 JQi(h)
Therefore

lim lim Ly(h)>0.

h—o00 N,M — o0

On the other hand, we have

t
Lao(h) = / / a(z, Va™ ).V dzds
0 JQi(h)
t
+/ / a(z, VaM).v (@M —a)dzds
Q3(h)
// x, VaM).va® dzds,
522(11

v
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where
Q) = {[@"| <h, @ > h,[@a" — hsign@)| <1},
Q3n) = {[@<h, @] > h @ -7 <1}
Now, taking ¢ = T;,(@") in (5.21), we deduce that
lim lim / / a(z, Val¥).val¥
h—o0 N—o00 {h<|u”\<h+k}
This implies
t
lim lim / / [VaN |P@ =0, k> 0. (5.27)
h—o00 N—o00 0 {hS‘ﬂN‘Sh-‘rk‘}
By the Young inequality, we have
a(z, VaM).va dzds
Q3(h)
t
< / / |vaM P@ =1 vgN |dzds
0 JQ2Z(h)
¢ 1 ¢ 1
< / / . aM|P@ dxds + / / —— |VaM [P@) dxds
o J{r<jaM|<h+1} P (z) 0 J{rh-1<@N|<h} p(z)
¢ 1 ¢ 1
< / / f\VUMW(E)da:ds —|—/ / — |vaM [P@) dxds.
0 J{h<puM|<h+1} P— 0 J{h—1<[@N|<h} P-
Thus (5.27) gives
lim / / / a(z, VaM).Va® dzds = 0,
N,M— o0 Q2
which implies that
lim lim Ls(h) > 0.
h—o0 N,M —o00
Similarly, we show that
1 1 > 0.
1, 3 (Fol0) + Ea() 20
Therefore
> 0.
hll)ngo N, Zl\}IIgoo IN M (h) 0
Thus (5.26) becomes
lim Ji(u™N () — uM(t))dx = 0. (5.28)

Since

1

1 / iV (1) — uM
2 J{jun —um <1y

N.M—oo o

Ofdes [ w0 @l < [ et o -
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we have

J oy 0~ @l

/{I N_uM|<1} |UN(t) - uM(t)|dx " /{ N_yM|>1} ‘UN(t) - uM(t)Idx

1

Co (/ ™ (1) - uM(t)|2dx> +/ ™ (8) — u ()| da
{luN —uM|<1} {lu® —uM|>1}

Cs(9) ( /Q Jl(uN(t)—uM(t))dac>2 + /Q Ty (W (t) — uM (8))dz.

IN

IN

By (5.26), we deduce that (u’)yen is a Cauchy sequence in C(0,T; LY(Q)). Hence (u¥)yen
converges to u in C(0,T; L' (£2)). O

Step 2: Existence of entropy solution. Now, we prove that the limit function « is an entropy
solution of the problem (P). Since u” (0) = U° = wg for all N € N, we have u(0,.) = ug, and
inequality (5.21) implies

/ot <%iV’Tk<uN —¢) = Ti(u” - s0>> ds + /Ot /Q a(x, Vi) VT (@" - p)duds
+/Ot/ﬂb(uN)Tk(UN — p)dads (5.29)

< /Ot <%’Tk(UN —¢) = T (u™ - <P)> ds + /Q T, (u™(0) = ¢(0))da — /Q Te(u™ (1) = (t))dz

+/Ot/QfNTk(UN — ¢)duds.

Let k =k + ||¢, - Then
¢
/ /a(m,VHN).VTk(ﬂNfgo)dmds = / / a(z, VI(@")) . VTi(T-(@") — )dzds
0 Jo

= // (z, VTL(uN)).VT(u)

— (m,VTE( )).VQD]].Q(NJC)d(EdS,

where Q(N, k) = {|T¢(u") — ¢| < k} . Thus, the inequality (5.29) becomes

/<62;Tk( —¢) = Ty (u® >d5—// (z, VTH(@"Y)).Velgnr
/ / (z, VIE(@")). V(@) 1ok + /0 /Q b(@) Ty (@ — p)dxds (5.30)

< - / <a Ty >>ds+ /Q Je(u (0) - p(0))dar — /Q Je(™ (1) — p(t))da
+ /O t A INTL (@Y — p)dzds.
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On the one hand, thanks to Lemma 5.5 a(z, VIL(u")) converges weakly to a(z,VTi(u)) in
, d
(Lp ) (Q)) . Therefore,

ngnoo/ / a(z, VILE")).Velon g = / / ))-Volom, (5.31)

where Q(k) = {|T¢(uv) — ¢| < k} . Moreover, a(z, VIL(a")).VT(w") is nonnegative and converges
a.e. in QT to a(z, VTE(u)).VTE(u) (see Lemma 5.5). Therefore by Fatou’s lemma, we obtain

l}ggof/o /0 /Q[a(:v,VTE(HN)).VTE(EN)]lQ(N’k)dxdsZ/O /0 /Q[a(x,VTE(U)).VTE(U)]IQ(k)dxds.

For the fourth term of (5.30), we have

/ t [ o — pods ~ [ t [ o) st - pydeds+ [ t JRELTEr

The quantity (b(@") — b(@))Tk(T@™ — ) is is nonnegative and since for all s € R, s + b(s) is

continuous, we obtain
(b@Y) — b)) T(@ — ) = (b(u) — b)) TL@ — ) ace. in Q.
Then, it follows by Fatou’s lemma that

1}?3}3// Ny (T dxds>// )Tk (u — @)dzds.

We have b(p) € L*(Q7). Since Ty, (@ — ¢) converges weakly—x to Tj,(u — ¢) and b(p) € L*(Qr),

it follows that
¢
liminf/ /b(gp) da:ds>/ / )Tk (u — ¢)dzds.
N—o00 0 Q

By Lemma 5.7 , we deduce that u¥ () — u(t) in L' () for all ¢ € [0, 7], which implies that

/ To(™ (1) = (1)) da — / To(u(t) — o())dz Vit € [0,T. (5.32)
Q

We follow the method used in the proof of equality (5.24) to show that

; "/ ouN —N N
lim — T (@" — ) — Tp(u™ —¢) )ds=0. (5.33)
N—oo Jj Js

Finally, letting N — oo and using the above results, the continuity of b and the facts that

fv = f in LYQr),
Tr(@ — ) = Te(u — ¢) in L(Qr),

we deduce that « is an entropy solution of the nonlinear parabolic problem (P). O
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6 Conclusion

In this paper we prove the existence and uniqueness of an entropy solution for a non- linear
parabolic equation with homogeneous Neumann boundary conditions and initial data in L' by a

time discretization technique.

This method turns out to be better suited for the study of parabolic problems under Neumann-
type boundary conditions. However, this technique assumes that the associated elliptic problem is
well posed. This study opens up new perspectives, we could always in the context of the Sobolev
space with variable exponents look at the problem with measure data or consider the function b

as maximal monotone graph.
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