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1 Introduction

The following Wirtinger type inequalities are well known

/bu2(t)dt < _ZG)Q /b [ ()] dt (1.1)

™

provided v € C' ([a,b],R) and u(a) = u(b) = 0 with equality holding if and only if u(t) =
K sin [%7‘1)] for some constant K, and, similarly, if u € C* ([a,b],R) satisfies u (a) = 0, then

b _a)? b )
/ uQ(t)dtgw/ [u ()] dt. (1.2)

™

The equality holds in (1.2) if and only if u (¢t) = K sin {;Eé:gﬂ for some constant K.

For p > 1 put m, := %’T sin (%) . In [11], J. Jaros obtained, as a particular case of a more general

inequality, the following generalization of (1.1)

b —a)? b
/ |u(t)|pdt§(](3b_1))ﬂ£/ ! (O dt (1.3)

provided u € C* ([a,b] ,R) and u (a) = u (b) = 0, with equality if and only if u (t) = K sin, [ﬂ”b(i;a)}

for some K € R, where sin, is the 2m,-periodic generalized sine function, see [18] or [5].
If u(a) =0 and u € C* ([a,b] ,R), then

b —a)? b
/ mun?ag”/ W (1) dt (1.4)

with equality iff u (t) = K sin, {%] for some K € R.

The inequalities (1.3) and (1.4) were obtained for a =0, b=1 and ¢ =p > 1 in [17] by the use of

an elementary proof.
For some related Wirtinger type integral inequalities see [1, 2, 4, 8, 9, 11, 12] and [15]-[17].

These inequalities are used in various fields of Mathematical Analysis, Approximation Theory,
Integral Operator Theory and Analytic Inequalities Theory since they provide connections between
the Lebesgue norms of a function and the corresponding Lebesgue norms of the derivative under

some natural assumptions at the endpoints.

Motivated by the above results, in this paper we establish some natural consequences of the
Wirtinger type integral inequalities for p-norms (1.3) and (1.4). Applications related to the trape-
zoid unweighted inequalities, of Griiss’ type inequalities and reverses of Jensen’s inequality are also

provided.
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2 Some applications for trapezoid inequality
We have:
Proposition 2.1. Let g € C1([a,b],R). Then for p > 1 we have the trapezoid inequality
gla)+g@®) 1 /b
— t) dt
5 b—al g(t)
b 1/p
—a
< lg (t) — g (a+b—t)["dt .20
2(p—1)"""m, ( _“/
In particular, for p =2, we have [7]
g(a)+g(b) 1 b b—a 1 b 12
- t)dt| < — ‘W)= (a+b—t)dt| . (22
el IO (b_a/am() g (atb—1) ) (22)
Proof. If g € C'([a,b],R), then by taking
u(t) — g(t)+g(a+b_t) _ g(a)—*—g(b)7 te [a,b]
2 2
we have u (a) = u (b) = 0 and by (1.3) we have
b P
gt)+gla+b—t) gla)+g(b) (b—a)” / AP
/a 5 5 dt < —— e lg’ (t (a+b—1t)]"dt, (2.3)
namely
b P p
/ g +glatb-t) g@+g@®) .,
. 2 2
1/p
Y
SQ( 1/p (/ lg’ (t "(a+b—1t)] dt) . (2.4)
By Holder’s integral inequality we have for p, ¢ > 1, 11) + % =1
J R TR GO
. 2 2
b 1/q b _ D 1/p
c([a)" ([ [prserizn _swrsw),
o o 2 2
Plg®) +glatb—1) g@+e® \"
:(b—a)l/q</ g g - 29 dt)
oW tgatb-n g@+g®[ )"
= (b—a) VP </ AV _ 9 J dt) . (2.5)
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By making use of the properties of modulus and integral, we also have

"la) +glatb—t) g(a)+g(b) "lg®) +glatb—t) gla)+g(b)
e e N R
b
[ awa- 2 ) (26)
By making use of (2.4)-(2.6) we get the desired result (2.1). O

Further, we have:

Proposition 2.2. Let g € C1([a,b],R). Then for p > 1 we have the trapezoid inequality

ICETIUR Y

2 b—a
. b-a 1 /b
_(p—l)l/pﬂ'p b—a/,

In particular, for p =2, we have [7]

g@)+g() 1 /bg@)dt

2 b—a

b—a< 1 /b
<
- b—a/,
Proof. If g € C'([a,b],R), then by taking

gla)(b—1t)+g(b)(t—a)
b—a

, t € la,b]

u(t)=g(t)—
we have u (a) = u (b) = 0 and by (1.3) we have

g@b-)+g®)t-a)ff  _ G-af [°
b—a dtﬁ(p—l)w;’/a g

p
dt,  (2.9)

/ 9(b) —g(a)
A

g(t)—

which gives that

1/p
b —a b p
P Tp a

By Hélder’s integral inequality we have for p, ¢ > 1, % + % =1 that

g(a)(b—1t)+g(b)(t—a)

dt
b—a

g(t) -

» 1/p
dt) . (2.11)
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By making use of the properties of modulus and integral, we also have

b a) (b — —a b 2 (b .
/a g(t)fg()(b tgjg(b)(t )dtz/a {g(t)g()(b tg-l_—z(b)(t )}dt
= /bg(t)dtg(a);rg(b)(ba) . (2.12)
By making use of (2.10)-(2.12) we get the desired result (2.7). O

We also have:

Proposition 2.3. Let g € C([a,b],R). Then for p > 1 we have the inequality

b b

b—|2—a/ g(s)ds—/ tg (t) dt
- (b—a)’ 1 /b
T p-)YPm, \b-ala

In particular, for p =2, we have [7]

b b
b—|2—a/ g(s)ds—/ tg (t)dt

07 1/2

2 b b
g(b;a) bla/af(t)dt—<bla/a 9(8)d8> - (214)

Proof. Assume that g : [a,b] — C is continuous, then by taking

P 1/p
dt) . (2.13)

t [
u(t) ::/g(s)dsfz_—a g(s)ds, t € [a,b]

we have u (a) = u (b) =0, u € C'([a,b],C) and by (1.3) we get
bl gt b p P b
t—a (b—a)
— <~
/a /ag(s)ds bia/ag(s)ds dt_(pfl)ﬂg/a
This is equivalent to
/b /t ()d t_a/b ()d pdt 1/p
) g(s)ds — 37— ’ g(s)ds
< b—a /b
_(p—l)l/pﬂp a

P
dt.

b
9) - 5= [ 9lo)ds

a

1 b p 1/p
g(t)—bi /g(s)ds dt) . (2.15)
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By Hélder’s integral inequality we also have for p, ¢ > 1, % + % =1 that

(b - )/ (/b [oas—1=2 [ as
- [

Observe that, integrating by parts, we have

/ab (/atg(s)dsz_(;/abg(s)ds> dt/ab (/(;tg(s)ds>dtb2a/abg(5)d5
b/abg(s)dsfabfg(t)dtb2a/ab9($)ds

b b
_ b;a/a g(s)ds—/a tg (1) dt. (2.17)

By making use of (2.15)-(2.17) we get the desired result (2.13). O

3 Inequalities for the CebySev functional

For two Lebesgue integrable functions f, g : [a,b] — R, consider the C’eby§ev functional:

b b b
CU0) = oy [ 0o~ o [ [t (31)

In 1935, Griiss [10] showed that

1
C(f.9)| < 3 (M —m) (N =), (32)
provided that there exist real numbers m, M, n, N such that
m<ft)<M and n<g({t)<N fora.e. t€clab]. (3.3)

The constant % is the best possible in (3.1) in the sense that it cannot be replaced by a smaller

quantity.

Another, however less known result, even though it was obtained by C‘ebyéev in 1882, [3], states

that

CU9)I < 75 6= 0 1 19 (3.4)

provided that f’, ¢’ exist and are continuous on [a,b] and || f'||, = sup;c(q 4 |f’ (¢)|. The constant

1—12 cannot be improved in the general case.
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The Cebysev inequality (3.4) also holds if f, g : [a,b] — R are assumed to be absolutely continuous
and f’, g € Lo [a,b] while || f'|| . = ess supieciap |f' (1)].

A mixture between Griiss’ result (3.2) and Cebysev’s one (3.4) is the following inequality obtained

by Ostrowski in 1970, [14]:

IC(fol << b—a)(M-m)|d, (3.5)

| =

provided that f is Lebesgue integrable and satisfies (3.3) while g is absolutely continuous and

g’ € Lo [a,b] . The constant g is the best possible in (3.5).

The case of euclidean norms of the derivative was considered by A. Lupag in [13] in which he

proved that

1
C (£ 91 < — ©=a)llfl; 19, (3.6)
provided that f, g are absolutely continuous and f’, g’ € Lo [a,b]. The constant 2 is the best
possible.
We have:

Theorem 3.1. If f : [a,b] — R is continuous, p, ¢ > 1 with %—F% =1andg: [a,b] = C is

P 1/p
dt>
b 1/q
x</ |g/(t)th> 37

1/2

absolutely continuous with ¢’ € Ly [a,b], then

_ )i/ b
CUols (bla/a 7~

L o

In particular, for p=q =2, we get

— a2 b b 2

I f2(t)dt—<b_1a/ f(smS)
b 1/2

x(/ g/(t)|2dt> (38

Proof. Integrating by parts, we have

ab (/;f(t)dt—
(/:f(t)d

3)ds> g/ (z) dx

b b
s)ds)gcr) —/agcr)( )
= b—a/f dx—l—i/f ds ! /ag(w)dm,
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which gives that

C’(f,g):bi (za/f dsf/ F(t dt)g/ z) dz. (3.9)

Using Holder’s integral inequality for p, ¢ > 1 with % + % = 1 we have

1C(f,9)l = bia/ (x_a’/f ds—/ ft dt>g/ z)dzx
<L “’”‘a/f ds—/ f(t)dt] gt (o) da
sbi (/ m_a/f ds—/ F(t dtpdx> p(/abg/(x)qdm>l/q::1(3.10)

Using (2.15) we have

= (L)
_ 1 b—a /bf()
Thmap-1)rm, \Ja

s)ds

1/p b 1/q
dt> (/ lgt (z)]? dz)
P 1/p b 1/q
dt) </ lg’ (x)|qdaz>
P 1/p b 1/q
dt) (/ lg! (:c)|qu> (3.11)

s)ds

p

) R T
-0, (b—a/a o=

for p, ¢ > 1 with % + % = 1, which proves (3.7).

)ds

Now, if we put p = ¢ = 2 and take into account that

bia/abf()— zdt:b_la/abfz(t)dt—<b_1a/abf(s)ds>2,

then by (3.7) we derive (3.8). O

s)ds

This results can be used to obtain various inequalities by taking particular examples of functions

f and g as follows.

We have the following trapezoid type inequality:

Proposition 3.2. Assume that g : [a,b] — C has an absolutely continuous derivative with g" €

L, [a,b], where p, ¢ > 1 and % + % =1. Then

" b _ g &
S /g<t>dt<2(p(1b)/(p+11/” </ ) |th> oo

2 b—a
Proof. We use the following identity that can be proved integrating by parts

JCEID _bia/abg(t)dt: bia/j (t_a;b)gf@)dt:c(e—“;b,g'),
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where £(t) =t, t € [a,]].

Using (3.7) we have
a+b
g - /
(- *5)
_ N\/p b
(p—1)""m, b—aj,

O N T
-, (b—a/a

1/p 1/q
b1 [P o\ | b
a—2|— _b—a/ <s—a_2|— )ds dt) </ |g"(a:)|quc>
1/q
) </ |g// |qu>

(b— 1+1/p /4
_ / |g// |q dx ,
201" (p+ 1) m, <

which proves the desired inequality (3.12). O

b|?
t_a-i—

Let ® : [m, M] C R — R be a differentiable convex function on (m, M) and f : [a,b] — [m, M] be
absolutely continuous so that ® o f, f, ® o f, (®'o f) f € La,b]. If f' € Ly [a,b], then we have

the Jensen’s reverse inequality [6]

b b
ogbia/a (@of)(t)dt—@(bia/a f(t)dt)

b b
<y [ @onwiwd— = [or dt—/ f ¥off). (313)

We have the following reverse of Jensen’s inequality:

Proposition 3.3. Let ® : [m,M] C R — R be a differentiable convex function on (m,M) and
f :la,b] = [m, M] be absolutely continuous so that ®o f, f, & o f, (¥’ o f) f € L]a,b].

(i) If f' € Ly[a,b], ® o f € L, [a,b] withp, ¢ > 1 and%—i—%:l, then

b b
o< ity [@enoa-o(it [roa)

_ - (1 /b
T -1, \b—al,

b
@ of) )5 [ @c)(s)ds

P 1/p
dt>

1/q

b
><</ |f’(t)|th> . (3.14)
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(it) If ® is twice differentiable and (®" o f) f" € Lq[a,b] with p, ¢ > 1 and % + % =1, then

o< [(@enwa- ( [ )

(b-a)” [ 1
S(p—l)l/p%(b“/a

b 1/q
(/ |<<1>”of><t>f’<t>|"dt> . (3.15)

The proof follows by Theorem 3.1 for C (9’ o f, f) and the inequality (3.13).

We have the following mid-point type inequalities:

Corollary 3.4. Let @ : [a,b] C R — R be a differentiable convex function on (a,b).

(i) If ®' € L, [a,b] with p > 1, then

b
ogbia/a @(t)dt—@(a;rb>
b—a Lo, e —a@P \Y
< i (b_a/a @ () - TO =2 dt) . (3.16)

(11) If ® is twice differentiable and ®" € L, [a,b] with p, ¢ > 1 and % + % =1, then

/a

<7/ t) dt — q>(a42-b> S2<p_(b)/ ();J:/lpl/p </ D" (t) th> . (3.17)
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