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RESUMEN
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1 Introduction

Fix a prime p and a p-power g. There is a unique (up to isomorphism) field F, with #F, = q.
The field Fj2 is a degree 2 Galois extension of F; and the Frobenius map ¢ + t7 is a generator
of the Galois group of this extension. This map allows the definition of the Hermitian product
(,):Fp xF, — Fg in the following way: if u = (u1,...,u,) € F, and v = (v1,...,v,) € Fp,
then set (u,v) = >, ulv;. The degree g + 1 hypersurface {{(z1,...,2n), (z1,...,2n)) = 0} is
the famous full rank Hermitian hypersurface ([11, Ch. 23]).

In the quantum world the classical Hermitian product over the complex numbers is fundamental.
The Hermitian product { , ) is one of the tools used to pass from a classical code over a finite field

to a quantum code ([17, pp. 430-431], [14, Introduction], [20, §2.2]).

The Hermitian product was used to define the numerical range of a matrix over a finite field ([1,
2, 3, 4, 8]) by analogy with the definition of numerical range for complex matrices ([9, 12, 13, 21]).
Over C a different, but equivalent, definition of numerical range is obtained as the intersection of
certain disks ([5, §15, Lemma 1]). It is an important definition, because it was used to extend the
use of numerical ranges to rectangular matrices ([7]) and to tensors ([16]). This different definition
immediately gives the convexity of the numerical range of complex matrices. Motivated by that
definition we look at possible definitions of the unit disk of F,2. It should be a union of circles

with center at 0 and with squared-radius in the unit interval [0,1] C F,.

For any c € F; and any a € F2 set
C(0,¢) :=={2 €Fp |27 =c}, C(a,c) =a+C(0,c).

We say that C(a, ) is the circle of Fy2 with center a and squared-radius c. Note that C(a,0) = {a}
and #C(a,c) =g+ 1 for all c € F, \ {0}.

Circles occur in the description of the numerical range of many 2 x 2 matrices over F 2 ([8, Lemmas
3.4 and 3.5]). Other subsets of F> (seen as a 2-dimensional vector space of F;) appear in [6] and are
called ellipses, hyperbolas and parabolas, because they are affine conics whose projective closure

have 0, 2 or 1 points in the line at infinity.

All these constructions are inside F» seen as a plane over IF,. Restricting to planes we get the

following definition for IF;Z.

Definition 1.1. A set £ C FZQ is said to be a circle with center 0 € FZQ and squared-radius c
if there is an Fq-linear embedding f : Fp2 — Fro such that E = f(C(0,¢)). A set E C FJy is
said to be a circle with center a € F:;z and squared-radius ¢ if E — a is a circle with center 0 and
squared-radius c. A set S C IF;Z, S #£ 0, is said to be circular with respect to a € IFZZ if it contains

all circles with center a which meet S.
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In the classical theory of numerical range over C the numerical range of a square matrix which
is the orthogonal direct sum of the square matrices A and B is obtained taking the union of all
segments [a,b] C C with a in the numerical range of A and b in the numerical range of B ([21,
p. 3]). For the numerical range of matrices over F 2 instead of segments [a, b] one has to use the
affine Fg-span of {a,b} ([1, Lemma 1], [8, Proposition 3.1]). We wonder if in other linear algebra
constructions something smaller than Fg-linear span occurs. A key statement for square matrices
over C (due to Toeplitz and Hausdorff) is that their numerical range is convex ([9, Th. 1.1-2], [21,
§3]). Convexity is a property over R and to define it one only needs the unit interval [0,1] C R.
Obviously [0,1] = [0,4+00) N (—o0,1] and (—o0,1] = 1 — [0, +00). As a substitute for the unit
interval [0,1] C R (resp. the half-line [0, +00) C R) we propose the following sets I, and I; (resp.
E,).

Definition 1.2. Assume q odd. Set E; := {a®}aer, C Fy, I, := E;N(1-E,), I/ := E;n(1+2E,)
with x € Fg \ Eq, and I := I/ U{0}.

Note that I;, = {0,1} U (E;N(1+ (Fy\ Ey)). In the first version of this note we only used I, but a
referee suggested that it is more natural to consider I;/. We use I, and I; because {0,1} C I, NI},
while 0 € I}/ if and only if —1 is not a square in Fy, 4. e. if and only if ¢ = 3 (mod 4) ([10, (ix)
and (x) at p. 5], [22, p. 22]). In all statements for odd ¢ we handle both I, and I;.

In the case g even we propose to use {a(a + 1)} 4cr,} as Ey, i. e. Ey:= Tr];ql/]172 (0). Thus Ej is a

subgroup of (Fy,+) of index 2. If ¢ is even we do not have a useful definition of I,.
Thus we restrict to odd prime powers, except for Propositions 1.8, 2.9 and Remarks 2.1 and 2.2.
We see I, or I, (vesp. Ey) as the unit segment [0,1] (resp. positive half-line starting at 0) of F, C

Fq2. In most of the proofs we only use that {0,1} C I, and that #1, is large, say #I, > (¢ —1)/4.

Remark 1.3. Note that #E, = (¢ + 1)/2 for all odd prime powers q.

We prove that #I, = #I; —1 = (¢+3)/4if ¢ =1 mod 4 and #I, = #I, = (¢ +5)/4if ¢ =3
(mod 4) (Proposition 2.3).

We only use the case A = E,;, A= I, and A = I} of the following definition.

Definition 1.4. Fiz S C F,, S # 0, and A CFy such that 0 € A. We say that S is A-closed if
a+ (b—a)ACS forallabesS.

In the set-up of Definition 1.4 for any a,b € F;, the A-segment [a, b] 4 of {a, b} is the set a+(b—a)A.
Note that [a,a]a = {a} and that if b # a then b € [a,b]4 if and only if 1 € A. If S is a subset of
a real vector space and A is the unit interval [0,1] C R, Definition 1.4 gives the usual notion of

convexity, because a + (b — a)t = (1 — t)a + tb for all t € [0,1].
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Remark 1.5. Take any A C Fy such that 0 € A. Any translate by an element of Fi of an
Fy-linear subspace of ng is A-closed. In particular ¥y and ng are A-closed. The intersection of
A-closed sets is A-closed, if non-empty. Hence we may define the A-closure of any S C Fie, S £,

as the intersection of all A-closed subsets of > containing S.

In most cases I, is not I,-closed. We prove the following result.

Theorem 1.6. Assume q odd. Then:

(a) If ¢ ¢ {3,5,9} (resp. q # 3), then Fy is the I,-closure of I, (resp. the I,-closure of I).

(b) If ¢ ¢ {3,5,9} (resp. q # 3), then the I;-closed (resp. Ij-closed) subsets of Fy. are the

translations of the F,-linear subspaces.

Remark 1.7. Fiz A C Fy such that 0 € A. Assume that Fy is the A-closure of Fq. Then S C Fps,
S # 0, is A-closed if and only if it is the translation of an Fy-linear subspace by an element of Fie.
Thus part (b) of Theorem 1.6 follows at once from part (a) and similar statements are true for the

A-closures for any A whose A-closure is F,.

As suggested by one of the referees a key part of one of our proofs may be stated in the following

general way.

Proposition 1.8. Let A, B be subsets of F, containing 0. Assume A # {0} and let G be the
subgroup of the multiplicative group F, \ {0} generated by A\ {0}. Assume that B is A-closed.
Then B\ {0} is a union of cosets of G.

Fix § C F7: and a set A C F, such that {0,1} C A. Instead of the A-closure of S the following
sets S; 4, ¢ > 1, seem to be better. In particular both circles and 57 4 appear in some proofs
on the numerical range. Let S1 4 be the set of all a + (b — a)A, a,b € S. For all ¢ > 1 set
Sit1,4 = (S1,4)1,4. Obviously S; 4 is A-closed for i > 0. Note that {0,1}4 = A and hence if we
start with S = {0, 1} we obtain the A-closure of A after finitely many steps.

We thank the referees for an exceptional job, making key corrections and suggestions.

2 The proofs and related observations

We assume g odd, except in Remarks 2.1 and 2.2, Proposition 2.9 and the proof of Proposition
1.8.

Remark 2.1. The notions of E4-closed, I,-closed and Ié-closed subsets of ng are tnvariant by

translations of elements of . and by the action of GL(n,Fy).



CUBO

A characterization of Fy-linear subsets of affine spaces IF;Q 99

24, 1 (2022)

Remark 2.2. Fiz any A CFy such that 0 € A. Any translate by an element of Fie of an A-closed
set is A-closed. The IFy-closed subsets OfIFZ2 are the translates by an element OfIFZ2 of the Fq-linear

subspaces. If A C {0,1}, then any nonempty subset of Fie is A-closed.

Proof of Proposition 1.8: Since F, \ {0} is cyclic, G is cyclic. Let a € A\ {0} be a generator of G.
Fix ¢ € B\ {0} and take ¢ € Fy \ {0} such that ¢ = ta® for some positive integer z. We need to
prove that B\ {0} contains all ta*, k € Z. Since b € B, B is A-closed, a € A and a = 0 + (a — 0),
we get ta*t! € B. Tterating this trick we get that B contains all ta® for large k and hence the

coset tG, because G is cyclic. O

Proposition 2.3. We have #1, = #1;—1 = (¢+3)/4 if¢=1 (mod 4) and #I, = #I, = (¢+5)/4
if =3 (mod 4).

Proof. Since A := {a*+y* = 1} C F2 is a smooth affine conic, its projectivization B := {z*+y* =
z?} C P?(F,) has cardinality ¢ + 1 ([10, th. 5.1.8]). Note that the line z = 0 is not tangent to
B and hence B N {z = 0} has 2 points over Fy2. It has 2 points over F, if and only if —1 is a
square in Fy, . e. if and only if ¢ = 1 (mod 4) ([10, (ix) and (x) at p. 5], 22, p. 22]). Hence
#A=¢qg+1if g =3 (mod 4) and #4 =g —11if ¢ =1 (mod 4). Note that a € I, if and only if
there is (e, f) € Fg such that €2 + f2 = 1 and a = 2. Note that (e, f) € A and that conversely for
each (e, f) € A, e € 1,. Obviously 0 € I, and (0, f) € A if and only if either f =1 or f = —1.
Thus 0 € I, comes from 2 points of A. Obviously 1 € I,. If either e = 1 or e = —1, then (e, f) € A
if and only if f = 0. Thus 1 € I, comes from 2 points of A. If e? ¢ {0,1} and e* € I, then €?

comes from 4 points of A.

Fix a non-square ¢ € Fy and set A" := {2® — ¢y? = 1} C F2. Let B’ := {a? — ¢y® = 2*} C P*(F,)
be the smooth conic which is the projectivization of A’. The line {z = 0} is not tangent to B" and
{z=0}NA" =0. Thus #A4" = ¢ + 1. Note that a € I/ if and only if there is (e, f) € F2 such
that a = € and €2 — c¢f? = 1. The element 1 € I} comes from two elements of A". If 0 € I}/, then
it comes from two elements of A’. If 0 ¢ I/, i. e. if ¢ =3 (mod 4), we get #I;) = (¢ +1)/4 and
HID = (q+5)/4. TE0 € I we get #1" = #I! = (q+7)/4. 0

Remark 2.4. Ifq € {3,5}, then I, = {0,1} and hence each non-empty subset of Fy; is I-closed if
q € {3,5}. Since {0,1} C I}, Proposition 2.3 gives Iy = I3. We have Ij = {0,1,4} = Es, because

3 1s not a square in Fs.

Remark 2.5. Fiz any t € Fg\ E;. Then Fg\ E; = t(E, \ {0}). Obviously EqE, = E,.

The following result characterizes K2 and hence characterizes all E, with r a square odd prime
power.

Proposition 2.6. The set of Eg; \ {0} of all squares of Fp2 \ {0} is the set of all ab such that
a € F,\ {0} and b9t = 1. We have ab = a1b; if and only if (a1,b1) € {(a,b), (—a, —b)}.



100 E. Ballico

Proof. Fix z € Fp \ {0}. Hence 2°~1 = 1. Thus 2@ D" =1 (and so L= 1) and
P = F, \ {0}. Note that 22 = 2912179, Assume ab = a1b; with a,
a1 € F,\ {0} (i.e., with a?' = 197" = 1) and b9+! = b9 = 1. Taking aa; =" and bb, " instead
of a and b we reduce to the case a; = by = 1 and hence ab = 1. Thus a9t1b9t! = 1. Hence a® = 1.

Since q is odd and a # 1, then a = —1. Thus b= —1. O

Proposition 2.7. Take S C F.. The set S is Eg-closed if and only if it is a translation of an

Fy-linear subspace.

Proof. Remark 2.2 gives the “if” part. Assume that S is not a translation of an [Fy-linear subspace
and fix a,b € S such that a # b and the affine Fy-line L spanned by {a,b} is not contained in S.
By Remark 2.1 it is sufficient to find a contradiction in the case n = 1 and L = F; with a = 0 and
b=1. Thus E, C S. Since S is Ey-closed and 0 € S, ¢+ (—c)E, C S for all ¢ € E,. First assume
—1 € E,. In this case —cE; = E,. Thus S contains all sums of two squares. Thus S = F;. Now
assume —1 ¢ E,. In this case we obtained that S contains all differences of two squares. Thus

—E, C 8. Since —1 ¢ E,, —E, = {0} U (F, \ E,) (Remark 2.5). Thus S D L. O

The cases of I;-closures and I;-closures are more complicated, because I, = I; = {0,1} if ¢ = 3,5
and hence all subsets of ng are I,-closed if ¢ = 3,5. The following observation shows that the
Ig-closed subsets of g, are exactly the translations of the F3-linear subspaces and gives many

examples with I, € I.

Remark 2.8. We always have 2 ¢ 1+ cE,, ¢ a non-square, because 1 is a square. If q is a square,
say q = s*, then obviously Fs C E,N(1—E,) =1, and hence 2 € 1,. Take ¢ =9. We get F5 C I,.
Since #1g = 3 (Proposition 2.3), we get I, =F3. Thus the Ig-closed subsets of Fg, are exactly the
translations of the F3-linear subspaces. Now assume that q is not a square. We have 2 € 1 — E; if
and only if —1 is a square, i. e. if and only if ¢ = 1 (mod 4). Since q is not a square, we have
2 € E; if and only if 2 is a square in Iy, 4. e. if and only if p = —1,1 (mod 8) (/15, Proposition
5.1.8]). Thus for a non-square q holds: 2 € I, if and only if p=1 (mod 8).

Proof of Theorem 1.6: Let Y be the I-closure of I,. By Proposition 1.8, Y/ := Y \ {0} is a union
of the cosets of H := (I, \ {0}). Since #(I, \ {0}) > (¢ — 1)/4 with equality if and only if ¢ =1
(mod 4), H is either Fy, the set of non-zero squares, the set of non-zero cubes or (only if ¢ = 1
mod 4), the set of all non-zero 4-powers. Since I, C E,, H # F,. If H is the set of cubes, then,

as all elements of I, are squares, it would be the set of 6-th powers, contradicting the inequality

#ly > (¢ —1)/4.

(a) Assume that H = E,\ {0}. It suffices to show that the I,-closure of the set of squares contains
a non-square. Suppose otherwise. Take an element a € I, with a ¢ {0,1}. Then we obtain

that for all squares z,y, z + (y — x)a is also a square. Since a is a non-zero square, this is the
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same as the statement that for all squares z, z the element z + (1 — a)x is a square. If 1 — a
is a square we deduce that the set of all squares is closed under addition, a contradiction. If

1 — a is not a square we may take x = 1, z = 0 to obtain a contradiction.

(b) Assume ¢ = 1 (mod 4), ¢ # 9, and that H is the set of all non-zero 4-powers. We also saw
that H = I, \ {0}. The proof of step (a) works using the word “4-power” instead of “square”
with a a 4-power. We get that the set of all 4-powers is closed under taking differences. Thus
1, is closed under taking differences and, since it contains 0, under the multiplication by —1.
H is obviously closed under taking products. Thus I, is a subfield of order (¢ + 3)/4, which is
absurd if ¢ # 9.

(c) Now we consider I, and set H' := (I, \ {0}). The cases in which H' is the set of all squares
or all cubes are excluded as above. Since #(I; \ {0}) > (¢ —1)/4, Y is not the set of all 4-th

powers. [l

Proposition 2.9. Assume q even and set E, := {a(a+ 1)} 4cr, -

(1) If g =2,4, then E, is the Eq-closure of itself.

(2) If g > 8, then Fy is the Ey-closure of Eq.

Proof. We have E5 = {0} and E4 = {0,1}.

Now assume g > 8 and call B the F4-closure of E,;. Let G' be the subgroup of the multiplicative
group Fy \ {0} generated by E,\ {0}. By Proposition 1.8 it is sufficient to prove that G = Fy \ {0}.
Since #E; = q/2, E, \ {0} # 0. Fix a € E; \ {0} and a positive integer k. The E,-closure
of {0,a*} contains a*+!
E,\ {0}. Since ¢ > 8, #(F, \ {0}) =¢—1isodd and ¢ — 1 < 3(q/2 — 1) = 3#(F, \ {0}), we get
G=F,\ {0}. O

. Thus B contains the multiplicative subgroup of F, \ {0} generated by
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