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ABSTRACT

In this paper we define upper (lower) w-irresolute multifunction and obtain some char-
acterizations and some basic properties of such a multifunction.

RESUMEN

En este articulo definimos la multifuncién superior (inferior) w-irresoluto y obtenemos
algunas caracterizaciones y algunas propiedades bésicas de este tipo de multifunciones.
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1 Introduction

It is well known that various types of functions play a significant role in the theory of classical point
set topology. A great number of papers dealing with such functions have appeared, and a good num-
ber of them have been extended to the setting of multifunctions: [4],[5],[6],[7], [10],[11],]12],[13],[15].
This implies that both, functions and multifunctions are important tools for studying other prop-
erties of spaces and for constructing new spaces from previously existing ones. Recently, Zorlutuna
introduced the concept of w-continuous multifunctions [I5], w-continuity which is a weaker form
of continuity in ordinary was extended to multifunctions. The purpose of this paper is to define
upper (respectively lower) w-irresolute multifunctions and to obtain several characterizations of
such a multifunction.

2 Preliminaries

Throughout this paper, (X,t) and (Y, 0) (or simply X and Y) always mean topological spaces in
which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space
X. For a subset A of (X,T), CI(A) and int(A) denote the closure of A with respect to T and the
interior of A with respect to T, respectively. Recently, as generalization of closed sets, the notion
of w-closed sets were introduced and studied by Hdeib [9]. A point x € X is called a condensation
point of A if for each U € T with x € U, the set UN A is uncountable. A is said to be w-closed
[9) if it contains all its condensation points. The complement of an w-closed set is said to be
w-open. It is well known that a subset W of a space (X, T) is w-open if and only if for each x € W,
there exists U € T such that x € U and U\W is countable. The family of all w-open subsets of
a topological space (X,T) is denoted by wO(X), forms a topology on X finer than t. The family
of all w-closed subsets of a topological space (X, T) is denoted by wC(X). The w-closure and the
w-interior, that can be defined in the same way as CI(A) and int(A), respectively, will be denoted
by w CI(A) and w int(A), respectively. We set wO(X,x) = {A: A € wO(X) and x € A}. A subset
U of X is called an w-neighborhood of a point x € X if there exists V € wO(X, x) such that V C U.
By a multifunction F: (X, ) — (Y, o), following [3], we shall denote the upper and lower inverse of
a set B of Y by F"(B) and F~(B), respectively, that is, F*(B) = {x € X : F(x) C B} and F~(B) =
{x € X:F(x) N B # 0}. In particular, F(Y) = {x € X:y € F(x)} for each point y € Y and for each
ACX FA)=U

vea F(x). Then F is said to be surjection if F(x) = y.

Definition 2.1. A multifunction F: (X,t) — (Y, 0) is said to be:

(i) upper w-continuous (briefly w.w-c.) [13] if for each point x € X and each open set V
containing F(x), there exists U € wO(X,x) such that F(U) C V;

(it) lower w-continuous (briefly L.w-c.) [I5] if for each point x € X and each open set V such
that F(x) NV £ 0, there exists U € wO(X,x) such that U C F~ (V).
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3 On upper and lower w-irresolute multifunctions

Definition 3.1. A multifunction F: (X,T) — (Y, 0) is said to be:

(i) upper w-irresolute (briefly w.w-i.) if for each point x € X and each w-open set V containing
F(x), there exists U € wO(X,x) such that F(U) C V;

(i) lower w-irresolute (briefly l.w-i.) if for each point x € X and each w-open set V such that
F(x) NV #£ 0, there exists U € wO(X,x) such that U C F~ (V).

It is clear that every upper (lower) w-irresolute multifunction is upper (lower) w-continuous.
But the converse is not true as shown by the following example.

Example 3.2. Let X = R with the topology T = {0, R, Q}. Define a multifunction F: (R, 1) — (R, T)

as follows:
. R_
fgo{ @ UxeR-Q
R—Q if x € Q.
Then F is w.w-c. but is not w.w-i.

In a similar form, we can find a multifunction G that is l.w-c. but is not L.w-i.

Theorem 3.3. The following statements are equivalent for a multifunction F: (X;Tt) — (Y, 0):

(i) Fis u.w-i.;
(i) for each point x of X and each w-neighborhood V of F(x), Ft (V) is an w-neighborhood of x;

(iii) for each point x of X and each w-neighborhood V of F(x), there exists an w-neighborhood U
of x such that F(U) C V;

(iv) FH(V) € wO(X) for every V € wO(Y);
(v) F (V) € wC(X) for every V € wC(Y);

(vi) w Cl(F~(B)) C F (w Cl(B)) for every subset B of Y.

Proof. (1) = (ii): Let x € X and W be an w-neighborhood of F(x). There exists V € wO(Y) such
that F(x) C V C W. Since F is w.w-i., there exists U € wO(X,x) such that F(U) C V. Therefore,
we have x € U C F" (V) C FH(W); hence F (W) is an w-neighborhood of x.

(ii) = (iii): Let x € X and V be an w-neighborhood of F(x). Put U = F* (V). Then, by (ii), U is
an w-neighborhood of x and F(U) C V.

(ii1) = (iv): Let V € wO(Y) and x € FF(V). There exists an w-neighborhood G of x such that
F(G) C V. Therefore, for some U € wO(X,x) such that U C G and F(U) C V. Therefore, we
obtain x € U C F*(V); hence FF (V) € wO(Y).

(iv) = (v): Let K be an w-closed set of Y. We have X\F~(K) = FH(Y\K) € wO(X); hence
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F~(K) € wC(X).

(v) = (vi): Let B be any subset of Y. Since w CI(B) is w-closed in Y, F~(w C1(B)) is w-closed in
X and F~(B) C F (w CI(B)). Therefore, we obtain w CI(F~(B)) C F (w CI(B)).

(vi) = (i): Let x € X and V € wO(Y) with F(x) € V. Then we have F(x) N (Y\V) = 0;
hence x € F(Y\V). By (vi), x € wCI(F (Y\V)) and there exists U € wO(X,x) such that
UNF(Y\V) = 0. Therefore, we obtain F(U) C V and hence F is u.w-i. O

Theorem 3.4. The following statements are equivalent for a multifunction F: (X;Tt) — (Y, 0):

(i) Fis Lw-i.;

(i) For each V € wO(Y) and each x € F~(V), there ewists U € wO(X,x) such that U C F~(V);
(1ii) F~ (V) € wO(X) for every V € wO(Y);

(iv) FH(K) € wC(X) for every K € wC(Y);

(v) F(wCL(A)) C wCLF(A)) for every subset A of X;

(vi) w Cl(F*(B)) C F*(w CI(B)) for every subset B of Y.

Proof. (i) = (ii): This is obvious.

(i) = (iii): Let V € wO(Y) and x € F~ (V). There exists U € wO(X,x) such that U C F~ (V).
Therefore, we have x € U C Cl(int(U)) U int(Cl(U)) C Cl(int(F~(V))) U int(CI(F~(V))); hence
F~ (V) € wO(X).

(ii1) = (iv): Let K be an w-closed set of Y. We have X\F'(K) = F7(Y\K) € wO(X); hence
FF(K) € wC(X).

(iv) = (v) and (v) = (vi): Straightforward.

(vi) = (i): Let x € X and V € wO(Y) with F(x) NV # (). Then F(x) is not a subset of Y\V
and x ¢ FH(Y\V). Since Y\V is w-closed in Y, by (vi), x ¢ w CI(FF(Y\V)) and there exists
U € wO(X,x) such that § = UNF (Y\V) = UnN (X\F (V)). Therefore, we obtain U C F~(V);
hence F is l.w-i.. O

Lemma 3.5. If F: (X,t) — (Y,0) is a multifunction, then (w ClF)~ (V) = F (V) for each V €
wO(Y).

Proof. Let V€ wO(Y)and x € (w CI1F)~ (V). Then VN(w C1F)(x) # (). Since V € wO(Y), we have
VNF(x) # 0 and hence x € F~ (V). Conversely, let x € F~ (V). Then § # F(x)NV C (w CIF)(x)NV
and hence x € (w Cl1F)~ (V). Therefore, we obtain (w C1F)~ (V) =F (V). O

Theorem 3.6. A multifunction F: (X,t) — (Y,0) is L.w-i. if and only if w C1F: (X;1) — (Y, 0)
is L.w-i.

Proof. The proof is an immediate consequence of Lemma and Theorem [B4] (iii). O
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Definition 3.7. A subset A of a topological space (X, T) is said to be:

(i) o-regular [8] (resp. o-w-reqular) if for each a € A and any open (resp. w-open) set U
containing a, there exists an open set G of X such that a € G C CI(G) C U;

(i) o-paracompact [§] if every X-open cover A has an X-open refinement which covers A and is
locally finite for each point of X.

Lemma 3.8. If A is an o-w-regular, x-paracompact subset of a space X and U is w-neighborhood
of A, then there exists an open set G of X such that A C G C CI(G) C U.

Proof. The proof is similar to that [8, Theorem 2.5]. O

Definition 3.9. A multifunction F: (X,t) — (Y, 0) is said to be punctually oc-paracompact (resp.
punctually o-w-regular, punctually «-reqular) if for each x € X, F(x) is a-paracompact (resp.
a-w-reqular, o-regular).

Lemma 3.10. If F : (X,1) — (Y,0) is punctually c-paracompact and punctually c-w-reqular,
(w CIF)* (V) = F* (V) for each V € wO(Y).

Proof. Let V € wO(Y). Suppose that x € (w CIF)" (V). Then, we have F(x) C wCI(F(x)) C V
and hence x € F¥(V). Therefore, we obtain (w CIF)* (V) C F"(V). Conversely, suppose that
x € F*(V). Then F(x) C V and by Lemma [B.8 we have F(x) € G Cc CI(G) C V for some
open set G of Y. Therefore, (wCIF)(x) C V and hence x € (wCIF)* (V). Thus, we obtain
FH(V) C (w CIF)*(V); hence (w CLF)* (V) = FF (V). 0

Theorem 3.11. Let F: (X,1) = (Y,0) be punctually oc-paracompact and punctually x-w-regular
multifunction. Then F is w.w-i. if and only if w C1F: (X, 1) — (Y, 0) is w.w-i..

Proof. The proof follows from Lemma O

Lemma 3.12. [1] Let A and B be subsets of a topological space (X,T).

(i) If A € wO(X) and B € T, then ANB € wO(B);
(i) If A € wO(B) and B € wO(X), then A € wO(X).

Theorem 3.13. Let F: (X,1) — (Y,0) be a multifunction and U an open subset of X. If F is a
w.w-i. (resp. L.w-i.), then Fj : U—Y is an w.w-i. (resp. L.w-i.).

Proof. Let V be any w-open set of Y. Let x € U and x € FL (V). Since F is L.w-1. multifunction,
then there exists an w-open set G containing x such that G C F~ (V). Then x € GNU € wO(U)
and GNU C FL (V) . This shows that Fj, is a L.w-i..

The proof of the u.w-i. of F|, is similar. o
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Theorem 3.14. Let {U; : 1 € A} be an open cover of a space X. A multifunction F: (X,Tt) — (VY,0)
is w.w-i. if and only if the restriction Fy, : Uy — Y is u.w-i. for each i € A.

Proof. Suppose that F is u.w-i.. Let i € A and x € U; and V be an w-open set of Y containing
Fju, (x). Since F is w.w-i. and F(x) = Fpy, (x), there exists G € wO(X,x) such that F(G) C V.
Set U = GnNUj, then x € U € wO(Ui,x) and Fy, (U) = F(U) C V. Therefore, Fy, is w.w-
i..Conversely, let x € X and V € wO(Y) containing F(x). There exists i € A such that x € Uj;.
Since Fjy, is w.w-i. and F(x) = Fjy, (x), there exists U € wO(Uj,x) such that Fyy, (U) C V. Then
we have U € wO(X,x) and F(U) C V. Therefore, F is u.w-i.. O

Theorem 3.15. Let {U; : 1 € A} be an open cover of a space X. A multifunction F: (X,T) — (VY,0)
is L.w-i. if and only if the restriction Fyy, : Uy — Y is L.w-i. for each i € A.

Proof. The proof is similar to that of Theorem B.14] and is thus omitted. O

Definition 3.16. A subset K of a space X is said to be w-compact relative to X [2] (resp. w-
Lindeldf relative to X [9]) if every cover of K by w-open sets of X has a finite (resp. countable)
subcover. A space X is said to be w-compact [Z] (resp. w-Lindeldf [9]) if X is w-compact (resp.
w-Lindeldf) relative to X.

Theorem 3.17. Let F: (X,T) — (Y, 0) be an w.w-i. multifunction and F(x) is w-compact relative
to Y for each x € X. If A is w-compact relative to X, then F(A) is w-compact relative to Y.

Proof. Let {V; : i € A} be any cover of F(A) by w-open sets of Y. For each x € A, there exists
a finite subset A(x) of A such that F(x) € U{Vi : 1 € A(x)}. Put V(x) = U{Vi : 1 € A(x)}
Then F(x) C V(x) € wO(Y) and there exists U(x) € wO(X,x) such that F(U(x)) C V(x). Since
{U(x) : x € A} is an w-open cover of A, there exists a finite number of points of A, say, X1, X2,....Xn,
such that A € U{U(x;) : 1= 1,2,...n}. Therefore, we obtain F(A) C F(iLTj1 U(xi)) C 161 F(U(xy)) C

O V(xi) C O u Vi. This shows that F(A) is w-compact relative to Y. O
i=1 i=TieA(xq)

Corollary 3.18. Let F: (X,1) — (Y,0) be an w.w-i. surjective multifunction and F(x) is w-
compact relative to Y for each x € X. If X is w-compact, then Y is w-compact.

Theorem 3.19. Let F: (X,1) — (Y, 0) be an w.w-i. multifunction and F(x) is w-Lindeldf relative
to Y for each x € X. If A is w-Lindeldf relative to X, then F(A) is w-Lindeldf relative to Y.

Proof. The proof is similar to that of Theorem B.17 and is thus omitted. O

Corollary 3.20. Let F : (X,1) — (Y,0) be an u.w-i. surjective multifunction and F(x) is w-
Lindelof relative to Y for each x € X. If X is w-Lindeldf, then Y is w-Lindeldf.

Definition 3.21. A topological space X is said to be w-normal [I0] if for any pair of disjoint
closed subsets A, B of X, there exist disjoint U,V € wO(X) such that AC U and B C V.
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Theorem 3.22. If Y is w-normal and Fy : Xy — Y is an w.w-i. multifunction such that F;
is punctually closed for i = 1,2 and the product of two w-open sets is w-open, then the set

{(X],Xz) e X1 xXa:FH (X]) N Fz(Xz) 75 (Z)} is w-closed in X7 x X3.

Proof. Let A = {(x1,x2) € X1 x X2 : F1(x1) NFa(x2) # 0} and (x1,%x2) € (X7 x X2)\A. Then
F1(x1) N Fa(x2) = 0. Since Y is w-normal and F; is punctually closed for i = 1,2, there exist
disjoint V7, V2 € wO(X) such that Fi(xq) C Vi for i =1,2. Since F; is w.w-i., Ff (Vi) € wO(Xy,x1)
fori=1,2. Put U= FT(V]) X F;(Vz), then U € wO(X7 x X2) and (x1,%x2) € U C (X7 x X2)\A.
This shows that (X7 x X2)\A € wO(X7 x X3); hence A is w-closed set in X7 x X3. O

Definition 3.23. [2] Let A be a subset of a topological space X. The w-frontier of A denoted by
wFr(A), is defined as follows: wFr(A) = w CI(A) N w CI(X\A).

Theorem 3.24. The set of a point x of X at which a multifunction F : (X,T) — (Y,0) is not
w.w-i. (resp. l.w-i.) is identical with the union of the w-frontiers of the upper (resp. lower)
inverse images of w-open sets containing (resp. meeting) F(x).

Proof. Let x be a point of X at which F is not u.w-i.. Then there exists V € wO(Y) containing F(x)
such that U N (X\F"(V)) # 0 for each U € wO(X,x). Then x € w CI(X\F"(V)). Since x € F(V),
we have x € w CI(FF(Y) and hence x € wFr(Ft(A)). Conversely, let V € wO(Y) containing F(x)
and x € wFr(F*(V)). Now, assume that F is w.w-i. at x, then there exists U € wO(X, x) such that
F(U) C V. Therefore, we obtain x € U C wint(F* (V). This contradicts that x € wFr(Ft(V)).
Thus, F is not w.w-i.. The proof of the second case is similar. O

For a multifunction F: (X,t) — (Y, 0), the graph multifunction Gg(x): X — X x Y is defined
as follows: Gg(x) ={x} x F(x) for all x € X.

Lemma 3.25. For a multifunction F: (X, 1) — (Y, 0), the following holds:

(i) GE(A x B) = ANF*(B);

(ii) Gr (A x B) = ANF(B)

for any subset A of X and B of Y.

Theorem 3.26. Let F: (X,T) — (Y, 0) be a multifunction and X be a connected space. If the graph
multifunction of F is w.w-i. (respectively l.w-i.), then F is uw.w-i. (respectively. l.w-i.).

Proof. Let x € X and V be any w-open subset of Y containing F(x). Since X x V is an w-open set
of X x Y and Gg(x) C X x V, there exists an w-open set U containing x such that Gg(U) € X x V.
By Lemma 325, we have U C G} (X x V) = F*(V) and F(U) C V. Thus, F is uw.w-i.. The proof
of the L.w-1i. of F can be obtained in a similar manner. O
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Definition 3.27. [2] A topological space (X, T) is said to w-Ty if for each pair of distinct points x
and y in X, there exist disjoint w-open sets U and V in X such that x € U andy € V.

Theorem 3.28. IfF: (X,1) — (Y, 0) is an u.w-i. injective multifunction and point closed from a

topological space X to an w-normal space Y, then X is an w-T, space.

Proof. Let x and y be any two distinct points in X. Then we have F(x) N F(y) = & since F is
injective. Since Y is w-normal, it follows that there exist disjoint open sets U and V containing
F(x) and F(y), respectively. Thus, there exist disjoint w-open sets F*(U) and F' (V) containing x
and y, respectively such G C F(U) and W C F (V). Therefore, we obtain G "W = {J; hence X is
(U—Tz. O

Definition 3.29. A multifunction F : (X,1) — (Y, 0) is said have an w-closed graph if for each
pair (x,y) & G(F) there exist U € wO(X,x) and V € wO(Y,y) such that (U x V)N G(F) = 0.

Theorem 3.30. Let F: (X,1) — (Y,0) be an w.w-c. multifunction. If F(x) is o-paracompact for
each x € X, then G(F) is w-closed.

Proof. Suppose that (xo,yo) ¢ G(F). Then yo ¢ F(xo). Since Y is a T, space, for each y €
F(xo) there exist disjoint open sets V(y) and W(y) containing y and yo, respectively. The family
{V(y) : y € F(x0)} is an open cover of F(xp). Thus, by a-paracompactness of F(xo), there is a
locally finite open cover A = {Upg : p € I} which refines {V(y) : y € F(xo)}. Therefore, there
exists an open neighborhood Wy of yo such that Wy intersects only finitely many members Ug,,
Ug,,.....Ug, of A. Choose Y1, Yz,.....yn in F(xo) such that Ug, C V(y;) for each 1 <1 <mn, and
set W =WynN (151 W(yi)). Then W is an open neighborhood of yo such that W N (B%IVB) = 0.

By the upper w-continuity of F, there is a U € wO(X,xo) such that U C Fﬂﬁulvﬁ). It follows
€
that (U x W) N G(F) = 0. Therefore, G(F) is w-closed. O

Theorem 3.31. Let F: (X,T) — (Y, 0) be a multifunction from a space X into an w-compact space
Y. If G(F) is w-closed, then F is w.w-c..

Proof. Suppose that F is not w.w-c.. Then there exists a nonempty closed subset C of Y such
that F~(C) is not w-closed in X. We may assume that F~(C) # (). Then there exists a point
xo € w CI(F~(C))\F (C). Hence for each point y € C, we have (xo,y) ¢ G(F). Since F has an
w-closed graph, there are w-open subsets U(y) and V(y) containing xo and y, respectively such
that (U(y) x V(y)) N G(F) = 0. Then {YNC}U{V(y) :y € C}is an w-open cover of Y, and thus it
has a subcover {YANC}U{V(yi) :yi € C,1 <i<n}. Let U= 161 U(yi) and V = i@} V(yi). It is easy
to verify that C € V and (U x V)N G(F) = @. Since U is an w-neighborhood of xo, UNF~(C) # 0.
It follows that ) = (U x C) N G(F) € (U x V) N G(F). This is a contradiction. Hence the proof is
completed. O

Corollary 3.32. Let F: (X,Tt) — (Y, 0) be a multifunction into an w-compact T2 space Y such that
F(x) is w-closed for each x € X. Then F is w.w-c. if and only if it has an w-closed graph.
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Theorem 3.33. Let F: (X,71) = (Y,0) be an u.w-i. multifunction into an w-T2 space Y. If F(x)
is o-paracompact for each x € X, then G(F) is w-closed.

Proof. The proof is clear. O

Definition 3.34. [T]] Let A be a subset of X. Then F: X — A is called a retracting multifunction
if x € F(x) for each x € A.

Theorem 3.35. Let F: X — X be an w.w-i. multifunction of a T, space X into itself. If F(x) is
o-paracompact for each x € X, then the set A = {x : x € F(x)} is w-closed.

Proof. Let xo € w CI(A)\A. Then x¢ ¢ F(xp). Since X is Ty, for each x € F(xp) there exist disjoint
open sets U(x) and V(x) containing xo and x respectively. Then {V(x) : x € F(xo)} is an open
cover of F(xp). By the a-paracompactness of F(xo), {V(x) : x € F(xo)} has a locally finite open
refinement W = {Wp : § € I} which covers F(xo). Therefore, we can choose an open neighborhood
Up of xo such that Uy intersects only finitely many members Wg,, Wg,,.... Wg . of W. Choose
X1, X2,.....Xn in F(xo) such that Wg, C V(xq) for each 1 <1 < n, and set U= Uy N (ﬁ] U(xi)).
Then U is an open neighborhood of xo such that U N (BLéI Wg) = 0. Since F is . w-i.: there is a
G € wO(X,x0) such that G C F*(B%IWB). It follows that G N'U is an w-neighborhood of xo and

satisfies (GNU) N A = ). This contradicts the fact that xog € w CI(A). O

Corollary 3.36. Let A be a subset of X and F: X — A an w.w-i. retracting multifunction such
that F(x) is a-paracompact for each x € A. If X is T, then A is w-closed.

Received: March 2014. Accepted: May 2014.
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