
CUBO A Mathematical Journal
Vol.16, No

¯ 03, (01–10). October 2014

On upper and lower ω-irresolute multifunctions

C. Carpintero

Department of Mathematics,

Universidad De Oriente,

Nucleo De Sucre Cumana, Venezuela.

Facultad de Ciencias Basicas,

Universidad del Atlantico, Colombia.

carpintero.carlos@gmail.com

N. Rajesh

Department of Mathematics,

Rajah Serfoji Govt. College,

Thanjavur-613005,

Tamilnadu, India.

nrajesh topology@yahoo.co.in

E. Rosas

Department of Mathematics,

Universidad De Oriente,

Nucleo De Sucre Cumana, Venezuela.

Facultad de Ciencias Basicas,

Universidad del Atlantico, Colombia.

ennisrafael@gmail.com

S. Saranyasri

Department of Mathematics,

M. R. K. Institute of Technology,

Kattumannarkoil, Cuddalore -608 301,

Tamilnadu, India.

srisaranya 2010@yahoo.com

ABSTRACT

In this paper we define upper (lower) ω-irresolute multifunction and obtain some char-

acterizations and some basic properties of such a multifunction.

RESUMEN

En este art́ıculo definimos la multifunción superior (inferior) ω-irresoluto y obtenemos

algunas caracterizaciones y algunas propiedades básicas de este tipo de multifunciones.
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1 Introduction

It is well known that various types of functions play a significant role in the theory of classical point

set topology. A great number of papers dealing with such functions have appeared, and a good num-

ber of them have been extended to the setting of multifunctions: [4],[5],[6],[7], [10],[11],[12],[13],[15].

This implies that both, functions and multifunctions are important tools for studying other prop-

erties of spaces and for constructing new spaces from previously existing ones. Recently, Zorlutuna

introduced the concept of ω-continuous multifunctions [15], ω-continuity which is a weaker form

of continuity in ordinary was extended to multifunctions. The purpose of this paper is to define

upper (respectively lower) ω-irresolute multifunctions and to obtain several characterizations of

such a multifunction.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces in

which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space

X. For a subset A of (X, τ), Cl(A) and int(A) denote the closure of A with respect to τ and the

interior of A with respect to τ, respectively. Recently, as generalization of closed sets, the notion

of ω-closed sets were introduced and studied by Hdeib [9]. A point x ∈ X is called a condensation

point of A if for each U ∈ τ with x ∈ U, the set U ∩ A is uncountable. A is said to be ω-closed

[9] if it contains all its condensation points. The complement of an ω-closed set is said to be

ω-open. It is well known that a subset W of a space (X, τ) is ω-open if and only if for each x ∈ W,

there exists U ∈ τ such that x ∈ U and U\W is countable. The family of all ω-open subsets of

a topological space (X, τ) is denoted by ωO(X), forms a topology on X finer than τ. The family

of all ω-closed subsets of a topological space (X, τ) is denoted by ωC(X). The ω-closure and the

ω-interior, that can be defined in the same way as Cl(A) and int(A), respectively, will be denoted

by ωCl(A) and ω int(A), respectively. We set ωO(X, x) = {A : A ∈ ωO(X) and x ∈ A}. A subset

U of X is called an ω-neighborhood of a point x ∈ X if there exists V ∈ ωO(X, x) such that V ⊂ U.

By a multifunction F : (X, τ) → (Y, σ), following [3], we shall denote the upper and lower inverse of

a set B of Y by F+(B) and F−(B), respectively, that is, F+(B) = {x ∈ X : F(x) ⊂ B} and F−(B) =

{x ∈ X : F(x) ∩ B 6= ∅}. In particular, F−(Y) = {x ∈ X : y ∈ F(x)} for each point y ∈ Y and for each

A ⊂ X, F(A) =
⋃

x∈A F(x). Then F is said to be surjection if F(x) = y.

Definition 2.1. A multifunction F : (X, τ) → (Y, σ) is said to be:

(i) upper ω-continuous (briefly u.ω-c.) [15] if for each point x ∈ X and each open set V

containing F(x), there exists U ∈ ωO(X, x) such that F(U) ⊂ V;

(ii) lower ω-continuous (briefly l.ω-c.) [15] if for each point x ∈ X and each open set V such

that F(x) ∩ V 6= ∅, there exists U ∈ ωO(X, x) such that U ⊂ F−(V).
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3 On upper and lower ω-irresolute multifunctions

Definition 3.1. A multifunction F : (X, τ) → (Y, σ) is said to be:

(i) upper ω-irresolute (briefly u.ω-i.) if for each point x ∈ X and each ω-open set V containing

F(x), there exists U ∈ ωO(X, x) such that F(U) ⊂ V;

(ii) lower ω-irresolute (briefly l.ω-i.) if for each point x ∈ X and each ω-open set V such that

F(x) ∩ V 6= ∅, there exists U ∈ ωO(X, x) such that U ⊂ F−(V).

It is clear that every upper (lower) ω-irresolute multifunction is upper (lower) ω-continuous.

But the converse is not true as shown by the following example.

Example 3.2. Let X = R with the topology τ = {∅,R,Q}. Define a multifunction F : (R, τ) → (R, τ)

as follows:

F(x) =

{
Q if x ∈ R−Q

R −Q if x ∈ Q.

Then F is u.ω-c. but is not u.ω-i.

In a similar form, we can find a multifunction G that is l.ω-c. but is not l.ω-i.

Theorem 3.3. The following statements are equivalent for a multifunction F : (X, τ) → (Y, σ):

(i) F is u.ω-i.;

(ii) for each point x of X and each ω-neighborhood V of F(x), F+(V) is an ω-neighborhood of x;

(iii) for each point x of X and each ω-neighborhood V of F(x), there exists an ω-neighborhood U

of x such that F(U) ⊂ V;

(iv) F+(V) ∈ ωO(X) for every V ∈ ωO(Y);

(v) F−(V) ∈ ωC(X) for every V ∈ ωC(Y);

(vi) ωCl(F−(B)) ⊂ F−(ωCl(B)) for every subset B of Y.

Proof. (i) ⇒ (ii): Let x ∈ X and W be an ω-neighborhood of F(x). There exists V ∈ ωO(Y) such

that F(x) ⊂ V ⊂ W. Since F is u.ω-i., there exists U ∈ ωO(X, x) such that F(U) ⊂ V . Therefore,

we have x ∈ U ⊂ F+(V) ⊂ F+(W); hence F+(W) is an ω-neighborhood of x.

(ii) ⇒ (iii): Let x ∈ X and V be an ω-neighborhood of F(x). Put U = F+(V). Then, by (ii), U is

an ω-neighborhood of x and F(U) ⊂ V .

(iii) ⇒ (iv): Let V ∈ ωO(Y) and x ∈ F+(V). There exists an ω-neighborhood G of x such that

F(G) ⊂ V . Therefore, for some U ∈ ωO(X, x) such that U ⊂ G and F(U) ⊂ V . Therefore, we

obtain x ∈ U ⊂ F+(V); hence F+(V) ∈ ωO(Y).

(iv) ⇒ (v): Let K be an ω-closed set of Y. We have X\F−(K) = F+(Y\K) ∈ ωO(X); hence
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F−(K) ∈ ωC(X).

(v) ⇒ (vi): Let B be any subset of Y. Since ωCl(B) is ω-closed in Y, F−(ωCl(B)) is ω-closed in

X and F−(B) ⊂ F−(ωCl(B)). Therefore, we obtain ωCl(F−(B)) ⊂ F−(ωCl(B)).

(vi) ⇒ (i): Let x ∈ X and V ∈ ωO(Y) with F(x) ⊂ V . Then we have F(x) ∩ (Y\V) = ∅;

hence x /∈ F−(Y\V). By (vi), x ∈ ωCl(F−(Y\V)) and there exists U ∈ ωO(X, x) such that

U ∩ F−(Y\V) = ∅. Therefore, we obtain F(U) ⊂ V and hence F is u.ω-i.

Theorem 3.4. The following statements are equivalent for a multifunction F : (X, τ) → (Y, σ):

(i) F is l.ω-i.;

(ii) For each V ∈ ωO(Y) and each x ∈ F−(V), there exists U ∈ ωO(X, x) such that U ⊂ F−(V);

(iii) F−(V) ∈ ωO(X) for every V ∈ ωO(Y);

(iv) F+(K) ∈ ωC(X) for every K ∈ ωC(Y);

(v) F(ωCl(A)) ⊂ ωCl(F(A)) for every subset A of X;

(vi) ωCl(F+(B)) ⊂ F+(ωCl(B)) for every subset B of Y.

Proof. (i) ⇒ (ii): This is obvious.

(ii) ⇒ (iii): Let V ∈ ωO(Y) and x ∈ F−(V). There exists U ∈ ωO(X, x) such that U ⊂ F−(V).

Therefore, we have x ∈ U ⊂ Cl(int(U)) ∪ int(Cl(U)) ⊂ Cl(int(F−(V))) ∪ int(Cl(F−(V))); hence

F−(V) ∈ ωO(X).

(iii) ⇒ (iv): Let K be an ω-closed set of Y. We have X\F+(K) = F−(Y\K) ∈ ωO(X); hence

F+(K) ∈ ωC(X).

(iv) ⇒ (v) and (v) ⇒ (vi): Straightforward.

(vi) ⇒ (i): Let x ∈ X and V ∈ ωO(Y) with F(x) ∩ V 6= ∅. Then F(x) is not a subset of Y\V

and x /∈ F+(Y\V). Since Y\V is ω-closed in Y, by (vi), x /∈ ωCl(F+(Y\V)) and there exists

U ∈ ωO(X, x) such that ∅ = U ∩ F−(Y\V) = U ∩ (X\F−(V)). Therefore, we obtain U ⊂ F−(V);

hence F is l.ω-i..

Lemma 3.5. If F : (X, τ) → (Y, σ) is a multifunction, then (ωCl F)−(V) = F−(V) for each V ∈

ωO(Y).

Proof. Let V ∈ ωO(Y) and x ∈ (ωCl F)−(V). Then V∩(ωCl F)(x) 6= ∅. Since V ∈ ωO(Y), we have

V ∩F(x) 6= ∅ and hence x ∈ F−(V). Conversely, let x ∈ F−(V). Then ∅ 6= F(x)∩V ⊂ (ωCl F)(x)∩V

and hence x ∈ (ωCl F)−(V). Therefore, we obtain (ωCl F)−(V) = F−(V).

Theorem 3.6. A multifunction F : (X, τ) → (Y, σ) is l.ω-i. if and only if ωCl F : (X, τ) → (Y, σ)

is l.ω-i.

Proof. The proof is an immediate consequence of Lemma 3.5 and Theorem 3.4 (iii).
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Definition 3.7. A subset A of a topological space (X, τ) is said to be:

(i) α-regular [8] (resp. α-ω-regular) if for each a ∈ A and any open (resp. ω-open) set U

containing a, there exists an open set G of X such that a ∈ G ⊂ Cl(G) ⊂ U;

(ii) α-paracompact [8] if every X-open cover A has an X-open refinement which covers A and is

locally finite for each point of X.

Lemma 3.8. If A is an α-ω-regular, α-paracompact subset of a space X and U is ω-neighborhood

of A, then there exists an open set G of X such that A ⊂ G ⊂ Cl(G) ⊂ U.

Proof. The proof is similar to that [8, Theorem 2.5].

Definition 3.9. A multifunction F : (X, τ) → (Y, σ) is said to be punctually α-paracompact (resp.

punctually α-ω-regular, punctually α-regular) if for each x ∈ X, F(x) is α-paracompact (resp.

α-ω-regular, α-regular).

Lemma 3.10. If F : (X, τ) → (Y, σ) is punctually α-paracompact and punctually α-ω-regular,

(ωCl F)+(V) = F+(V) for each V ∈ ωO(Y).

Proof. Let V ∈ ωO(Y). Suppose that x ∈ (ωCl F)+(V). Then, we have F(x) ⊂ ωCl(F(x)) ⊂ V

and hence x ∈ F+(V). Therefore, we obtain (ωCl F)+(V) ⊂ F+(V). Conversely, suppose that

x ∈ F+(V). Then F(x) ⊂ V and by Lemma 3.8 we have F(x) ⊂ G ⊂ Cl(G) ⊂ V for some

open set G of Y. Therefore, (ωCl F)(x) ⊂ V and hence x ∈ (ωCl F)+(V). Thus, we obtain

F+(V) ⊂ (ωCl F)+(V); hence (ωCl F)+(V) = F+(V).

Theorem 3.11. Let F : (X, τ) → (Y, σ) be punctually α-paracompact and punctually α-ω-regular

multifunction. Then F is u.ω-i. if and only if ωCl F : (X, τ) → (Y, σ) is u.ω-i..

Proof. The proof follows from Lemma 3.10.

Lemma 3.12. [1] Let A and B be subsets of a topological space (X, τ).

(i) If A ∈ ωO(X) and B ∈ τ, then A ∩ B ∈ ωO(B);

(ii) If A ∈ ωO(B) and B ∈ ωO(X), then A ∈ ωO(X).

Theorem 3.13. Let F : (X, τ) → (Y, σ) be a multifunction and U an open subset of X. If F is a

u.ω-i. (resp. l.ω-i.), then F|U : U → Y is an u.ω-i. (resp. l.ω-i.).

Proof. Let V be any ω-open set of Y. Let x ∈ U and x ∈ F−
|U
(V). Since F is l.ω-i. multifunction,

then there exists an ω-open set G containing x such that G ⊂ F−(V). Then x ∈ G ∩U ∈ ωO(U)

and G ∩U ⊂ F−
|U
(V) . This shows that F|U is a l.ω-i..

The proof of the u.ω-i. of F|U is similar.
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Theorem 3.14. Let {Ui : i ∈ ∆} be an open cover of a space X. A multifunction F : (X, τ) → (Y, σ)

is u.ω-i. if and only if the restriction F|Ui
: Ui → Y is u.ω-i. for each i ∈ ∆.

Proof. Suppose that F is u.ω-i.. Let i ∈ ∆ and x ∈ Ui and V be an ω-open set of Y containing

F|Ui
(x). Since F is u.ω-i. and F(x) = F|Ui

(x), there exists G ∈ ωO(X, x) such that F(G) ⊂ V .

Set U = G ∩ Ui, then x ∈ U ∈ ωO(Ui, x) and F|Ui
(U) = F(U) ⊂ V . Therefore, F|Ui

is u.ω-

i..Conversely, let x ∈ X and V ∈ ωO(Y) containing F(x). There exists i ∈ ∆ such that x ∈ Ui.

Since F|Ui
is u.ω-i. and F(x) = F|Ui

(x), there exists U ∈ ωO(Ui, x) such that F|Ui
(U) ⊂ V . Then

we have U ∈ ωO(X, x) and F(U) ⊂ V . Therefore, F is u.ω-i..

Theorem 3.15. Let {Ui : i ∈ ∆} be an open cover of a space X. A multifunction F : (X, τ) → (Y, σ)

is l.ω-i. if and only if the restriction F|Ui
: Ui → Y is l.ω-i. for each i ∈ ∆.

Proof. The proof is similar to that of Theorem 3.14 and is thus omitted.

Definition 3.16. A subset K of a space X is said to be ω-compact relative to X [2] (resp. ω-

Lindelöf relative to X [9]) if every cover of K by ω-open sets of X has a finite (resp. countable)

subcover. A space X is said to be ω-compact [2] (resp. ω-Lindelöf [9]) if X is ω-compact (resp.

ω-Lindelöf) relative to X.

Theorem 3.17. Let F : (X, τ) → (Y, σ) be an u.ω-i. multifunction and F(x) is ω-compact relative

to Y for each x ∈ X. If A is ω-compact relative to X, then F(A) is ω-compact relative to Y.

Proof. Let {Vi : i ∈ ∆} be any cover of F(A) by ω-open sets of Y. For each x ∈ A, there exists

a finite subset ∆(x) of ∆ such that F(x) ⊂ ∪{Vi : i ∈ ∆(x)}. Put V(x) = ∪{Vi : i ∈ ∆(x)}.

Then F(x) ⊂ V(x) ∈ ωO(Y) and there exists U(x) ∈ ωO(X, x) such that F(U(x)) ⊂ V(x). Since

{U(x) : x ∈ A} is an ω-open cover of A, there exists a finite number of points of A, say, x1, x2,....xn

such that A ⊂ ∪{U(xi) : i = 1, 2, ....n}. Therefore, we obtain F(A) ⊂ F(
n
∪

i=1
U(xi)) ⊂

n
∪
i=1

F(U(xi)) ⊂

n
∪

i=1
V(xi) ⊂

n
∪

i=1
∪

i∈∆(xi)
Vi. This shows that F(A) is ω-compact relative to Y.

Corollary 3.18. Let F : (X, τ) → (Y, σ) be an u.ω-i. surjective multifunction and F(x) is ω-

compact relative to Y for each x ∈ X. If X is ω-compact, then Y is ω-compact.

Theorem 3.19. Let F : (X, τ) → (Y, σ) be an u.ω-i. multifunction and F(x) is ω-Lindelöf relative

to Y for each x ∈ X. If A is ω-Lindelöf relative to X, then F(A) is ω-Lindelöf relative to Y.

Proof. The proof is similar to that of Theorem 3.17 and is thus omitted.

Corollary 3.20. Let F : (X, τ) → (Y, σ) be an u.ω-i. surjective multifunction and F(x) is ω-

Lindelöf relative to Y for each x ∈ X. If X is ω-Lindelöf, then Y is ω-Lindelöf.

Definition 3.21. A topological space X is said to be ω-normal [10] if for any pair of disjoint

closed subsets A, B of X, there exist disjoint U,V ∈ ωO(X) such that A ⊂ U and B ⊂ V.
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Theorem 3.22. If Y is ω-normal and Fi : Xi → Y is an u.ω-i. multifunction such that Fi

is punctually closed for i = 1, 2 and the product of two ω-open sets is ω-open, then the set

{(x1, x2) ∈ X1 × X2 : F1(x1) ∩ F2(x2) 6= ∅} is ω-closed in X1 × X2.

Proof. Let A = {(x1, x2) ∈ X1 × X2 : F1(x1) ∩ F2(x2) 6= ∅} and (x1, x2) ∈ (X1 × X2)\A. Then

F1(x1) ∩ F2(x2) = ∅. Since Y is ω-normal and Fi is punctually closed for i = 1, 2, there exist

disjoint V1, V2 ∈ ωO(X) such that Fi(xi) ⊂ Vi for i = 1, 2. Since Fi is u.ω-i., F+i (Vi) ∈ ωO(Xi, xi)

for i = 1, 2. Put U = F+1 (V1)× F+2 (V2), then U ∈ ωO(X1 × X2) and (x1, x2) ∈ U ⊂ (X1 × X2)\A.

This shows that (X1 × X2)\A ∈ ωO(X1 × X2); hence A is ω-closed set in X1 × X2.

Definition 3.23. [2] Let A be a subset of a topological space X. The ω-frontier of A denoted by

ωFr(A), is defined as follows: ωFr(A) = ωCl(A) ∩ωCl(X\A).

Theorem 3.24. The set of a point x of X at which a multifunction F : (X, τ) → (Y, σ) is not

u.ω-i. (resp. l.ω-i.) is identical with the union of the ω-frontiers of the upper (resp. lower)

inverse images of ω-open sets containing (resp. meeting) F(x).

Proof. Let x be a point of X at which F is not u.ω-i.. Then there exists V ∈ ωO(Y) containing F(x)

such that U ∩ (X\F+(V)) 6= ∅ for each U ∈ ωO(X, x). Then x ∈ ωCl(X\F+(V)). Since x ∈ F+(V),

we have x ∈ ωCl(F+(Y) and hence x ∈ ωFr(F+(A)). Conversely, let V ∈ ωO(Y) containing F(x)

and x ∈ ωFr(F+(V)). Now, assume that F is u.ω-i. at x, then there exists U ∈ ωO(X, x) such that

F(U) ⊂ V . Therefore, we obtain x ∈ U ⊂ ω int(F+(V). This contradicts that x ∈ ωFr(F+(V)).

Thus, F is not u.ω-i.. The proof of the second case is similar.

For a multifunction F : (X, τ) → (Y, σ), the graph multifunction GF(x) : X → X × Y is defined

as follows: GF(x) = {x}× F(x) for all x ∈ X.

Lemma 3.25. For a multifunction F : (X, τ) → (Y, σ), the following holds:

(i) G+
F (A× B) = A ∩ F+(B);

(ii) G−
F (A× B) = A ∩ F−(B)

for any subset A of X and B of Y.

Theorem 3.26. Let F : (X, τ) → (Y, σ) be a multifunction and X be a connected space. If the graph

multifunction of F is u.ω-i. (respectively l.ω-i.), then F is u.ω-i. (respectively. l.ω-i.).

Proof. Let x ∈ X and V be any ω-open subset of Y containing F(x). Since X× V is an ω-open set

of X× Y and GF(x) ⊂ X×V , there exists an ω-open set U containing x such that GF(U) ⊂ X×V .

By Lemma 3.25, we have U ⊂ G+
F (X × V) = F+(V) and F(U) ⊂ V . Thus, F is u.ω-i.. The proof

of the l.ω-i. of F can be obtained in a similar manner.
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Definition 3.27. [2] A topological space (X, τ) is said to ω-T2 if for each pair of distinct points x

and y in X, there exist disjoint ω-open sets U and V in X such that x ∈ U and y ∈ V.

Theorem 3.28. If F : (X, τ) → (Y, σ) is an u.ω-i. injective multifunction and point closed from a

topological space X to an ω-normal space Y, then X is an ω-T2 space.

Proof. Let x and y be any two distinct points in X. Then we have F(x) ∩ F(y) = ∅ since F is

injective. Since Y is ω-normal, it follows that there exist disjoint open sets U and V containing

F(x) and F(y), respectively. Thus, there exist disjoint ω-open sets F+(U) and F+(V) containing x

and y, respectively such G ⊂ F+(U) and W ⊂ F+(V). Therefore, we obtain G∩W = ∅; hence X is

ω-T2.

Definition 3.29. A multifunction F : (X, τ) → (Y, σ) is said have an ω-closed graph if for each

pair (x, y) /∈ G(F) there exist U ∈ ωO(X, x) and V ∈ ωO(Y, y) such that (U× V) ∩G(F) = ∅.

Theorem 3.30. Let F : (X, τ) → (Y, σ) be an u.ω-c. multifunction. If F(x) is α-paracompact for

each x ∈ X, then G(F) is ω-closed.

Proof. Suppose that (x0, y0) /∈ G(F). Then y0 /∈ F(x0). Since Y is a T2 space, for each y ∈

F(x0) there exist disjoint open sets V(y) and W(y) containing y and y0, respectively. The family

{V(y) : y ∈ F(x0)} is an open cover of F(x0). Thus, by α-paracompactness of F(x0), there is a

locally finite open cover ∆ = {Uβ : β ∈ I} which refines {V(y) : y ∈ F(x0)}. Therefore, there

exists an open neighborhood W0 of y0 such that W0 intersects only finitely many members Uβ1
,

Uβ2
,.....Uβn

of ∆. Choose y1, y2,.....yn in F(x0) such that Uβi
⊂ V(yi) for each 1 ≤ i ≤ n, and

set W = W0 ∩ (
n
∩
i=1

W(yi)). Then W is an open neighborhood of y0 such that W ∩ ( ∪
β∈I

Vβ) = ∅.

By the upper ω-continuity of F, there is a U ∈ ωO(X, x0) such that U ⊂ F+( ∪
β∈I

Vβ). It follows

that (U×W) ∩G(F) = ∅. Therefore, G(F) is ω-closed.

Theorem 3.31. Let F : (X, τ) → (Y, σ) be a multifunction from a space X into an ω-compact space

Y. If G(F) is ω-closed, then F is u.ω-c..

Proof. Suppose that F is not u.ω-c.. Then there exists a nonempty closed subset C of Y such

that F−(C) is not ω-closed in X. We may assume that F−(C) 6= ∅. Then there exists a point

x0 ∈ ωCl(F−(C))\F−(C). Hence for each point y ∈ C, we have (x0, y) /∈ G(F). Since F has an

ω-closed graph, there are ω-open subsets U(y) and V(y) containing x0 and y, respectively such

that (U(y) × V(y)) ∩ G(F) = ∅. Then {Y\C} ∪ {V(y) : y ∈ C} is an ω-open cover of Y, and thus it

has a subcover {Y\C}∪ {V(yi) : yi ∈ C, 1 ≤ i ≤ n}. Let U =
n
∩

i=1
U(yi) and V =

n
∪
i=1

V(yi). It is easy

to verify that C ⊂ V and (U×V)∩G(F) = ∅. Since U is an ω-neighborhood of x0, U∩ F−(C) 6= ∅.

It follows that ∅ 6= (U × C) ∩G(F) ⊂ (U × V) ∩ G(F). This is a contradiction. Hence the proof is

completed.

Corollary 3.32. Let F : (X, τ) → (Y, σ) be a multifunction into an ω-compact T2 space Y such that

F(x) is ω-closed for each x ∈ X. Then F is u.ω-c. if and only if it has an ω-closed graph.
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Theorem 3.33. Let F : (X, τ) → (Y, σ) be an u.ω-i. multifunction into an ω-T2 space Y. If F(x)

is α-paracompact for each x ∈ X, then G(F) is ω-closed.

Proof. The proof is clear.

Definition 3.34. [14] Let A be a subset of X. Then F : X → A is called a retracting multifunction

if x ∈ F(x) for each x ∈ A.

Theorem 3.35. Let F : X → X be an u.ω-i. multifunction of a T2 space X into itself. If F(x) is

α-paracompact for each x ∈ X, then the set A = {x : x ∈ F(x)} is ω-closed.

Proof. Let x0 ∈ ωCl(A)\A. Then x0 /∈ F(x0). Since X is T2, for each x ∈ F(x0) there exist disjoint

open sets U(x) and V(x) containing x0 and x respectively. Then {V(x) : x ∈ F(x0)} is an open

cover of F(x0). By the α-paracompactness of F(x0), {V(x) : x ∈ F(x0)} has a locally finite open

refinement W = {Wβ : β ∈ I} which covers F(x0). Therefore, we can choose an open neighborhood

U0 of x0 such that U0 intersects only finitely many members Wβ1
, Wβ2

,.....Wβn
of W . Choose

x1, x2,.....xn in F(x0) such that Wβi
⊂ V(xi) for each 1 ≤ i ≤ n, and set U = U0 ∩ (

n
∩

i=1
U(xi)).

Then U is an open neighborhood of x0 such that U ∩ ( ∪
β∈I

Wβ) = ∅. Since F is u. ω-i., there is a

G ∈ ωO(X, x0) such that G ⊂ F+( ∪
β∈I

Wβ). It follows that G ∩U is an ω-neighborhood of x0 and

satisfies (G ∩U) ∩A = ∅. This contradicts the fact that x0 ∈ ωCl(A).

Corollary 3.36. Let A be a subset of X and F : X → A an u.ω-i. retracting multifunction such

that F(x) is α-paracompact for each x ∈ A. If X is T2, then A is ω-closed.

Received: March 2014. Accepted: May 2014.
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