
CUBO, A Mathematical Journal

Vol. 25, no. 1, pp. 1–21, April 2023

DOI: 10.56754/0719-0646.2501.001

Existence results for a class of local and nonlocal
nonlinear elliptic problems

Said Ait Temghart1, B

Chakir Allalou
1

Adil Abbassi1

1 Laboratory LMACS, FST of Beni

Mellal, Sultan Moulay Slimane

University, Morocco.

saidotmghart@gmail.com B

chakir.allalou@yahoo.fr

abbassi91@yahoo.fr

ABSTRACT

In this paper, we study the p-Laplacian problems in the case

where p depends on the solution itself. We consider two

situations, when p is a local and nonlocal quantity. By using

a singular perturbation technique, we prove the existence of

weak solutions for the problem associated to the following

equation







−div(|∇u|p(u)−2∇u) + |u|p(u)−2u = f in Ω

u = 0 on ∂Ω,

and also for its nonlocal version. The main goal of this paper

is to extend the results established by M. Chipot and H. B.

de Oliveira (Math. Ann., 2019, 375, 283-306).

RESUMEN

En este art́ıculo, estudiamos los problemas p-Laplacianos en

el caso donde p depende de la solución misma. Consideramos

dos situaciones, cuando p es una cantidad local y no-local.

Usando una técnica de perturbación singular, demostramos

la existencia de soluciones débiles para el problema asociado

a la siguiente ecuación







−div(|∇u|p(u)−2∇u) + |u|p(u)−2u = f en Ω

u = 0 sobre ∂Ω,

y también para su versión no-local. El principal objetivo de

este art́ıculo es extender los resultados establecidos por M.

Chipot y H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).

Keywords and Phrases: p(u)-Laplacian; elliptic problems; variable nonlinearity; generalised Sobolev spaces.

2020 AMS Mathematics Subject Classification: 35J60; 35J05; 35D30.

Accepted: 10 September, 2022

Received: 06 July, 2021

c©2023 S. A. Temghart et al. This open access article is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2501.001
https://orcid.org/0000-0002-7962-2296
https://orcid.org/0000-0002-4885-9397
https://orcid.org/0000-0003-0284-8390
mailto:saidotmghart@gmail.com
mailto:chakir.allalou@yahoo.fr
mailto:abbassi91@yahoo.fr


2 S. A. Temghart, C. Allalou & A. Abbassi CUBO
25, 1 (2023)

1 Introduction

The study of partial differential equations involving the p-Laplacian generalised several types of

problems not only in physics, but also in biophysics, plasma physics, and in the study of chemical

reactions. These problems appear, for example, in a general reaction-diffusion system:

ut = − div
(

a|∇u|p(·)−2∇u
)

+ |u|p(·)−2u,

where a ∈ R
+ is a positive constant, the function u generally describes the concentration, the

term div
(

a|∇u|p(·)−2∇u
)

corresponds to the diffusion with coefficient D(u) = a|∇u|p(·)−2, and

|u|p(·)−2u is the reaction term related to source and loss processes. In general, the reaction term

has a polynomial form with respect to the concentration u.

Because of the importance of this kind of problems, many authors have investigated the existence

and uniqueness of their different types of solutions [1, 4, 10].

Our main interest in this work is to extend these results to the case when p may depend both

on the space variable x and on the unknown solution u. We first consider the case where the

dependency of p on u is a local quantity. Namely, we study the following problem











−div(|∇u|p(u)−2∇u) + |u|p(u)−2u = f in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain of RN , N ≥ 2, f is a given data and p is the nonlinear exponent

function p : R → [1,+∞) such that

p is continuous and 1 < r ≤ p ≤ s < ∞ for some constants r, s. (1.2)

In the second part of this work, we consider also the following nonlocal problem











−div(|∇u|p(b(u))−2∇u) + |u|p(b(u))−2u = f in Ω

u = 0 on ∂Ω,
(1.3)

where p : R −→ [1,+∞) and b : W 1,r
0 (Ω) −→ R are the functions involved in the exponent of

nonlinearity, for some constant exponent r such that 1 < r < ∞.

The fact that in reality physical measurements of certain quantities are not made in a punctual

way but through local averages is always the motivation to study non-local problems. This kind

of problems appear in the applications of some numerical techniques for the total variation image

restoration method that have been used in some restoration problems of mathematical image
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processing and computer vision [5, 6, 17]. J. Türola in [17] presented several numerical examples

suggesting that the consideration of exponents p = p(u) preserves the edges and reduces the noise

of the restored images u. A numerical example suggesting a reduction of noise in the restored

images u when the exponent of the regularization term is p = p(|∇u|) is presented in [5]. To our

best knowledge, there are only a few important contributions concerning the well-posedness of the

solutions of this p(u)-Laplacian problems. The study of these problems was recently developed by

Andreianov et al. [3]. They established the partial existence and uniqueness result to the weak

solution in the cases of homogeneous Dirichlet boundary condition for the following problem











−div(|∇u|p(u)−2∇u) + u = f in Ω,

u = 0 on ∂Ω.

S. Ouaro and N. Sawadogo in [14] and [15] considered the following nonlinear Fourier boundary

value problem






b(u)− div a(x, u,∇u) = f in Ω

a(x, u,∇u) · η + λu = g on ∂Ω.

The existence and uniqueness results of entropy and weak solutions are established by an approx-

imation method and convergent sequences in terms of Young measure.

We were inspired by the work of M. Chipot and H. B. de Oliveira in [7], where the authors have

proved the existence of the p(u)-problem (1.1) without the second term in the left-hand side, the

existence proofs of [2] and [7] are based on the Schauder fixed-point theorem. They considered for

the first time in the literature the nonlocal exponent of nonlinearity p as we consider here.

This paper is organized as follows. In Section 2 we introduce the basic assumptions and we recall

some definitions and basic properties of generalised Sobolev spaces. Section 3 is devoted to show

the existence of a solution to the local problem (1.1) using a singular perturbation technique. In

Section 4, we prove the existence of weak solutions to the nonlocal problem (1.3) by using the

Minty trick together with the technique of Zhikov (see [18]) for passing to the limit in our sequence

of p(un)-Laplacian problems .

2 Preliminaries

The fact that the function p depends on the solution u and therefore it depends on the space

variable x, allows us to look for the weak solutions in a Sobolev space with variable exponents.

Let Ω be a bounded domain of RN with ∂Ω Lipschitz-continuous, we say that a real-valued con-
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tinuous function p(·) is log-Hölder continuous in Ω (for more details, see [9]) if

∃C > 0 : |p(x) − p(y)| ≤
C

ln
(

1
|x−y|

) ∀x, y ∈ Ω, |x− y| <
1

2
. (2.1)

For any Lebesgue-measurable function p : Ω → [1, ∞), we define

p− := ess inf
x∈Ω

p(x) , p+ := ess sup
x∈Ω

p(x), (2.2)

and we introduce the variable exponent Lebesgue space by:

Lp(·)(Ω) =

{

u : Ω → R / ρp(·)(u) :=

∫

Ω

|u(x)|p(x)dx < ∞

}

. (2.3)

Equipped with the Luxembourg norm

‖u‖p(·) := inf
{

λ > 0 : ρp(·)

(u

λ

)

≤ 1
}

, (2.4)

Lp(·)(Ω) becomes a Banach space. If

1 < p− ≤ p+ < ∞, (2.5)

Lp(·)(Ω) is separable and reflexive. The dual space of Lp(·)(Ω) is Lp′(·)(Ω), where p′(x) is the

generalised Hölder conjugate of p(x),

1

p(x)
+

1

p′(x)
= 1.

The next proposition shows that there is a gap between the modular and the norm in Lp(·)(Ω).

Proposition 2.1 (See [11]). If (2.5) holds, for u ∈ Lp(x)(Ω), then the following assertions hold

min
{

‖u‖
p−

p(·), ‖u‖
p+

p(·)

}

≤ ρp(·)(u) ≤ max
{

‖u‖
p−

p(·), ‖u‖
p+

p(·)

}

,

min
{

ρp(·)(u)
1

p
− , ρp(·)(u)

1
p+

}

≤ ‖u‖p(·) ≤ max
{

ρp(·)(u)
1

p
− , ρp(·)(u)

1
p+

}

, (2.6)

‖u‖
p−

p(·) − 1 ≤ ρp(·)(u) ≤ ‖u‖
p+

p(·) + 1. (2.7)
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Proposition 2.2 (Generalised Hölder’s inequality. See [13]).

- For any functions u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have:

∫

Ω

uv dx ≤

(

1

p−
+

1

p′−

)

‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·).

- For all p satisfying (2.5), we have the following continuous embedding,

Lp(·)(Ω) →֒ Lr(·)(Ω) whenever p(x) ≥ r(x) for a.e. x ∈ Ω. (2.8)

In generalised Lebesgue spaces, there holds a version of Young’s inequality,

|uv| ≤ δ
|u|p(x)

p(x)
+ C(δ)

|v|p
′(x)

p(x)
,

for some positive constant C(δ) and any δ > 0.

We define also the generalised Sobolev space by

W 1,p(·)(Ω) := {u ∈ Lp(·)(Ω) : ∇u ∈ Lp(·)(Ω)},

which is a Banach space with the norm

‖u‖1,p(·) := ‖u‖p(·) + ‖∇u‖p(·). (2.9)

The space W 1,p(·)(Ω) is separable and is reflexive when (2.5) is satisfied. We also have

W 1,p(·)(Ω) →֒ W 1,r(·)(Ω) whenever p(x) ≥ r(x) for a.e. x ∈ Ω. (2.10)

Now, we introduce the following function space

W
1,p(·)
0 (Ω) := {u ∈ W1,1

0 (Ω) : ∇u ∈ Lp(·)(Ω)},

endowed with the following norm

‖u‖
W

1,p(·)
0 (Ω)

:= ‖u‖1 + ‖∇u‖p(·). (2.11)

If p ∈ C(Ω), then the norm inW
1,p(·)
0 (Ω) is equivalent to ‖∇u‖p(·).When p is log-Hölder continuous,

then C∞
0 (Ω) is dense in W

1,p(.)
0 (Ω).

If p is a measurable function in Ω satisfying 1 ≤ p− ≤ p+ < N and the log-Hölder continuity
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property (2.1), then

‖u‖p∗(·) ≤ C‖∇u‖p(·) ∀u ∈ W
1,p(·)
0 (Ω),

for some positive constant C, where

p∗(x) :=











Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N.

On the other hand, if p satisfies (2.1) and p− > N , then

‖u‖∞ ≤ C‖∇u‖p(·) ∀u ∈ W
1,p(·)
0 (Ω) ,

where C is another positive constant.

Lemma 2.3 ([7]). Assume that

1 < r ≤ pn(x) ≤ s < ∞ ∀n ∈ N,

for a.e. x ∈ Ω, for some constants r and s,
(2.12)

pn → p a.e. in Ω, as n → ∞, (2.13)

∇un → ∇u in L1(Ω)N , as n → ∞, (2.14)

‖|∇un|
pn(x)‖1 ≤ C, for some positive constant C not depending on n. (2.15)

Then ∇u ∈ Lp(·)(Ω)N and

lim inf
n→∞

∫

Ω

|∇un|
pn(x)dx ≥

∫

Ω

|∇u|p(x)dx. (2.16)

Lemma 2.4 ([8, 12]). For all ξ, η ∈ R
N , the following assertions hold true:

2 ≤ p < ∞ ⇒
1

2p−1
|ξ − η|p ≤

(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η), (2.17)

1 < p < 2 ⇒ (p− 1)|ξ − η|2 ≤
(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η) (|ξ|p + |η|p)
2−p

p . (2.18)
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3 Existence for the local problem

In this section, we prove the existence of weak solutions for the local problem (1.1). Firstly, we

define the following space:

W
1,p(u)
0 (Ω) :=

{

u ∈ W 1,1
0 (Ω) :

∫

Ω

|∇u|p(u)dx < ∞

}

such that 1 < p(u) < ∞ for all u ∈ R.

It is a Banach space for the norm ‖u‖
W

1,p(·)
0 (Ω)

defined at (2.11) which is equivalent to ‖∇u‖p(u)

when p(u) ∈ C(Ω). Since p is continuous then from the fact that 1 < r ≤ p, W
1,p(u)
0 (Ω) is separable

and reflexive.

Definition 3.1. Assume that p verifies (1.2) and

f ∈ W−1,r′(Ω). (3.1)

A function u ∈ W
1,p(u)
0 (Ω) is said to be a weak solution to the problem (1.1), if

∫

Ω

|∇u|p(u)−2∇u · ∇v dx +

∫

Ω

|u|p(u)−2uv dx = 〈f, v〉 ∀v ∈ W
1,p(u)
0 (Ω),

where 〈·, ·〉 denotes the duality pairing between (W
1,p(u)
0 (Ω))′ and W

1,p(u)
0 (Ω).

Theorem 3.2. Assume that (1.2) and (3.1) hold together with

N < r ≤ p(u) ≤ s < +∞ (3.2)

and

p : R −→ [1,+∞) is a Lipschitz-continuous function. (3.3)

Then there exists at least one weak solution to problem (1.1) in the sense of Definition 3.1.

The proof of Theorem 3.2 is divided into several steps.

Step 1: Approximate problems

For each ε > 0, we consider the following auxiliary problem (namely, the regularized problem)











−div(|∇u|p(u)−2∇u) + |u|p(u)−2u+ ε
(

|u|s−2u− div(|∇u|s−2∇u)
)

= f in Ω,

u = 0 on ∂Ω,
(3.4)
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where

N < r ≤ p(u) ≤ s < ∞ ∀u ∈ R.

Proposition 3.3. For each ε > 0, the problem (3.4) admits a weak solution uε.

Proof. Let w ∈ L2(Ω), then

N < r ≤ p(w) ≤ s < ∞ for a.e. x ∈ Ω. (3.5)

Recalling that f ∈ W−1,r′(Ω) ⊂ W−1,s′(Ω). Now, we focus on the operator Tε : W 1,s
0 (Ω) →

W−1,s′(Ω) defined by

〈Tε(u), v〉 =

∫

Ω

(

|∇u|p(w)−2∇u · ∇vdx + |u|p(w)−2uv
)

dx+ε

[
∫

Ω

(

|∇u|s−2∇u · ∇vdx+ |u|s−2uv
)

dx

]

,

for all u, v ∈ W 1,s
0 (Ω). We can establish that:

(i) Tε is continuous, bounded;

(ii) Tε is strictly monotone (the strict monotonicity follows by Lemma 2.4);

(iii) Tε is coercive.

According to (i), (ii) and (iii), the operator Tε is continuous, strictly monotone (hence, maximal

monotone too), and coercive. It follows that Tε is a strictly monotone surjective operator (see

Corollary 2.8.7, p. 135, [16]). Therefore, there exists a unique solution uw ∈ W 1,s
0 (Ω) such that

∫

Ω

|∇uw|
p(w)−2∇uw · ∇vdx+

∫

Ω

|uw|
p(w)−2uwvdx+

ε

(
∫

Ω

|∇uw|
s−2∇uw · ∇vdx +

∫

Ω

|uw|
s−2uwvdx

)

= 〈f, v〉 ∀v ∈ W 1,s
0 (Ω). (3.6)

We take v = uw in (3.6) to derive that

∫

Ω

|∇uw|
p(w)dx +

∫

Ω

|uw|
p(w)dx+ ε

(
∫

Ω

|uw|
sdx+

∫

Ω

|∇uw|
sdx

)

≤ ‖f‖−1,r′‖∇uw‖r ≤ C‖∇uw‖s,

where C = C(r, s,Ω, f), and ‖·‖−1,r′ is the operator norm associated to the norm ‖∇·‖r. Therefore

ε‖uw‖
s
1,s ≤ C‖∇uw‖s ≤ C‖uw‖1,s.

Hence

‖uw‖1,s ≤ C, (3.7)
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where C = C(r, s,Ω, ε, f) is a positive constant without w-dependence. From the fact that s >

N ≥ 2, we can deduce that

‖uw‖L2(Ω) ≤ C. (3.8)

Next, we introduce the self-map T : B → B defined by T (w) = uw, over the set

B :=
{

v ∈ L2(Ω) : ‖v‖L2(Ω) ≤ C
}

.

The compact embedding W 1,s
0 (Ω) →֒ L2(Ω) implies that T (B) is relatively compact in B. Appeal-

ing to the Schauder fixed-point theorem, we know that the continuity of T is required in obtaining

a fixed point of T .

With the assumption that we work on a sequence {wn} in L2(Ω) satisfying

wn → w in L2(Ω) as n → ∞, (3.9)

we denote by un, for all n ∈ N, the solution of (3.6) related to w := wn. Therefore, the inequality

in (3.7) leads to

‖un‖1,s ≤ C, for some positive constant (without n-dependence) .

Passing to a subsequence if necessary (namely again {un}), for a certain u ∈ W 1,s
0 (Ω) we get

un ⇀ u in W 1,s
0 (Ω), as n → ∞, (3.10)

un → u in L2(Ω), as n → ∞. (3.11)

We return to (3.6), so that considering (un, wn) instead of (u,w), we get

∫

Ω

(

|∇un|
p(wn)−2∇un + ε|∇un|

s−2∇un

)

· ∇v dx+ (3.12)

∫

Ω

(

|un|
p(wn)−2un + ε|un|

s−2un

)

v dx = 〈f, v〉 ∀v ∈ W 1,s
0 (Ω).

Since the operator on the left-hand side of (3.12) is monotone, then

∫

Ω

(

|∇un|
p(wn)−2∇un + ε|∇un|

s−2∇un

)

· ∇(un − v)dx+ (3.13)

∫

Ω

(

|un|
p(wn)−2un + ε|un|

s−2un

)

(un − v)dx−
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∫

Ω

(

|∇v|p(wn)−2∇v + ε|∇v|s−2∇v
)

· ∇(un − v)dx−

∫

Ω

(

|v|p(wn)−2v + ε|v|s−2v
)

(un − v)dx ≥ 0 ∀v ∈ W 1,s
0 (Ω).

Considering (3.12) with v = un − v as a test function, we use (3.13) to get

〈f, un − v〉 −

∫

Ω

(

|∇v|p(wn)−2∇v + ε|∇v|s−2∇v
)

· ∇(un − v)dx− (3.14)

∫

Ω

(

|v|p(wn)−2v + ε|v|s−2v
)

(un − v)dx ≥ 0 ∀v ∈ W 1,s
0 (Ω).

The convergence in (3.9) implies

wn → w a.e. in Ω, as n → ∞.

Since p is a continuous function, we can apply Lebesgue’s theorem (in Ls′(Ω)N ), therefore

|∇v|p(wn)−2∇v → |∇v|p(w)−2∇v strongly in Ls′(Ω)d, as n → ∞ (3.15)

and

|v|p(wn)−2v → |v|p(w)−2v strongly in Ls(Ω), as n → ∞, (3.16)

for all v ∈ W 1,s
0 (Ω). Finally, by the weak convergence in (3.10) and using (3.15) and (3.16) we can

pass to the limit in (3.14) to obtain

〈f, u− v〉 −

∫

Ω

(

|∇v|p(w)−2∇v + ε|∇v|s−2∇v
)

· ∇(u − v)dx−

∫

Ω

(

|v|p(w)−2v + ε|v|s−2v
)

(u − v)dx ≥ 0 ∀v ∈ W 1,s
0 (Ω). (3.17)

Next, choosing v = u± δϕ, where ϕ ∈ W 1,s
0 (Ω) and δ > 0, we get

±
[

〈f, ϕ〉 −

∫

Ω

(

|∇(u± δϕ)|p(w)−2∇(u± δϕ) + ε|∇(u± δϕ)|s−2∇(u± δϕ)
)

· ∇ϕdx−

∫

Ω

(

|u± δϕ|p(w)−2(u± δϕ) + ε|v|s−2(u± δϕ)
)

ϕdx
]

≥ 0. (3.18)

We pass to the limit as δ goes to zero in (3.18), and deduce that

∫

Ω

(

|∇(u)|p(w)−2∇u+ ε|∇u|s−2∇u
)

· ∇ϕdx +

∫

Ω

(

|u|p(w)−2u+ ε|v|s−2u
)

ϕdx = 〈f, ϕ〉 ∀ϕ ∈ W 1,s
0 (Ω).

Consequently u = uw. In view of (3.11) and by the strong convergence in (3.11), we conclude that

uwn
→ uw strongly in L2(Ω), as n → ∞,
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It follows that T is continuous, and this establishes the existence of the fixed point which is the

exact weak solution to (3.4).

Step 2: Passage to the limit as ε → 0

From Proposition 3.3, for each ε > 0 there exists uε ∈ W 1,s
0 (Ω) such that

∫

Ω

|∇(uε)|
p(uε)−2∇uε∇vdx+

∫

Ω

|uε|
p(uε)−2uεvdx+ (3.19)

ε

(
∫

Ω

|∇uε|
s−2∇uε · ∇vdx+

∫

Ω

|uε|
s−2uεvdx

)

= 〈f, v〉 ∀v ∈ W 1,s
0 (Ω)

and

N < r ≤ p(uε(x)) ≤ s < ∞ ∀ε > 0, for a.e. x ∈ Ω.

Next, we choose v = uε as a test function in (3.19) to obtain

∫

Ω

(

|∇uε|
p(uε) + |uε|

p(uε)
)

dx+ ε (‖∇uε||
s
s + ‖uε||

s
s) = 〈f, uε〉. (3.20)

From (2.7), we deduce that

‖u‖q(·) ≤ (ρq(·)(u) + 1)
1

q
− =

(
∫

Ω

|∇u|q(x)dx+ 1

)
1

q
−

.

By using the Hölder inequality, we get

∫

Ω

|∇uε|
rdx ≤ C‖|∇uε|

r‖ p(uε)
r

≤ C

(
∫

Ω

|∇uε|
p(uε)dx+ 1

)
1

( p(uε)
r )

− (3.21)

≤ C

(
∫

Ω

|∇uε|
p(uε)dx+ 1

)

,

where C = C(r, s,Ω). Therefore

〈f, uε〉 ≤ ‖f‖−1,r′||∇uε||r ≤ C‖f‖−1,r′

(
∫

Ω

|∇uε|
p(uε)dx+ 1

)
1
r

. (3.22)

From (3.20), (3.22) and by using Young’s inequality, we obtain

∫

Ω

(

|∇uε|
p(uε) + |uε|

p(uε)
)

dx+ ε (‖∇uε||
s
s + ‖uε||

s
s) ≤ C. (3.23)

Using (3.21) and (3.22), we can deduce the estimate

||uε||1,r ≤ C, (3.24)
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where C is a positive constant without ε-dependence.

Now we consider a sequence {εn} of positive real numbers. For every n ∈ N, let uεn be the solution

to the problem (3.4) associated to εn. Since W 1,r
0 (Ω) →֒ L2(Ω) compactly, then after passing to a

subsequence if needed, for some u ∈ W 1,r
0 (Ω) we have

uεn ⇀ u in W 1,r
0 (Ω), as n → ∞ (3.25)

∇uεn ⇀ ∇u in Lr(Ω)N , as n → ∞ (3.26)

uεn → u in L2(Ω), as n → ∞

uεn → u a.e. in Ω, as n → ∞. (3.27)

The constraints on the exponent range in (3.2) imply that u is Hölder-continuous, then from the

condition (3.3), the same conclusion holds for p(u). From (3.27), we deduce that

p(uεn) → p(u) a.e. in Ω, as n → ∞. (3.28)

Clearly, the following chain of inequalities is satisfied

N < r ≤ p(uεn) ≤ s < ∞ ∀n ∈ N, for a.e. x ∈ Ω. (3.29)

Using (3.23) written for uεn , together with (3.26), (3.28) and (3.29), we conclude that (by Lemma

2.3)

u ∈ W
1,p(u)
0 (Ω). (3.30)

From the theory of monotone operators, we have

∫

Ω

(

|∇uεn |
p(uεn )−2∇uεn + εn|∇uεn |

s−2∇uεn

)

· ∇(uεn − v)dx+

∫

Ω

(

|uεn |
p(uεn )−2uεn + εn|uεn |

s−2u
)

(uεn − v)dx−

(

∫

Ω

(

|∇v|p(uεn )−2∇v + εn|∇v|s−2∇v
)

· ∇(uεn − v)dx+

∫

Ω

(

|v|p(uεn )−2v + εn|v|
s−2v

)

(uεn − v)dx
)

≥ 0 ∀v ∈ W 1,s
0 (Ω). (3.31)

By replacing uε with uεn and choosing uεn − v as a test function in (3.19), we can reduce (3.31)
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to the form

〈f, uεn − v〉 −
(

∫

Ω

(

|∇v|p(uεn )−2∇v + ε|∇v|s−2∇v
)

· ∇(uεn − v)dx+

∫

Ω

(

|v|p(uεn )−2v + ε|v|s−2v
)

(uεn − v)dx
)

≥ 0, (3.32)

for all v ∈ C∞
0 (Ω). By using (3.28) and the Lebesgue theorem, we have

|∇v|p(uεn )−2∇v → |∇v|p(u)−2∇v in Lr′(Ω)d, as n → ∞ (3.33)

and

|v|p(uεn )−2v → |v|p(u)−2v in Lr(Ω), as n → ∞. (3.34)

We take the limit as n goes to infinity in (3.32), and use (3.24), (3.25), (3.33) and (3.34), therefore

〈f, u− v〉 −

(
∫

Ω

|∇v|p(u)−2∇v · ∇(u− v)dx +

∫

Ω

|v|p(u)−2v(u − v)dx

)

≥ 0 ∀v ∈ C∞
0 (Ω).

(3.35)

From the assumptions (3.2) and (3.3), the functions p(u) is Hölder-continuous which implies that

C∞
0 (Ω) is dense in W

1,p(u)
0 (Ω). Thus, (3.34) holds true also for all v ∈ W

1,p(u)
0 (Ω).

So we can take v = u± δϕ, where ϕ ∈ W
1,p(u)
0 (Ω) and δ > 0, as a test function in (3.34) we get

±

(

〈f, ϕ〉 −
(

∫

Ω

|∇u|p(u)−2∇u · ∇ϕdx+

∫

Ω

|u|p(u)−2uϕdx
)

)

≥ 0. (3.36)

This implies that,

∫

Ω

|∇u|p(u)−2∇u · ∇ϕdx+

∫

Ω

|u|p(u)−2uϕdx = 〈f, ϕ〉 ∀ϕ ∈ W
1,p(u)
0 (Ω). (3.37)

Finally, we arrived to a solution for our local problem (1.1) (See Definition 3.1).

4 Nonlocal problems

Along with problem (1.1), we consider in this section its nonlocal version. Firstly, we assume that

the function p satisfies the conditions in (1.2). We denote by b a mapping from W 1,r
0 (Ω) into R

such that

b is continuous, b is bounded. (4.1)
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The next theorem needs the following revised definition of a weak solution.

Definition 4.1. A function u is said to be a weak solution to the problem (1.3) if











u ∈ W
1,p(b(u))
0 (Ω) ,

∫

Ω

|∇u|p(b(u))−2∇u · ∇v dx+

∫

Ω

|u|p(b(u))−2uv dx = 〈f, v〉 ∀v ∈ W
1,p(b(u))
0 (Ω),

(4.2)

where 〈·, ·〉 denotes the duality pairing between
(

W
1,p(b(u))
0 (Ω)

)′

and W
1,p(b(u))
0 (Ω).

Since p(b(u)) is here a real number and not a function, thus the Sobolev spaces involved are the

classical ones.

Theorem 4.2. Let Ω ⊂ R
N , N ≥ 2, be a bounded domain and assume that (1.2) and (4.1) hold

together with

f ∈ W−1,q′(Ω) for q < r.

Then there exists at least one weak solution to the problem (1.3) in the sense of Definition 4.1.

To prove Theorem 4.2, we need the following Lemma.

Lemma 4.3. For n ∈ N, let un be the solution to the problem











un ∈ W 1,pn

0 (Ω),
∫

Ω

|∇un|
pn−2∇un · ∇v dx+

∫

Ω

|un|
pn−2unv dx = 〈f, v〉 ∀v ∈ W 1,pn

0 (Ω),
(4.3)

where 〈·, ·〉 denotes here the duality pairing between
(

W 1,pn

0 (Ω)
)′

and W 1,pn

0 (Ω).

Assume that

pn → p, as n → ∞, where p ∈ (1, ∞), (4.4)

f ∈ W−1,q′(Ω) for some q < p. (4.5)

Then

un → u in W 1,q
0 (Ω), as n → ∞, (4.6)

where u is the solution to the problem











u ∈ W 1,p
0 (Ω),

∫

Ω

|∇u|p−2∇u · ∇v dx +

∫

Ω

|u|p−2uv dx = 〈f, v〉 ∀v ∈ W 1,p
0 (Ω).

(4.7)

Proof of Lemma 4.3. The proof of Lemma 4.3 is divided into two steps.
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Step 1: Weak convergence

In view of pn → p, as n → ∞, and q < p, we may suppose that

p+ 1 > pn > q ∀n ∈ N. (4.8)

We choose v = un as a test function in (4.3) to obtain

∫

Ω

|∇un|
pndx+

∫

Ω

|un|
pndx ≤ ‖f‖−1,q′‖∇un‖q. (4.9)

From (4.8) and Hölder’s inequality, we deduce that

‖∇un‖q ≤ C‖∇un‖pn
≤ C‖un‖1,pn

, (4.10)

where C = C(p, q,Ω) is a positive constant. Therefore

‖un‖1,pn
≤ C, (4.11)

where C = C(p, q,Ω, f) is a positive constant. Combining (4.10) with (4.11), we get

‖∇un‖q ≤ C, (4.12)

where C is a positive constant without n-dependence. Passing to a subsequence if necessary still

denoted by un, for a certain u ∈ W 1,q
0 (Ω) we get

∇un ⇀ ∇u in Lq(Ω), as n → ∞. (4.13)

On this basis, the convergences in (4.4), (4.8), (4.11) and (4.13) lead to the conclusion that (Lemma

2.3)

lim inf
n→∞

∫

Ω

|∇un|
pndx ≥

∫

Ω

|∇u|pdx,

and hence

u ∈ W 1,p
0 (Ω). (4.14)

We observe that, the second line in (4.3) is equivalent to

∫

Ω

|∇un|
pn−2∇un · ∇(v − un)dx +

∫

Ω

|un|
pn−2un(v − un)dx ≥ 〈f, v − un〉 ∀v ∈ W 1,pn

0 (Ω),
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using the Minty lemma, we have

∫

Ω

|∇v|pn−2∇v · ∇(v − un)dx +

∫

Ω

|v|pn−2v(v − un)dx ≥ 〈f, v − un〉 ∀v ∈ W 1,pn

0 (Ω). (4.15)

We choose v ∈ C∞
0 (Ω), then we can take the limit as n goes to infinity in (4.15), and use (4.4) and

(4.13), hence we obtain

∫

Ω

|∇v|p−2∇v · ∇(v − u)dx+

∫

Ω

|v|p−2v(v − u)dx ≥ 〈f, v − u〉 ∀v ∈ C∞
0 (Ω). (4.16)

Since C∞
0 (Ω) dense in W 1,p

0 (Ω), we have (4.16) also holds for all v ∈ W 1,p
0 (Ω). Now, choosing

v = u± δϕ, where ϕ ∈ W 1,p
0 (Ω) and δ > 0, by passing to the limit as δ goes to zero, we get

∫

Ω

|∇u|p−2∇u · ∇ϕdx +

∫

Ω

|u|p−2uϕdx = 〈f, ϕ〉 ∀ϕ ∈ W 1,p
0 (Ω),

Finally, it is sufficient to recall that u ∈ W 1,p
0 (Ω) to conclude that we arrived to a solution for the

problem (4.7).

Step 2: Strong convergence

In this step we will show that the convergence (4.13) is strong. Firstly, we take v = un in (4.3)

and using (4.13) to pass to the limit, we get

∫

Ω

|∇un|
pndx+

∫

Ω

|un|
pndx = 〈f, v〉 →

∫

Ω

|∇u|pdx+

∫

Ω

|u|pdx = 〈f, v〉 as n → ∞. (4.17)

Firstly, we consider the case when

pn ≥ p ∀n ∈ N.

By using Hölder’s inequality, we have

∫

Ω

|∇un|
pdx ≤

(
∫

Ω

|∇un|
pndx

)

p

pn

|Ω|1−
p

pn .

Thus by (4.17), we deduce that

lim sup
n→∞

∫

Ω

|∇un|
pdx ≤

∫

Ω

|∇u|pdx ≤ lim inf
n→∞

∫

Ω

|∇un|
pdx,

which implies (from the fact that ‖∇un‖p → ‖∇u‖p, as n → ∞)

un → u strongly in W 1,p
0 (Ω), as n → ∞. (4.18)
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From the fact that W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω), we conclude that

un → u in W 1,q
0 (Ω), as n → ∞.

Now, we consider the case when

q < pn < p ∀n ∈ N, (4.19)

we set

An :=

∫

Ω

(

|∇un|
pn−2∇un − |∇u|pn−2∇u

)

· (∇un −∇u)dx+

∫

Ω

(

|un|
pn−2un − |u|pn−2u

)

· (un − u)dx. (4.20)

By the theory of monotone operators, we have An ≥ 0, (4.3) imply that (4.20) reduces to the form

An = 〈f, un − u〉 −

∫

Ω

|∇u|pn−2∇u · ∇(un − u)dx−

∫

Ω

|u|pn−2u(un − u)dx.

Due to (4.5) and the convergence in (4.13), we have

〈f, un − u〉 → 0, as n → ∞. (4.21)

From the fact that u ∈ W 1,p
0 (Ω) we get

||∇u|pn−2∇u| ≤ max{1, |∇u|p−1} ∈ Lp′

(Ω), (4.22)

||u|pn−2u| ≤ max{1, |u|p−1} ∈ Lp(Ω). (4.23)

On this basis, we can conclude that

An → 0, as n → ∞. (4.24)

We first consider the case when pn ≥ 2. By applying the Lemma 2.4 in (4.20), we get

An ≥
1

2pn−1

(
∫

Ω

|∇(un − u)|pndx+

∫

Ω

|un − u|pndx

)

. (4.25)

Since pn > q, we can apply Hölder’s inequality to obtain

∫

Ω

|∇(un − u)|qdx+

∫

Ω

|un − u|qdx ≤

[

(
∫

Ω

|∇(un − u)|pndx

)

q

pn

+

(
∫

Ω

|un − u|pndx

)

q

pn

]

|Ω|1−
q

pn .
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Hence, from (4.24) and (4.25) we get

∫

Ω

|∇(un − u)|qdx+

∫

Ω

|un − u|qdx −→ 0, as n → ∞.

Therefore,

un → u in W 1,q
0 (Ω), as n → ∞.

Now, we assume that pn < 2 :

By using the Hölder’s inequality we obtain

∫

Ω

|∇ (un − u)|pn dx +

∫

Ω

|un − u|pn dx

=

∫

Ω

|∇ (un − u)|
pn (|∇un|+ |∇u|)

(pn−2)pn
2 (|∇un|+ |∇u|)

(2−pn)pn
2 dx

+

∫

Ω

|un − u|
pn (|un|+ |u|)

(pn−2)pn
2 (|un|+ |u|)

(2−pn)pn
2 dx

≤

[
∫

Ω

|∇ (un − u)|
2
(|∇un|+ |∇u|)

pn−2
dx

]

pn
2
[
∫

Ω

(|∇un|+ |∇u|)
pn dx

]1− pn
2

+

[
∫

Ω

|un − u|
2
(|un|+ |u|)

pn−2
dx

]

pn
2
[
∫

Ω

(|un|+ |u|)
pn dx

]1− pn
2

.

(4.26)

From Lemma 2.4, one could deduce that

An ≥ C (pn)

(
∫

Ω

|∇ (un − u)|2 (|∇un|+ |∇u|)pn−2 dx+

∫

Ω

|un − u|2 (|un|+ |u|)pn−2 dx

)

. (4.27)

Since ‖un‖1,pn
≤ C, then from (4.24), (4.26) and (4.27) we get

∫

Ω

|∇ (un − u)|
pn dx+

∫

Ω

|un − u|
pn dx → 0, as n → ∞.

Therefore,

un → u in W 1,q
0 (Ω), as n → ∞.

Proof of Theorem 4.2. For any s > q we have, f ∈ (W 1,s
0 (Ω))′ ⊂ (W 1,q

0 (Ω))
′

. Therefore, for each

λ ∈ R, the following p(λ)-Laplacian problem admits a unique solution uλ,







u ∈ W
1,p(λ)
0 (Ω) ,

∫

Ω

|∇u|p(λ)−2∇u · ∇v dx+

∫

Ω

|u|p(λ)−2uv dx = 〈f, v〉 ∀v ∈ W
1,p(λ)
0 (Ω) .

(4.28)
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The choice of test function uλ in (4.28) implies that

∫

Ω

|∇uλ|
p(λ)dx+

∫

Ω

|uλ|
p(λ)dx ≤ ‖f‖−1,r′‖∇uλ‖r. (4.29)

Now using the Hölder’s inequality, one obtains

‖uλ‖1,r ≤ ‖uλ‖1,p(λ)|Ω|
1
r
− 1

p(λ) . (4.30)

From (4.29), it follows that

‖uλ‖
p(λ)−1
1,p(λ) ≤ ‖f‖−1,r′|Ω|

1
r
− 1

p(λ) . (4.31)

Combining (4.30) and (4.31), and using (1.2) to get

‖uλ‖1,r ≤ ‖f‖
1

p(λ)−1

−1,r′ |z|(
1
r
− 1

p(λ) )
p(λ)

p(λ)−1 ≤ max
p∈[r,s]

‖f‖
1

p−1

1,r′ |Ω|
( 1

r
− 1

p )
p

p−1 . (4.32)

Therefore

‖uλ‖1,r ≤ C. (4.33)

The inequality (4.33) and the fact that b is a bounded mapping, imply that there exists K ∈ R

such that

b(uλ) ∈ [−K, K] ∀λ ∈ R.

Next, we introduce the self-map H : [−K, K] → [−K, K] defined by H(λ) = b(uλ). We know

that the continuity of H is required in obtaining a fixed point of H .

Assume that λn → λ as n → ∞, because p is continuous, p(λn) → p(λ). Next, we apply Lemma

4.3, so that considering p(λn) instead of pn, we deduce that

uλn
−→ uλ in W 1,r

0 (Ω), as n → ∞.

We use the fact that b is continuous to deduce that b(uλ) → b(uλ), as n goes to infinity, which

implies that the map H is continuous. This establishes the existence of the fixed point λ0 and a

weak solution uλ0 for the problem (4.2).



20 S. A. Temghart, C. Allalou & A. Abbassi CUBO
25, 1 (2023)

References

[1] A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem

governed by nonlinear elliptic equation”, Moroccan J. Pure and Appl. Anal., vol. 6, no. 2, pp.

231–242, 2020.

[2] C. Allalou, K. Hilal and S. A. Temghart, “Existence of weak solutions for some local and

nonlocal p-Laplacian problem”, J. Elliptic Parabol. Equ., vol. 8, no. 1, pp. 151–169, 2022.

[3] B. Andreianov, M. Bendahmane and S. Ouaro, “Structural stability for variable exponent

elliptic problems. II. The p(u)-Laplacian and coupled problems”, Nonlinear Anal., vol. 72, no.

12, pp. 4649–4660, 2010.
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