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Banach spaces. Then, the main result is used to the common
fixed point problems of a family of relatively nonexpansive
mappings and split equilibrium problem. Finally, a numeri-

cal example is provided to illustrate the main result.

RESUMEN

El propésito de este articulo es proponer un algoritmo para
encontrar un elemento comun del conjunto de puntos fijos
de aplicaciones relativamente no-expansivas y el conjunto
de soluciones de problemas de inclusion escindidos con una
manera de seleccionar el tamano del paso sin conocimiento
previo de la norma del operador en el contexto de espacios
de Banach. Luego, el resultado principal se usa para los pro-
blemas de punto fijo comin de una familia de aplicaciones
relativamente no expansivas y el problemas del equilibrio es-
cindido. Finalmente, se entrega un ejemplo numérico para

ilustrar el resultado principal.
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1 Introduction

Let H; and Hs be two Hilbert spaces. Let B; : H; — 281 and B, : Hy — 272 be two maximal
monotone operators and A : H; — Hy be a bounded linear operator. Consider the following split

inclusion problem (SIP) introduced by Moudafi [25] in Hilbert space:
To find z* € H; suchthat 0€ By(z*) and 0€ By (Az™). (1.1)

Let the solution set of (1.1) be denoted by €. In fact, we know that the SIP is a generalization
of the inclusion problem and the split feasibility problem (SFP). Next, we have some special cases
of SIP (1.1). Let f: Hi — RU{oo} and g : Hy — RU {00} be proper, lower semicontinuous and
convex functions. If we take By = 0f and By = dg, where 0f and Jg are the sub-differential of f
and g, then the SIP (1.1) becomes the following proximal split feasibility problem:

To find a* € argmin f such that Axz™ € argming, (1.2)

where argmin f = {z € H1: f(z) < f(y),Yy € H1} and argming = {z € Hs : g(x) < g(y),Yy €
H,}. In particular, if we take f(z) = 1|[M(z) — b||* and g(z) = ||N(z) — ¢||?, where M and N
are matrices, and b,c € Hy, then the (1.2) becomes the least square problem. This problem has

been intensively studied, especially, in Hilbert spaces; see for instance [26].

Let C and @ be nonempty, closed, and convex subsets of real Hilbert spaces H; and Hs, respec-
tively. If By = N¢g, Bs = Ng, where N¢ and Ng are the normal cones of C' and (), respectively,
then we have the SFP:

To find z* € C such that Az* € Q. (1.3)

This problem was first introduced, in a finite dimensional Hilbert space, by Censor and Elfving
[13] for modeling inverse problems in radiation therapy treatment, which arise from phase retrieval
and in medical image reconstruction, especially intensity modulated therapy [12]. To solve the STP
(1.1) Byrne et al. [11] proved some weak convergence results in infinite dimensional Hilbert spaces

and proposed the following algorithm for given xy € H;:
Tny1 = J2 (20 — YA (I — JP?)Az,), Vn>1, (1.4)

where A > 0, v € ( ) and Jfﬂ JfQ are metric and resolvent operators of By and B,

2
0, ——
A%
respectively. In order to obtain strong convergence, Kazmi and Rizvi [19] proposed the following

algorithm to solve SIP (1.1):
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Uy = Jfl(mn — A (I — sz)Aa:n)

Tn4+1 = anf(xn) + (1 - Oln)TUn,v n > ].,

2 (o)
where v € (0,——— | and {«,} is a sequence in (0,1) such that lim «a, =0, Zan = 0.
PAE neso0 P
However, in order to achieve the solution, one has to obtain the operator norm || A||, which is not
easy to calculate in general. To avoid this computation, Lépez et al. [23] find a new way to select

the stepsize as follows:
pnf (%)
fn = 7oz P21
IV f ()2

where Py is the metric projection of Hy onto Q, p, € (0,4), f(z,) = 3[|(I — Pg)Az,|? and
Vf(zn) = A*(I — Pg)Axz,. This method is a modification of the CQ method and is often called
the self-adaptive method, which permits step-size being selected self adaptively, for more details

see [30, 37].

To solve SIP (1.1) in p-uniformly convex and smooth Banach space, Bello Cruz et al. [9] proposed

the following algorithm, for given z; € E; and {«a,} € (0,1):

n = T [T (@) = tn A" T, (T = TP) Az

(1.5)
Tir = JY [anng (u) + (1 — ay)JE (J2 (un))} :

Very recently, Cholamjiak et al. [14] proposed algorithm for finding common solution of fixed point
problem of relatively nonexpansive mapping to solve SIP (1.1) in p-uniformly convex and smooth

Banach space. An initial guess u; € E1, let {x,}52; and {u,}52; be sequences generated by:

2o = I (Th (T, () = M A"TB, (1 = T02) Auy)) w6
Un+1 = quEl*(O‘nJZ“l (€n) + ﬂnng (zn) + 'Yn‘]gl (Tzy)), n>1,

where Jfl 1 Jﬁ 2 are metric and resolvent operators. The sequences {a,}, {#n} and {7,} are
sequences in (0, 1) such that a,, + 8, + v, = 1. For more SIP related articles (see, [3, 6, 16, 28,
34, 36, 38, 42)).

In nonlinear analysis, to work with an algorithm that has a high rate of convergence is more useful,
through adding inertial term in the algorithm. First it was proposed by Polyak [31]. The main
purpose of this method is to make use of previous iterates to update the next iterate. Recently,

many authors have shown interest to study inertial type algorithms, see [2, 4, 17, 37, 40, 41].

Intention of this paper is to propose an algorithm to solve SIP (1.1) and fixed point of relatively



70 A. Kumar & E. Tamrakar

nonexpansive mapping in p-uniformly convex and uniformly smooth real Banach spaces, without
prior knowledge of operator norm, so that it can be more efficiently implemented. As an applica-
tion, we apply our result to the common fixed point problems of a family of relatively nonexpansive
mappings and split equilibrium problem. A numerical example is given to illustrate the efficiency
of our algorithm, also our results complement and extend many recent and important results in

this direction.

2 Preliminaries

Let E be a real Banach space with dual E* and let A : £y — E5 be a bounded linear operator
and A* is adjoint of A. The modulus of convexity 0g : [0,2] — [0,1] is defined as

=+ yll
2

55(e) = inf{l - Nzl = 1 =yl lle — vl = }

E is called uniformly convex if dg(g) > 0, for e € (0,2] and p-uniformly convex if there exist a

C) > 0 such that g (g) > CpeP, for any ¢ € (0,2]. The modulus of smoothness pg : [0, 00) — [0, 00)

is defined by
[z + 7yl + [l — 7y
= sup{ _

5 Lo flafl = [lyll = 1}-

pEe(T)

pE(T)

FE is called uniformly smooth if lim
T—0 T

that pg(7) < C,79, for any 7 > 0. The duality mapping J% : E — 2F" is defined by

= 0, g—uniformly smooth if there exist C; > 0 such

Jp(x) ={z € B* : (z,7) = ||=|]%, ||z]| = [|l=["~"}.

The duality mapping J% is one-to-one and single-valued (see [5, 15]).

The metric projection for a nonempty, closed and convex subset C' of Banach space FE is given by
Pecx = argmin|jz —y||, =€ E.
yel

For a Gateaux differentiable convex function f : F — R, the Bregman distance with respect to f

is defined as
Afay = fly) = flx) = (f'(2),y —z), z,y€E.

Since the duality mapping J% is the derivative of the function f,(z) = %Hme . Then the Bregman

distance with respect to f,, is,

1 1 1
Ap(e,y) = 2=l = (Jgz,y) + Sl = 2 Clyll” = ll=ll) = (Jpr = Ty, ). (2.1)
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We define the Bregman projection as the unique minimizer of the Bregman distance,
Moz = argmin A, (x,y), 2z € E.
yel
It can also be characterized by a variational inequality,
(Jo(z) — Jp(Mex), z —ex) <0, VzeC, (2.2)

also,
Apy(Mlgz, 2) < Ap(z, 2) — Ap(z,Icx), VzeC. (2.3)

In real Hilbert space II¢ = Pg, for more detail, see [1, 18]. The function V, : E* x E — [0, +00)
with f, is defined by

V() = é”i‘”" — (@) + %Hpr, Ve € E, e B
Then V,, > 0 and also satisfy following property:
Vp(@,2) = Ap(JE(Z),2), VxeE,ze€E" (2.4)
Moreover,

Vo (%, ) + (9, Jp(2) — x) < V(% + 9, ), (2.5)

Vo € E and Z,7 € E* (see [29]). Also, V,, is convex in the first variable. Thus, for all z € E,

N N

N
where {z;}Y, C E and {t;,}}¥, C (0,1) with Zti =1, see [33].
i=1

Lemma 2.1 ([27]). Let E be a p-uniformly convex and uniformly smooth real Banach space and let

{zn}, {yn} be bounded sequences in E, then nlggo Ap(xn, yn) = 0 if and only if nl;n;o |zn — ynll = 0.

Lemma 2.2 ([43]). Let z,y € E. If E is q-uniformly smooth, then there is a Cy > 0 so that

[ = yll? < |2l = gy, Tg(2)) + Callyll?.

A point z* € C is called an asymptotic fixed point of T if C' contains a sequence {z,} which

converges weakly to #* and lim ||z, — T,|| = 0. Let F(T) is the set of asymptotic fixed points.
n— oo

Similarly a point * € C' is a strong asymptotic fixed point of T if C contains a sequence {z,}

which converges strongly to * and lim ||z, — Tz,|| = 0. Set of strong asymptotic fixed points of
n—oo
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T is denoted by F(T).

Definition 2.3 ([24]). A mapping T from C to C is said to be,
1. Bregman relatively nonexpansive if F(T) # 0, F(T) = F(T) and

Ap(z*, Ty) < Ap(2*,y), VyeC,z" e F(T).

2. Bregman weakly relatively nonexpansive if F(T) # 0, F(T) = F(T) and

Ay (z*, Ty) <Ay (z*,y), VyeC, z"e F(T).

For more details, see [32].

Definition 2.4 ([8]). Let E be a p-uniformly convex and uniformly smooth Banach space and C
a nonempty subset of E. A mapping S : C — E is said to be firmly nonexpansive-like if

(Jo(x — Sz) — Jo(y — Sy), Sz — Sy) >0, Vx,yeC. (2.7)

If E is a Hilbert space, then S is firmly nonexpansive-like mapping if and only if it is firmly
nonexpansive, i.e. ||Sz — Sy||? < (Sx — Sy,x — y), Yo,y € C. We recall the following results:

Remark 2.5. Let E be a p-uniformly convexr and uniformly smooth Banach space and C a
nonempty closed convexr subset of E. Then the metric projection Pc is a firmly nonexpansive-

like mapping.

Lemma 2.6 ([8]). Let E be a smooth Banach space, C' be a closed and conver nonempty subset

of E and S : C — E a firmly nonexpansive-like mapping then F(S) is closed and conver and
F(8) = F(S).

Let B : E — 2F" be a mapping, the effective domain of B is denoted by D(B), such that
D(B) ={z € E: Bx # 0}. A multi-valued mapping B is said to be monotone if

(u—v,x—y)>0, Ve,ye D(B), uwe€ Bx and v € By.

A monotone operator B on E is said to be maximal if its graph is not properly contained in the

graph of any other monotone operator on FE.

For Ay > 0 and x € F>, consider the metric resolvent Mf; : B3 — D(Bs) of By defined by

MP2(x) = (I + Mo(J5,) "' By) " M(z), Vaz € Es.
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Set of null points of By is defined by Bo~'(0) = {z € E; : 0 € Bz}. Since By~ *(0) is closed and
convex, then we have

0 € Jp, (My? () — x) + AaBo My ().

Next, F(M/\B;) = B; (0), for Ay > 0, from [22] we also have,
(M2 (x) = M2 (), Jp, (& — My (@) = JE, (y — M2 (y))) > 0,
for all z,y € Ey and if By '(0) # 0, then
(JB, (= M7 (2)) — (M7 (x) = 2)) 2 0,

forallz € Fy and 2z € Bg_l(O).
The monotonicity of Bs implies that M f; 2 is a firmly nonexpansive-like mapping.

Now, we can define a mapping N fl ' . E1 — D(Bj) called the relative resolvent of By [20], for
A1 >0 as
NOV = (J5 + MB1)"'J% (x), Yz € Ey.

Since Nﬁl is relatively nonexpansive mapping and F(Nﬁl) = B;(0) for A; > 0.

Lemma 2.7 ([20]). Let B : E — 25" be a maximal monotone operator with B=' # () and let NP
be a resolvent operator of B for A > 0. Then

Ap(NE(z),2) + Ap(NE(z),2) < Ap(z,2) forall € E and z€ B Y0).

Lemma 2.8 ([35]). Let Ey, E5 be two p-uniformly convex and uniformly smooth Banach spaces with
duals EY, B3, respectively. Let Nﬁl be the resolvent operator associated with mazximal monotone
operator By for Ay > 0 and Mf;z be a metric resolvent operator of mazimal monotone operator Bs
for Ay > 0. Assume Q # (0, A\ >0 and 2* € Ey. Then z* is a solution of problem (1.1) if and only
if

o = N (b (T, (%) = AA™ T, (I = M) Az™).

3 Main results

We assume the following assumptions for the rest of the paper, let E7, Fs be two p-uniformly convex
and uniformly smooth Banach spaces with duals Ef, 3, respectively. Let C' = C; be nonempty
closed and convex subset of Ey. Let By : By — 281" and B, : By — 252" be maximal monotone
operators such that By (0) # 0, By *(0) # 0. Let Nﬁl be the resolvent operator of By for A; >0

and Mf;’ is the metric resolvent operator of By for Ay > 0. Let T : £y — FE; be a Bregman
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relatively nonexpansive mapping. Let A : 4 — E5 be a bounded linear operator with its adjoint

A* 1 Ef — Ef and {a,,} € (0,1) such that 0 < liminf o, < limsupa, < 1, 6,, € (=00, +00) and
n—00 n— o0

assuming QN F(T) # 0.

Algorithm 3.1. Select o, x1 € F1 and assuming that the sequence x,, is generated via the formula

Uy = ']J%T [(JB, Tn 4 On(J5, Tn — T, Tn—1)]

— NBiJja (JP (v.) — fpil(vn) .
Zn = N/\1 [']Ei‘ (JE’l( n) Pn Hg(vn)”pg( ﬂ))]
yn = i lom TG, (zn) + (1= 0) TE, T(z0) (3:1)

Cry1 ={u e Cy: Ap(yn,u) < Ap(vp,u)}

Tny1 = e, 70, V0 > 1,

where f(vn) = LI(I = ME)Ava P, g(va) = A*JB,(I — MP?)Av, and {pu} € (0,00) satisfy
lirginfpn(pq — Cyp™1) > 0. Suppose that the set W = {n € N : (I — Mﬁz)Avn # 0}, otherwise
n o0

Zn = Up.

Theorem 3.1. The sequence {x,} generated by Algorithm 3.1 converges strongly to x* = Igqp(r)To-
Proof. We divide the proof into four steps:

Step 1: To show QNF(T) C Cy, for all n > 1 and Algorithm 3.1 is well defined. Let CY, is closed

and convex for k£ > 1. Then

Ck+1 = {U S Ck? : Ap(y?“wu) < Apvn7u)}

ullP
= {u o, p” - ||qu|| — (TG, yw,u) <

ul|P v
ke, ol _
p q

= {u e Cx : lypll” = llorllP < a(J,ux — T, vn, )}

ngvbu)}

which implies Cj41 is closed. Let uq,us € Cryq and A1, A2 € (0,1) such that A; + Xy = 1.
Then

Iyl = llokll” < a(Jg, ye — Jg, v, u1)  and - [lyel” = [Jowl]” < a5, ye — T, ve, u2).
Combining these two, we get
lyell? = llvell” < (T, 96 — Ji, vk, Arur + Aguz).

By convexity Ajuy + Agug € Ci. Therefore, Aju; + Agug € Cry1 and Ciy1 is convex. Thus
C,, is convex, Yn > 1. Let z* € QN F(T), then
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Ap(yn; ") = Ap((1 — o) Jp, 20 + anJ T(2n), ")
< (1= an) Ao ) + anBp(T(en),7°) < Aploma®).  (32)

P (v,)

Wg(vn)), for all n > 1. From Lemma 2.2 and (2.1), we
g\Un

Set wy, := JQT(JJ{;1 (vn) — pn

have

Ap(znv ) <A (wnv )
P=1(y, .
fpil(vn)

q

1, . 1 ”
=pmnﬂ+qhawm—w”mmmpm%> (B (). 2%)
fpil(vn) :17* v
*“wmwup<’“"”
LT Py m Cq ¢ f7(vn)
p—1
71x*p l’U P_ (x* JP w fpfl(Un)x*iv v
%pq fp(U")
q " llg(vn)|IP
* fpil(vﬂ) * Cq fp(vn)
= A, (v, n———Ax™ — vy, g(v, —pd = .
R T Ay o T

Since g(vn) = A*Jp, (I — M;\B;)Avn and (Jp, (I — M)I?)Avn,MigAvn — Az*) > 0, then

(g(vn), @™ —vn) = (A*J% (I — M) Avy, a* — vn) = (J5 (I — My?) Av,, Az* — Avy,)
= (J% (I — M) Av,, M2 Av,, — Avy,)
+ (J5 (I — My?) Av,, Az* — M2 Av,)
< —||Av, — M2 Av, [P = —pf (vn). (3.4)

Using (3.3) and (3.4),

* * fp(vn) Cq q fp(’Un>
Bp(zn, @) < Bplon, 27) = pupy e S+ = ST S
= Ap(vnax ) - (pnp - qqul> m
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Since liminf p,, (pg — Cyp2~t) > 0,
n— oo
Ap(zn, ") < Ap(vp,2™), n>1. (3.6)

Step 2: We prove that {z,} is a Cauchy sequence.

Since, {A,(zn, o)} is nondecreasing and bounded. So, the limit lim Aj,(x,,zo) exists and
n— oo

from (2.3) we have,

Ap(mn+17xn) = Ap(-rn+17HCnxO) S Ap(anrl,xO) - Ap(HC'nwaTO)

= Ap(anrla 1’0) - Ap(l'nv xo)» (37)
which implies that,
nh—>Holo Ap(xn-l-la xn) =0. (38)

So, it follows from Lemma 2.1 that,
nlgrolo |Xnt1 — znl = 0. (3.9

Since x, = Il 29 C Cy, and from Lemma 2.1, for some positive integers m,n with m < n,

we have
Ap(xmvxn) = Ap(xmvHCnxo) < Ap(mnuxO) - AP(HCnanxO)
<A (T, o) — Ap(zn, 20)- (3.10)
Since li_>m Ap(xn, o) exists, it follows from (3.10) that li_>m lxn — 2m|| = 0. Therefore,

{zn} is a Cauchy sequence.

Step 3: We prove that lim ||Tz, — z,| = 0, lim [|(I — M?)Az,|| = 0and lim |NP'w, —v,| = 0.
n—00 n—00 2 n— 00 1

Since v, = ng* [JB, T 4 0n(J5, @n — Jp, 2n—1)]. Then it follows that,
ngvn — ngxn = 97,(J§1zn — ngxn_l).
By the uniform continuity of ng and from (3.9), we have

|5, vn — I, Znll = 100(Jp, 20 — B, Tn1)| = 0 as n — oco. (3.11)

Since z,41 =g, ., 20 € Cpy1 C Cy, from the definition of C), 41, we have

n+1

Ap(xn-i-lv Zn) < A;D(xn-‘rl’ Un)a (3'12)
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and

Ap(Tnt1,Yn) < Ap(Tnt1,Vn)- (3.13)

Hence, it follows from (3.12) and (3.13) that li_>m Ap(xp41, 2n) = 0and ILm Ap(Tnt1,Yn) = 0.
By Lemma (2.1), we conclude that

lm ||zpe1 —2p]| =0 and lm ||zp41 —ynl =0, (3.14)
n— 00 n—oo

and so,

Jim g, — 2] = 0. (3.15)

From (3.5), we obtain

_ﬁ q) fp(vn) ) ¥
(o= 108) Tt = S0t = Bl

= <J§12n — ngvn,;v* — ) — Ap(zn,vp)
< (Jg, #n — JB, Vn, T° — vp)

< Hx* _UYLHHngZn_JE‘IUHH- (316)

Since F4 is a p-uniformly convex and p-uniformly smooth real Banach space, thus ng is
uniformly norm-to-norm continuous. By lim |lv,, — z,|| = 0, we obtain ||JE, z,—J5 va| — 0.
n—oo

From (3.16) and the fact that liminf p,,(pg — Cyp% ") > 0, we have
n—oQ

P
”ch(i:;l)lp —0 as n— oo,
implies,
Lim [|(T~ M) Avy, || = 0. (3.17)
Also
|A* T8, (I — M) Avy || < [|A||(T — M) Av, || =0, as n — oo.
Thus

|A*JE, (I — Mf;)AUnH — 0, as n — oo.
Again from (3.1), we get

1
1—a,

1, Tz = T, 2l = 1, Yn = Ji, Zull- (3.18)

It follows from (3.15) that
Jim |J5, T2 — Jp, 2nll = 0, (3.19)
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which also implies that

lim ||Tz, — z,| = 0. (3.20)

n— oo

By Lemma (2.7) and (3.16), we have

Ap(2n, wy) = Ap(Nfllwn,wn) < Ap(wn, %) — Ap(zn, ")

< Ap(vp,z*) — Ap(zn,z*) — 0 as n— oo.

Thus, we have

: B T _
nh_}n;o [Ny wy, — wy || = nh_}rrolo |z — wy| = 0. (3.21)

Step 4: We show that {z,} converges strongly to an element z* = Ilgnp(r)2o. Since {x,} is
a Cauchy sequence, there exists * € Fj such that {z,} converges strongly to x*. Since
zn, — x* € Eq, we also have v, — z* € E;. From (3.21), we get z* € F(Nﬁl) € B7Y(0).
From (3.20), nl;n;o ITz, — ]| = 0 and the closeness of T' that «* = Tz* that is, z* € F(T).
Since A is a bounded linear operator, we have that nhHH;O |Ax, — Az*|| = 0. By (3.17) we
get li_>m (I — Mf;)AxHH = 0, this implies that Az* € F(Mf;) and by Lemma 2.6 we have
Ax*ne O;’(Mﬁz) This means that z* € QN F(T).

Let p € QN F(T) C C, such that p = o p(r)To and by definition x,, = Il¢, 2o, we have

Ay (Tn, z0) = Ap(p, x0). (3.22)
This implies that
Ap(ﬂf*yxo) < h_>m Ap(xn,$0) < Ap(pa 370)7 (323)

hence x* = p. Therefore, {x,} converges strongly to 2* € QN F(T'), where z* = Hoqp1)To-

This completes the proof. (]

We next present some consequences of our main results. Firstly, if 8, = 0, we obtain the following

non-inertial shrinking projection result.

Corollary 3.2. Let QN F(T) # 0. Select xg,x1 € E1 and the sequence {x,} is generated by

n = Tn - .
o= N3 (78 (T = L))
Yn = Jh: [an T, (z0) + (1 = an) T, T(z0)] (3.24)

Cry1 = {u €Cy: Ap(ymu) < Ap(vnvu)}

Tptl = chﬂxo, Vn > 1.
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where f(vn) = LI(I = ME)Ava P, g(vn) = A*J5,(I — MP2)Av, and {pu} € (0,00) satisfy
lirginfpn(pq — Cyp?™1) > 0. Suppose that the set W = {n € N : (I — M/@)Avn # 0}, otherwise

Zp = Un. Then the sequence {x,} converges strongly to x* = Ilonpr)To.

Also, by letting M i 2 be the metric projection mapping onto a closed convex subset @) of Fs in
Algorithm (3.1), i.e. Mﬁz = Pg and Nﬁl = I, we obtain the following result as a solution to split
feasibility and fixed point problems.

Corollary 3.3. With reference to the data in Algorithm (3.1), let Q be a nonempty closed convex
subset of By and M/\'f = Pg. AssumingT :={zx € C:z € F(T),Ax € Q} # 0. Then the sequence

xn generated by Algorithm (3.1) converges strongly to u € T', where u = Ilpzy.

4 A countable family of relatively nonexpansive mappings

In this section, we apply our result to the common fixed point problems of a family of relatively

nonexpansive mappings and equilibrium problem.

Definition 4.1 ([7]). Let C be a subset of a real p-uniformly convex and uniformly smooth Banach
space E. Let {T,,}22, be a sequence of mappings of C' in to E such that (\,—, F(T,)) # 0. Then
{T,}52, is said to satisfy the AKTT-condition if, for any bounded subset B of C,

ZSSE{HJf(Tva) — I (T2)|)} < oo

n=17%

As in [36], we prove the following Proposition:

Proposition 4.2. Let C be a nonempty, closed and convexr subset of a real p-uniformly convex
and uniformly smooth Banach space E. Let {T,}52, be a sequence of mappings of C' such that
Moy F(T) # 0 and {T,,}52, satisfies the AKTT-condition. Then for any bounded subset B of

C there ezists a mapping T : B — E such that

Tz = lim T,x, Vze€ B, (4.1)

n—oo

and
- E E _
nh—>Holo :gg |, (Tz) — J, (Tnz)|| = 0.
Proof. To complete the proof we show that {T,,z} is Cauchy sequence for each z € C. Let € > 0
be given and by the AK KT-condition 3]y € N such that,

S sup{|Tosry — Tyl -y € CF <ce.

lo
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Let k£ > 1 > lp, then

|Twx — Tyx|| < sup{||Thy — Tiyll : y € C'}

< sup{||Twy — Tr—1y|| : y € C} +sup{||Th—1y — Tyy|| : y € C}

k—1 0o

< Zsup{HTnHy —Thyll:yeC} < Zsup{HTnHy —Twl:yeC}<e
1 o

Therefore we have that {T,,z} is Cauchy sequence. Moreover (3.4) implies that,

Tz — Tiz| = lim ||Tpz — Tiz|| < Zsup{HTnHy —Thyll :y € C},
k—o0

lo
for all x € C. So,

sup [Tz — Thi|| <Y sup{[|Tni1y — Toyll 1y € C},
lo

therefore, we conclude that lim sup||Tz — T, x| = 0. O
lo—00

In the sequel, we say that ({1}, T) satisfies the AKTT-condition if {T},}5° ; satisfies the AKTT-
condition and T is defined by (4.1) with (.2, F(T,,) = F(T).

Theorem 4.3. Let {T,} be a countable family of Bregman relatively nonexpansive mapping on
By such that F(T,) = F(T,) and assuming Q1 = (\°°, F(T,,) NQ # 0. Select z9, 21 € Ey and the

n=1

sequence {x,} is generated by

Un = Jg [T, @0 + On(JE, @0 — T, Tn1)]

oo = N5 [ 28 (72, = T 0]

Yn = TR [on TG, (20) + (1 = @) JB, T (20)] (4.2)
Cry1 ={u € Ch: Ap(yn,u) < Ap(vy,u)}

Tnt1 = e, , 20, Vn > 1,

where f(vy,) = %H(I - M)i2)Avn||p, glvn) = A*Jp (I - M;\B;)Avn and suppose that the set ¥ =
{neN:(I- Mf;)Aun # 0}, otherwise z, = v,. Suppose that in addition ({T,}52,,T) satisfy
AKTT-Condition and F(T) = F(T), then the sequence generated by {x,} converges strongly to

x* € Qy, where ¥ = g, x9.

Proof. To this end, it suffices to show that lim |z, — T,| = 0. By following the method of
n—oo

proof in Theorem 3.1, we can show that {z,} is bounded and lim ||z, — T,,|| = 0. Since Jfl is
n— o0
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uniformly continuous on bounded subsets of E7, we have

lm ||J7 (2n) — J2 (Thay)|| = 0.

n—oo

By Proposition 4.2, we see that

17,7 (20) = T (Taa) || < 57 (2n) = T3 (Town) | + 11,7 (Town) = Iy (T |

< | JE (@n) — P (Than) || + sup [[JP(Thx) — JP (Tx)|| — 0 as n — oo.

xe{xn}

Since Jp ' is norm-to-norm uniformly continuous on bounded subsets of Ej,
lim ||z, — Tz,| =0.
n— 00

This completes the proof. (Il

4.1 Equilibrium problem

Let E be a real Banach space and let E* be the dual space of E. Let C be a closed convex subset
of E. Let f be a bifunction from C x C to R, where R is the set of real numbers. The equilibrium
problem is to find:

x* € C such that f(z*,y) >0, Vy € C. (4.3)

The set of solutions of (4.3) is denoted by EP(f). For a given mapping T : C — E*, define
f(z,y) = (Tz,y — x), for all x,y € C. Then, z* € EP(f) if and only if (Ta*,y — 2*) > 0, for all
y € C i.e. is a solution of the variational inequality. Numerous problems in physics, optimization,

and economics reduce to find a solution of (4.3).

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following

conditions:

(A1) f(z,z)=0forall xz € C,
(A2) f is monotone, i.e. f(z,y)+ f(y,z) <0 for all z,y € C,

(A3z) for all z,y,z € C,

limsup f(tz+ (1 —t)z,y) < f(z,v),

t—0

(Ay) for all x € C, f(x,.) is convex and lower semicontinuous.
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Lemma 4.4 ([10]). Let C be a closed conver subset of a smooth, strictly convex, and reflexive
Banach space E, let | be a bifunction from C x C to R satisfying (A1) — (A4), and let r > 0 and
x € E. Then, there exists z € C' such that

1
f(z,y)+;<y—z,J§z—J§x>ZO forall ye C.

Lemma 4.5 ([39]). Let C be a closed convex subset of a smooth, strictly convez, and reflexive
Banach space E, let f be a bifunction from C x C to R satisfying (A1) — (A4), and let v > 0 and
x € E, define a mapping T, : E — C as follows

1
T/ (z) = {z € C’:f(z,y)—&-;(y—z,ng—ng) >0 forall ye C’},
for all x € E. Then, the following hold:

1. T/ is single-valued,

2. TY is a firmly nonexpansive-type mapping [21], i.e., for all v,y € E,

(T2 —Tly, JET e — JET]y) < (Tla — Tly, Jia — Jiy)

5. F(TY) = EP(}),

4. EP(f) is closed and convez.

We consider the following split equilibrium problem, find x* € C' such that

fi(z®,2) >0, VreCl, (4.4)
and y = Az* € @ solves

fQ(y*ay) Z Oa Vy € Qa (45)

with the solution set Qg = {z* € EP(f1) : Az* € EP(f2)}.

Theorem 4.6. Let f1, fo be bifunctions satisfying (A1) —(A4) and assuming Qo NF(T) #£ (). Select

xo, w1 € By and the sequence {x,} is generated by

Up = J%f [ngxn + Gn(ngmn — ngxn,ﬁ]

o =2 [ (8,00 = L) )]

Yn = T [an TG, (2) + (1 = ) J5, T(2)] (4.6)
Cn+1 = {u € Cy: Ap(ynvu) < Ap(vnvu)}

Tp+1 = ch+1xo, Vn Z 1,
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where f(un) = LI(T — TE)AvalP, g(va) = A3, (I — Tf)Avy and {pa} € (0,00) satisfy
lirginfpn(pq — Cyp?™1) > 0 and suppose that the set ¥ = {n € N : (I — Tf2)Av, # 0}, other-

wise z, = v,. Then the sequence generated by {x,} converges strongly to x* = Ilg,np(T)T0o.

5 Numerical example

In this section, we present an example to show the behaviour of the Algorithm 3.1 presented in
this paper and compare its performance with algorithm (1.6) of Cholamjiak et al. [14] and (1.5)
of Bello Cruz et al. [9] by using MATLAB R2016(a). In numerical experiment, we will show that
the sequence generated by Algorithm 3.1 via the self-adaptive technique converges faster than
algorithms defined in (1.5) and (1.6) for different choices of the {p,} and initial values to see the

convergence behaviour of Algorithm 3.1.

Example 1. Let E; = E3 = L(R), where l3(R) := {r =(ri,ra, ... Tiy...), 15 ER: Z | ri |2< oo},

=1

=

[[7ill2 = (Z | 74 |2>  Vre By Let C=Cy:={x € Ey: ||y <1}. Let T : Ey — Ey be defined
i=1
x ) 3z 1
by Tx = 5 Ve € Fy. Let A: E1 — E5 be a mapping defined by Ax = Z,Vm € Fy. Let oy, = o
n
1+n

o and

and 6, =

NPz = (1+MBy) o= %% V€ By

and

My = (1+ XB2) ™y Vy € E,

- _ Y
145X

furthermore, it can be verified that for A1, A2 > 0.

By choosing different p, and initial values with A1 = Ao = 1 for plotting the graphs of error

= |Zny1 — 2n| against number of iterations with stopping criteria |T,41 — T,| < 1072 for the

following cases.

2
271777 y Pn =
3 P

n+1 ’

y Pn =

5 _
737 7pn*n+1

2
3 n+1

5 5 3n
Cm=ao= (522 p.= .
4$1 Zo (72737 );p n+1

Thus we see that sequences generated by our algorithm 3.1 converges to the solution set QN F(T).

The computational result can be found in Table 1 and Figure.1,2.
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Choice Algorithm 3.1 | (1.5) (1.6)
1. No. of Iteration 19 30 41
CPU Time(s) 0.0313 0.0469 | 0.0564
2. No. of Iteration 19 30 41
CPU Time(s) 0.0524 0.0625 | 0.125
3. No. of Iteration 18 27 39
CPU Time(s) 0.1125 0.313 | 0.1250
4. No. of Iteration 19 32 39
CPU Time(s) 0.5938 0.0625 | 0.469
Table 1
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