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ABSTRACT

The purpose of this paper is to propose an algorithm for find-

ing a common element of the set of fixed points of relatively

nonexpansive mapping and the set of solutions of split in-

clusion problem with a way of selecting the stepsize without

prior knowledge of the operator norm in the framework of

Banach spaces. Then, the main result is used to the common

fixed point problems of a family of relatively nonexpansive

mappings and split equilibrium problem. Finally, a numeri-

cal example is provided to illustrate the main result.

RESUMEN

El propósito de este art́ıculo es proponer un algoritmo para

encontrar un elemento común del conjunto de puntos fijos

de aplicaciones relativamente no-expansivas y el conjunto

de soluciones de problemas de inclusión escindidos con una

manera de seleccionar el tamaño del paso sin conocimiento

previo de la norma del operador en el contexto de espacios

de Banach. Luego, el resultado principal se usa para los pro-

blemas de punto fijo común de una familia de aplicaciones

relativamente no expansivas y el problemas del equilibrio es-

cindido. Finalmente, se entrega un ejemplo numérico para

ilustrar el resultado principal.
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1 Introduction

Let H1 and H2 be two Hilbert spaces. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two maximal

monotone operators and A : H1 → H2 be a bounded linear operator. Consider the following split

inclusion problem (SIP) introduced by Moudafi [25] in Hilbert space:

To find x∗ ∈ H1 such that 0 ∈ B1(x
∗) and 0 ∈ B2 (Ax∗). (1.1)

Let the solution set of (1.1) be denoted by Ω. In fact, we know that the SIP is a generalization

of the inclusion problem and the split feasibility problem (SFP). Next, we have some special cases

of SIP (1.1). Let f : H1 → R ∪ {∞} and g : H2 → R ∪ {∞} be proper, lower semicontinuous and

convex functions. If we take B1 = ∂f and B2 = ∂g, where ∂f and ∂g are the sub-differential of f

and g, then the SIP (1.1) becomes the following proximal split feasibility problem:

To find x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.2)

where argmin f = {x ∈ H1 : f(x) ≤ f(y),∀y ∈ H1} and argmin g = {x ∈ H2 : g(x) ≤ g(y),∀y ∈
H2}. In particular, if we take f(x) = 1

2∥M(x) − b∥2 and g(x) = 1
2∥N(x) − c∥2, where M and N

are matrices, and b, c ∈ H1, then the (1.2) becomes the least square problem. This problem has

been intensively studied, especially, in Hilbert spaces; see for instance [26].

Let C and Q be nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2, respec-

tively. If B1 = NC , B2 = NQ, where NC and NQ are the normal cones of C and Q, respectively,

then we have the SFP:

To find x∗ ∈ C such that Ax∗ ∈ Q. (1.3)

This problem was first introduced, in a finite dimensional Hilbert space, by Censor and Elfving

[13] for modeling inverse problems in radiation therapy treatment, which arise from phase retrieval

and in medical image reconstruction, especially intensity modulated therapy [12]. To solve the SIP

(1.1) Byrne et al. [11] proved some weak convergence results in infinite dimensional Hilbert spaces

and proposed the following algorithm for given x1 ∈ H1:

xn+1 = JB1

λ (xn − γA∗(I − JB2

λ )Axn), ∀n ≥ 1, (1.4)

where λ > 0, γ ∈
(
0,

2

∥A∥2

)
and JB1

λ , JB2

λ are metric and resolvent operators of B1 and B2,

respectively. In order to obtain strong convergence, Kazmi and Rizvi [19] proposed the following

algorithm to solve SIP (1.1):
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un = JB1

λ (xn − γA∗(I − JB2

λ )Axn)

xn+1 = αnf(xn) + (1− αn)Tun,∀ n ≥ 1,

where γ ∈
(
0,

2

∥A∥2

)
and {αn} is a sequence in (0, 1) such that lim

n→∞
αn = 0,

∞∑
n=1

αn = ∞.

However, in order to achieve the solution, one has to obtain the operator norm ∥A∥, which is not

easy to calculate in general. To avoid this computation, López et al. [23] find a new way to select

the stepsize as follows:

µn =
ρnf(xn)

∥∇f(xn)∥2
, n ≥ 1,

where PQ is the metric projection of H2 onto Q, ρn ∈ (0, 4), f(xn) = 1
2∥(I − PQ)Axn∥2 and

∇f(xn) = A∗(I − PQ)Axn. This method is a modification of the CQ method and is often called

the self-adaptive method, which permits step-size being selected self adaptively, for more details

see [30, 37].

To solve SIP (1.1) in p-uniformly convex and smooth Banach space, Bello Cruz et al. [9] proposed

the following algorithm, for given x1 ∈ E1 and {αn} ∈ (0, 1):un = Jq
E1

∗

[
Jp
E1

(xn)− tnA
∗JE2

(I − JB2

λ )Axn

]
xn+1 = Jq

E1
∗

[
αnJ

p
E1

(u) + (1− αn)J
p
E1

(JB1

λ (un))
]
.

(1.5)

Very recently, Cholamjiak et al. [14] proposed algorithm for finding common solution of fixed point

problem of relatively nonexpansive mapping to solve SIP (1.1) in p-uniformly convex and smooth

Banach space. An initial guess u1 ∈ E1, let {xn}∞n=1 and {un}∞n=1 be sequences generated by:xn = JB1

λ1

(
Jq
E1

∗(J
p
E1

(un)− λnA
∗Jp

E2
(I − JB2

λ2
)Aun)

)
un+1 = Jq

E1
∗(αnJ

p
E1

(ϵn) + βnJ
p
E1

(xn) + γnJ
p
E1

(Txn)), n ≥ 1,
(1.6)

where JB1

λ1
, JB2

λ2
are metric and resolvent operators. The sequences {αn}, {βn} and {γn} are

sequences in (0, 1) such that αn + βn + γn = 1. For more SIP related articles (see, [3, 6, 16, 28,

34, 36, 38, 42]).

In nonlinear analysis, to work with an algorithm that has a high rate of convergence is more useful,

through adding inertial term in the algorithm. First it was proposed by Polyak [31]. The main

purpose of this method is to make use of previous iterates to update the next iterate. Recently,

many authors have shown interest to study inertial type algorithms, see [2, 4, 17, 37, 40, 41].

Intention of this paper is to propose an algorithm to solve SIP (1.1) and fixed point of relatively
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nonexpansive mapping in p-uniformly convex and uniformly smooth real Banach spaces, without

prior knowledge of operator norm, so that it can be more efficiently implemented. As an applica-

tion, we apply our result to the common fixed point problems of a family of relatively nonexpansive

mappings and split equilibrium problem. A numerical example is given to illustrate the efficiency

of our algorithm, also our results complement and extend many recent and important results in

this direction.

2 Preliminaries

Let E be a real Banach space with dual E∗ and let A : E1 → E2 be a bounded linear operator

and A∗ is adjoint of A. The modulus of convexity δE : [0, 2] → [0, 1] is defined as

δE(ε) = inf

{
1− ∥x+ y∥

2
: ∥x∥ = 1 = ∥y∥, ∥x− y∥ ≥ ε

}
.

E is called uniformly convex if δE(ε) > 0, for ε ∈ (0, 2] and p-uniformly convex if there exist a

Cp > 0 such that δE(ε) ≥ CP ε
p, for any ε ∈ (0, 2]. The modulus of smoothness ρE : [0,∞) → [0,∞)

is defined by

ρE(τ) = sup{∥x+ τy∥+ ∥x− τy∥
2

− 1 : ∥x∥ = ∥y∥ = 1}.

E is called uniformly smooth if lim
τ→0

ρE(τ)

τ
= 0, q−uniformly smooth if there exist Cq > 0 such

that ρE(τ) ≤ Cqτ
q, for any τ > 0. The duality mapping Jp

E : E → 2E
∗
is defined by

Jp
E(x) = {x̄ ∈ E∗ : ⟨x, x̄⟩ = ∥x∥p, ∥x̄∥ = ∥x∥p−1}.

The duality mapping Jp
E is one-to-one and single-valued (see [5, 15]).

The metric projection for a nonempty, closed and convex subset C of Banach space E is given by

PCx = argmin
y∈C

∥x− y∥, x ∈ E.

For a Gâteaux differentiable convex function f : E → R, the Bregman distance with respect to f

is defined as

∆f(x,y) = f(y)− f(x)− ⟨f ′(x), y − x⟩, x, y ∈ E.

Since the duality mapping Jp
E is the derivative of the function fp(x) =

1
p∥x∥

p. Then the Bregman

distance with respect to fp is,

∆p(x, y) =
1

q
∥x∥p − ⟨Jp

Ex, y⟩+
1

p
∥y∥p =

1

q
(∥y∥p − ∥x∥p)− ⟨Jp

Ex− Jp
Ey, x⟩. (2.1)
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We define the Bregman projection as the unique minimizer of the Bregman distance,

ΠCx = argmin
y∈C

∆p(x, y), x ∈ E.

It can also be characterized by a variational inequality,

⟨Jp
E(x)− Jp

E(ΠCx), z −ΠCx⟩ ≤ 0, ∀z ∈ C, (2.2)

also,

∆p(ΠCx, z) ≤ ∆p(x, z)−∆p(x,ΠCx), ∀z ∈ C. (2.3)

In real Hilbert space ΠC = PC , for more detail, see [1, 18]. The function Vp : E∗ × E → [0,+∞)

with fp is defined by

Vp(x̄, x) =
1

q
∥x̄∥q − ⟨x̄, x⟩+ 1

p
∥x∥p, ∀x ∈ E, x̄ ∈ E∗.

Then Vp ≥ 0 and also satisfy following property:

Vp(x̄, x) = ∆p(J
q
E(x̄), x), ∀x ∈ E, x̄ ∈ E∗. (2.4)

Moreover,

Vp(x̄, x) + ⟨ȳ, Jq
E(x̄)− x⟩ ≤ Vp(x̄+ ȳ, x), (2.5)

∀x ∈ E and x̄, ȳ ∈ E∗ (see [29]). Also, Vp is convex in the first variable. Thus, for all z ∈ E,

∆p

(
Jq
E

(
N∑
i=1

tiJ
p
E(xi)

)
, z

)
≤

N∑
i=1

ti∆p(xi, z), (2.6)

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with

N∑
i=1

ti = 1, see [33].

Lemma 2.1 ([27]). Let E be a p-uniformly convex and uniformly smooth real Banach space and let

{xn}, {yn} be bounded sequences in E, then lim
n→∞

∆p(xn, yn) = 0 if and only if lim
n→∞

∥xn − yn∥ = 0.

Lemma 2.2 ([43]). Let x, y ∈ E. If E is q-uniformly smooth, then there is a Cq > 0 so that

∥x− y∥q ≤ ∥x∥q − q⟨y, Jq
E(x)⟩+ Cq∥y∥q.

A point x∗ ∈ C is called an asymptotic fixed point of T if C contains a sequence {xn} which

converges weakly to x∗ and lim
n→∞

∥xn − Txn∥ = 0. Let F̂ (T ) is the set of asymptotic fixed points.

Similarly a point x∗ ∈ C is a strong asymptotic fixed point of T if C contains a sequence {xn}
which converges strongly to x∗ and lim

n→∞
∥xn − Txn∥ = 0. Set of strong asymptotic fixed points of
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T is denoted by F̃ (T ).

Definition 2.3 ([24]). A mapping T from C to C is said to be,

1. Bregman relatively nonexpansive if F (T ) ̸= ∅, F̂ (T ) = F (T ) and

∆p(x
∗, T y) ≤ ∆p(x

∗, y), ∀y ∈ C, x∗ ∈ F (T ).

2. Bregman weakly relatively nonexpansive if F̃ (T ) ̸= ∅, F̃ (T ) = F (T ) and

∆p(x
∗, T y) ≤ ∆p(x

∗, y), ∀y ∈ C, x∗ ∈ F (T ).

For more details, see [32].

Definition 2.4 ([8]). Let E be a p-uniformly convex and uniformly smooth Banach space and C

a nonempty subset of E. A mapping S : C → E is said to be firmly nonexpansive-like if

⟨Jp
E(x− Sx)− Jp

E(y − Sy), Sx− Sy⟩ ≥ 0, ∀x, y ∈ C. (2.7)

If E is a Hilbert space, then S is firmly nonexpansive-like mapping if and only if it is firmly

nonexpansive, i.e. ∥Sx− Sy∥2 ≤ ⟨Sx− Sy, x− y⟩, ∀x, y ∈ C. We recall the following results:

Remark 2.5. Let E be a p-uniformly convex and uniformly smooth Banach space and C a

nonempty closed convex subset of E. Then the metric projection PC is a firmly nonexpansive-

like mapping.

Lemma 2.6 ([8]). Let E be a smooth Banach space, C be a closed and convex nonempty subset

of E and S : C → E a firmly nonexpansive-like mapping then F (S) is closed and convex and

F̂ (S) = F (S).

Let B : E → 2E
∗
be a mapping, the effective domain of B is denoted by D(B), such that

D(B) = {x ∈ E : Bx ̸= ∅}. A multi-valued mapping B is said to be monotone if

⟨u− v, x− y⟩ ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By.

A monotone operator B on E is said to be maximal if its graph is not properly contained in the

graph of any other monotone operator on E.

For λ2 > 0 and x ∈ E2, consider the metric resolvent MB2

λ2
: E2 → D(B2) of B2 defined by

MB2

λ2
(x) = (I + λ2(J

p
E2

)−1B2)
−1(x), ∀x ∈ E2.
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Set of null points of B2 is defined by B2
−1(0) = {z ∈ E2 : 0 ∈ Bz}. Since B2

−1(0) is closed and

convex, then we have

0 ∈ JP
E2

(MB2

λ2
(x)− x) + λ2B2M

B2

λ2
(x).

Next, F (MB2

λ2
) = B−1

2 (0), for λ2 > 0, from [22] we also have,

⟨MB2

λ2
(x)−MB2

λ2
(y), Jp

E2
(x−MB2

λ2
(x))− Jp

E2
(y −MB2

λ2
(y))⟩ ≥ 0,

for all x, y ∈ E2 and if B−1
2 (0) ̸= 0, then

⟨Jp
E2

(x−MB2

λ2
(x))− (MB2

λ2
(x)− z)⟩ ≥ 0,

for all x ∈ E2 and z ∈ B2
−1(0).

The monotonicity of B2 implies that MB2

λ2
is a firmly nonexpansive-like mapping.

Now, we can define a mapping NB1

λ1
: E1 → D(B1) called the relative resolvent of B1 [20], for

λ1 > 0 as

NB1

λ1
= (Jp

E1
+ λ1B1)

−1Jp
E1

(x), ∀x ∈ E1.

Since NB1

λ1
is relatively nonexpansive mapping and F (NB1

λ1
) = B1

−1(0) for λ1 > 0.

Lemma 2.7 ([20]). Let B : E → 2E
∗
be a maximal monotone operator with B−1 ̸= ∅ and let NB

λ

be a resolvent operator of B for λ > 0. Then

∆p(N
B
λ (x), z) + ∆p(N

B
λ (x), x) ≤ ∆p(x, z) for all x ∈ E and z ∈ B−1(0).

Lemma 2.8 ([35]). Let E1, E2 be two p-uniformly convex and uniformly smooth Banach spaces with

duals E∗
1 , E

∗
2 , respectively. Let NB1

λ1
be the resolvent operator associated with maximal monotone

operator B1 for λ1 > 0 and MB2

λ2
be a metric resolvent operator of maximal monotone operator B2

for λ2 > 0. Assume Ω ̸= ∅, λ > 0 and x∗ ∈ E1. Then x∗ is a solution of problem (1.1) if and only

if

x∗ = NB1

λ1
(Jq

E∗
1
(Jp

E1
(x∗)− λA∗Jp

E2
(I −MB2

λ2
)Ax∗)).

3 Main results

We assume the following assumptions for the rest of the paper, let E1, E2 be two p-uniformly convex

and uniformly smooth Banach spaces with duals E∗
1 , E

∗
2 , respectively. Let C = C1 be nonempty

closed and convex subset of E1. Let B1 : E1 → 2E1
∗
and B2 : E2 → 2E2

∗
be maximal monotone

operators such that B−1
1 (0) ̸= 0, B−1

2 (0) ̸= 0. Let NB1

λ1
be the resolvent operator of B1 for λ1 > 0

and MB2

λ2
is the metric resolvent operator of B2 for λ2 > 0. Let T : E1 → E1 be a Bregman
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relatively nonexpansive mapping. Let A : E1 → E2 be a bounded linear operator with its adjoint

A∗ : E∗
2 → E∗

1 and {αn} ∈ (0, 1) such that 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1, θn ∈ (−∞,+∞) and

assuming Ω ∩ F (T ) ̸= ∅.

Algorithm 3.1. Select x0, x1 ∈ E1 and assuming that the sequence xn is generated via the formula

vn = Jq
E∗

1
[Jp

E1
xn + θn(J

p
E1

xn − Jp
E1

xn−1)]

zn = NB1

λ1
[Jq

E∗
1
(Jp

E1
(vn)− ρn

fp−1(vn)

∥g(vn)∥p
g(vn))]

yn = Jq
E∗

1
[αnJ

p
E1

(zn) + (1− αn)J
p
E1

T (zn)]

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(vn, u)}

xn+1 = ΠCn+1
x0,∀n ≥ 1,

(3.1)

where f(vn) = 1
p∥(I − MB2

λ2
)Avn∥p, g(vn) = A∗Jp

E2
(I − MB2

λ2
)Avn and {ρn} ∈ (0,∞) satisfy

lim inf
n→∞

ρn(pq − Cqρ
q−1
n ) > 0. Suppose that the set Ψ = {n ∈ N : (I − MB2

λ2
)Avn ̸= 0}, otherwise

zn = vn.

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges strongly to x∗ = ΠΩ∩F (T )x0.

Proof. We divide the proof into four steps:

Step 1: To show Ω∩F (T ) ⊆ Cn, for all n ≥ 1 and Algorithm 3.1 is well defined. Let Ck is closed

and convex for k ≥ 1. Then

Ck+1 = {u ∈ Ck : ∆p(yn, u) ≤ ∆pvn, u)}

=

{
u ∈ Ck :

∥u∥p

p
+

∥yk∥
q

− ⟨Jp
E1

yk, u⟩ ≤
∥u∥p

p
+

∥vk∥
q

− ⟨Jp
E1

vk, u⟩
}

=
{
u ∈ Ck : ∥yk∥p − ∥vk∥p ≤ q⟨Jp

E1
yk − Jp

E1
vk, u⟩

}
,

which implies Ck+1 is closed. Let u1, u2 ∈ Ck+1 and λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1.

Then

∥yk∥p − ∥vk∥p ≤ q⟨Jp
E1

yk − Jp
E1

vk, u1⟩ and ∥yk∥p − ∥vk∥p ≤ q⟨Jp
E1

yk − Jp
E1

vk, u2⟩.

Combining these two, we get

∥yk∥p − ∥vk∥p ≤ ⟨Jp
E1

yk − Jp
E1

vk, λ1u1 + λ2u2⟩.

By convexity λ1u1 + λ2u2 ∈ Ck. Therefore, λ1u1 + λ2u2 ∈ Ck+1 and Ck+1 is convex. Thus

Cn is convex, ∀n ≥ 1. Let x∗ ∈ Ω ∩ F (T ), then
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∆p(yn, x
∗) = ∆p((1− αn)J

p
E1

zn + αnJ
p
E1

T (zn), x
∗)

≤ (1− αn)∆p(zn, x
∗) + αn∆p(T (zn), x

∗) ≤ ∆p(zn, x
∗). (3.2)

Set wn := Jq
E∗

1
(Jp

E1
(vn) − ρn

fp−1(vn)

∥g(vn)∥p
g(vn)), for all n ≥ 1. From Lemma 2.2 and (2.1), we

have

∆p(zn, x
∗) ≤ ∆p(wn, x

∗)

= ∆p

(
Jq
E∗

1

[
Jp
E1

(vn)− ρn
fp−1(vn)

∥g(vn)∥p
g(vn)

]
, x∗
)

=
1

p
∥x∗∥p + 1

q

∥∥∥∥Jp
E1

(vn)− ρn
fp−1(vn)

∥g(vn)∥p
g(vn)

∥∥∥∥q − ⟨Jp
E1

(vn), x
∗⟩

+ ρn
fp−1(vn)

∥g(vn)∥p
⟨x∗, g(vn)⟩

≤ 1

p
∥x∗∥p + 1

q
∥vn∥p − ρn

fp−1(vn)

∥g(vn)∥p
⟨vn, g(vn)⟩+

Cq

q
ρqn

fp(vn)

∥g(vn)∥p

− ⟨x∗, Jp
E1

vn⟩+ ρn
fp−1(vn)

∥g(vn)∥p
⟨x∗, g(vn)⟩

=
1

p
∥x∗∥p + 1

q
∥vn∥p − ⟨x∗, Jp

E1
vn⟩+ ρn

fp−1(vn)

∥g(vn)∥p
⟨x∗ − vn, g(vn)⟩

+
Cq

q
ρqn

fp(vn)

∥g(vn)∥p

= ∆p(vn, x
∗) + ρn

fp−1(vn)

∥g(vn)∥p
⟨x∗ − vn, g(vn)⟩+

Cq

q
ρqn

fp(vn)

∥g(vn)∥p
. (3.3)

Since g(vn) = A∗Jp
E2

(I −MB2

λ2
)Avn and ⟨Jp

E2
(I −MB2

λ2
)Avn,M

B2

λ2
Avn −Ax∗⟩ ≥ 0, then

⟨g(vn), x∗ − vn⟩ = ⟨A∗Jp
E2

(I −MB2

λ2
)Avn, x

∗ − vn⟩ = ⟨Jp
E2

(I −MB2

λ2
)Avn, Ax∗ −Avn⟩

= ⟨Jp
E2

(I −MB2

λ2
)Avn,M

B2

λ2
Avn −Avn⟩

+ ⟨Jp
E2

(I −MB2

λ2
)Avn, Ax∗ −MB2

λ2
Avn⟩

≤ −∥Avn −MB2

λ2
Avn∥p = −pf(vn). (3.4)

Using (3.3) and (3.4),

∆p(zn, x
∗) ≤ ∆p(vn, x

∗)− ρnp
fp(vn)

∥g(vn)∥p
+

Cq

q
ρqn

fp(vn)

∥g(vn)∥p

= ∆p(vn, x
∗)−

(
ρnp−

Cq

q
ρqn

)
fp(vn)

∥g(vn)∥p
. (3.5)
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Since lim inf
n→∞

ρn(pq − Cqρ
q−1
n ) > 0,

∆p(zn, x
∗) ≤ ∆p(vn, x

∗), n ≥ 1. (3.6)

Step 2: We prove that {xn} is a Cauchy sequence.

Since, {∆p(xn, x0)} is nondecreasing and bounded. So, the limit lim
n→∞

∆p(xn, x0) exists and

from (2.3) we have,

∆p(xn+1, xn) = ∆p(xn+1,ΠCnx0) ≤ ∆p(xn+1, x0)−∆p(ΠCnx0, x0)

= ∆p(xn+1, x0)−∆p(xn, x0), (3.7)

which implies that,

lim
n→∞

∆p(xn+1, xn) = 0. (3.8)

So, it follows from Lemma 2.1 that,

lim
n→∞

∥xn+1 − xn∥ = 0. (3.9)

Since xn = ΠCn
x0 ⊆ Cm and from Lemma 2.1, for some positive integers m,n with m ≤ n,

we have

∆p(xm, xn) = ∆p(xm,ΠCn
x0) ≤ ∆p(xm, x0)−∆p(ΠCn

x0, x0)

≤ ∆p(xm, x0)−∆p(xn, x0). (3.10)

Since lim
n→∞

∆p(xn, x0) exists, it follows from (3.10) that lim
n→∞

∥xn − xm∥ = 0. Therefore,

{xn} is a Cauchy sequence.

Step 3: We prove that lim
n→∞

∥Tzn − zn∥ = 0, lim
n→∞

∥(I −MB2

λ2
)Axn∥ = 0 and lim

n→∞
∥NB1

λ1
vn − vn∥ = 0.

Since vn = Jq
E∗

1
[Jp

E1
xn + θn(J

p
E1

xn − Jp
E1

xn−1)]. Then it follows that,

Jp
E1

vn − Jp
E1

xn = θn(J
p
E1

xn − Jp
E1

xn−1).

By the uniform continuity of Jp
E1

and from (3.9), we have

∥Jp
E1

vn − Jp
E1

xn∥ = ∥θn(Jp
E1

xn − Jp
E1

xn−1)∥ → 0 as n → ∞. (3.11)

Since xn+1 = ΠCn+1
x0 ∈ Cn+1 ⊆ Cn, from the definition of Cn+1, we have

∆p(xn+1, zn) ≤ ∆p(xn+1, vn), (3.12)
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and

∆p(xn+1, yn) ≤ ∆p(xn+1, vn). (3.13)

Hence, it follows from (3.12) and (3.13) that lim
n→∞

∆p(xn+1, zn) = 0 and lim
n→∞

∆p(xn+1, yn) = 0.

By Lemma (2.1), we conclude that

lim
n→∞

∥xn+1 − zn∥ = 0 and lim
n→∞

∥xn+1 − yn∥ = 0, (3.14)

and so,

lim
n→∞

∥yn − zn∥ = 0. (3.15)

From (3.5), we obtain(
ρnp−

Cq

q
ρqn

)
fp(vn)

∥g(vn)∥p
≤ ∆p(vn, x

∗)−∆p(zn, x
∗)

= ⟨Jp
E1

zn − Jp
E1

vn, x
∗ − vn⟩ −∆p(zn, vn)

≤ ⟨Jp
E1

zn − Jp
E1

vn, x
∗ − vn⟩

≤ ∥x∗ − vn∥∥Jp
E1

zn − Jp
E1

vn∥. (3.16)

Since E1 is a p-uniformly convex and p-uniformly smooth real Banach space, thus Jp
E1

is

uniformly norm-to-norm continuous. By lim
n→∞

∥vn − zn∥ = 0, we obtain ∥Jp
E1

zn−Jp
E1

vn∥ → 0.

From (3.16) and the fact that lim inf
n→∞

ρn(pq − Cqρ
q−1
n ) > 0, we have

fp(vn)

∥g(vn)∥p
→ 0 as n → ∞,

implies,

lim
n→∞

∥(I −MB2

λ2
)Avn∥ = 0. (3.17)

Also

∥A∗Jp
E2

(I −MB2

λ2
)Avn∥ ≤ ∥A∥∥(I −MB2

λ2
)Avn∥ → 0, as n → ∞.

Thus

∥A∗Jp
E2

(I −MB2

λ2
)Avn∥ → 0, as n → ∞.

Again from (3.1), we get

∥Jp
E1

Tzn − Jp
E1

zn∥ =
1

1− αn
∥Jp

E1
yn − Jp

E1
zn∥. (3.18)

It follows from (3.15) that

lim
n→∞

∥Jp
E1

Tzn − Jp
E1

zn∥ = 0, (3.19)
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which also implies that

lim
n→∞

∥Tzn − zn∥ = 0. (3.20)

By Lemma (2.7) and (3.16), we have

∆p(zn, wn) = ∆p(N
B1

λ1
wn, wn) ≤ ∆p(wn, x

∗)−∆p(zn, x
∗)

≤ ∆p(vn, x
∗)−∆p(zn, x

∗) → 0 as n → ∞.

Thus, we have

lim
n→∞

∥NB1

λ1
wn − wn∥ = lim

n→∞
∥zn − wn∥ = 0. (3.21)

Step 4: We show that {xn} converges strongly to an element x∗ = ΠΩ∩F (T )x0. Since {xn} is

a Cauchy sequence, there exists x∗ ∈ E1 such that {xn} converges strongly to x∗. Since

zn → x∗ ∈ E1, we also have vn → x∗ ∈ E1. From (3.21), we get x∗ ∈ F (NB1

λ1
) ∈ B−1

1 (0).

From (3.20), lim
n→∞

∥Tzn − zn∥ = 0 and the closeness of T that x∗ = Tx∗ that is, x∗ ∈ F (T ).

Since A is a bounded linear operator, we have that lim
n→∞

∥Axn −Ax∗∥ = 0. By (3.17) we

get lim
n→∞

∥(I −MB2

λ2
)Axn∥ = 0, this implies that Ax∗ ∈ F̂ (MB2

λ2
) and by Lemma 2.6 we have

Ax∗ ∈ F (MB2

λ2
). This means that x∗ ∈ Ω ∩ F (T ).

Let p ∈ Ω ∩ F (T ) ⊆ Cn such that p = ΠΩ∩F (T )x0 and by definition xn = ΠCn
x0, we have

∆p(xn, x0) = ∆p(p, x0). (3.22)

This implies that

∆p(x
∗, x0) ≤ lim

n→∞
∆p(xn, x0) ≤ ∆p(p, x0), (3.23)

hence x∗ = p. Therefore, {xn} converges strongly to x∗ ∈ Ω∩F (T ), where x∗ = ΠΩ∩F (T )x0.

This completes the proof. □

We next present some consequences of our main results. Firstly, if θn = 0, we obtain the following

non-inertial shrinking projection result.

Corollary 3.2. Let Ω ∩ F (T ) ̸= ∅. Select x0, x1 ∈ E1 and the sequence {xn} is generated by



vn = xn

zn = NB1

λ1

(
Jq
E∗

1

(
Jp
E1

(vn)− ρn
fp−1(vn)

∥g(vn)∥p
g(vn)

))
yn = Jq

E∗
1
[αnJ

p
E1

(zn) + (1− αn)J
p
E1

T (zn)]

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(vn, u)}

xn+1 = ΠCn+1
x0, ∀n ≥ 1.

(3.24)
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where f(vn) = 1
p∥(I − MB2

λ2
)Avn∥p, g(vn) = A∗Jp

E2
(I − MB2

λ2
)Avn and {ρn} ∈ (0,∞) satisfy

lim inf
n→∞

ρn(pq − Cqρ
q−1
n ) > 0. Suppose that the set Ψ = {n ∈ N : (I − MB2

λ2
)Avn ̸= 0}, otherwise

zn = vn. Then the sequence {xn} converges strongly to x∗ = ΠΩ∩F (T )x0.

Also, by letting MB2

λ2
be the metric projection mapping onto a closed convex subset Q of E2 in

Algorithm (3.1), i.e. MB2

λ2
= PQ and NB1

λ1
= I, we obtain the following result as a solution to split

feasibility and fixed point problems.

Corollary 3.3. With reference to the data in Algorithm (3.1), let Q be a nonempty closed convex

subset of E2 and MB2

λ2
= PQ. Assuming Γ := {x ∈ C : x ∈ F (T ), Ax ∈ Q} ≠ ∅. Then the sequence

xn generated by Algorithm (3.1) converges strongly to u ∈ Γ, where u = ΠΓx0.

4 A countable family of relatively nonexpansive mappings

In this section, we apply our result to the common fixed point problems of a family of relatively

nonexpansive mappings and equilibrium problem.

Definition 4.1 ([7]). Let C be a subset of a real p-uniformly convex and uniformly smooth Banach

space E. Let {Tn}∞n=1 be a sequence of mappings of C in to E such that
⋂∞

n=1 F (Tn) ̸= ∅. Then

{Tn}∞n=1 is said to satisfy the AKTT -condition if, for any bounded subset B of C,

∞∑
n=1

sup
z∈B

{∥JE
p (Tn+1z)− JE

p (Tnz)∥} < ∞.

As in [36], we prove the following Proposition:

Proposition 4.2. Let C be a nonempty, closed and convex subset of a real p-uniformly convex

and uniformly smooth Banach space E. Let {Tn}∞n=1 be a sequence of mappings of C such that⋂∞
n=1 F (Tn) ̸= ∅ and {Tn}∞n=1 satisfies the AKTT -condition. Then for any bounded subset B of

C there exists a mapping T : B → E such that

Tx = lim
n→∞

Tnx, ∀x ∈ B, (4.1)

and

lim
n→∞

sup
z∈B

∥JE
p (Tz)− JE

p (Tnz)∥ = 0.

Proof. To complete the proof we show that {Tnx} is Cauchy sequence for each x ∈ C. Let ϵ > 0

be given and by the AKKT -condition ∃l0 ∈ N such that,

∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C} < ϵ.
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Let k > l ≥ l0, then

∥Tkx− Tlx∥ ≤ sup{∥Tky − Tly∥ : y ∈ C}

≤ sup{∥Tky − Tk−1y∥ : y ∈ C}+ sup{∥Tk−1y − Tly∥ : y ∈ C}
...

≤
k−1∑
l

sup{∥Tn+1y − Tny∥ : y ∈ C} ≤
∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C} < ϵ.

Therefore we have that {Tnx} is Cauchy sequence. Moreover (3.4) implies that,

∥Tx− Tlx∥ = lim
k→∞

∥Tkx− Tlx∥ ≤
∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C},

for all x ∈ C. So,

sup ∥Tx− Tlx∥ ≤
∞∑
l0

sup{∥Tn+1y − Tny∥ : y ∈ C},

therefore, we conclude that lim
l0→∞

sup ∥Tx− Tl0x∥ = 0. □

In the sequel, we say that ({Tn}, T ) satisfies the AKTT -condition if {Tn}∞n=1 satisfies the AKTT -

condition and T is defined by (4.1) with
⋂∞

n=1 F (Tn) = F (T ).

Theorem 4.3. Let {Tn} be a countable family of Bregman relatively nonexpansive mapping on

E1 such that F (Tn) = F̂ (Tn) and assuming Ω1 =
⋂∞

n=1 F (Tn) ∩Ω ̸= ∅. Select x0, x1 ∈ E1 and the

sequence {xn} is generated by



vn = Jq
E∗

1
[Jp

E1
xn + θn(J

p
E1

xn − Jp
E1

xn−1)]

zn = NB1

λ1

[
Jq
E∗

1

(
Jp
E1

(vn)− ρn
fp−1(vn)

∥g(vn)∥p
g(vn)

)]
yn = Jq

E∗
1
[αnJ

p
E1

(zn) + (1− αn)J
p
E1

Tn(zn)]

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(vn, u)}

xn+1 = ΠCn+1
x0,∀n ≥ 1,

(4.2)

where f(vn) = 1
p∥(I − MB2

λ2
)Avn∥p, g(vn) = A∗Jp

E2
(I − MB2

λ2
)Avn and suppose that the set Ψ =

{n ∈ N : (I − MB2

λ2
)Avn ̸= 0}, otherwise zn = vn. Suppose that in addition ({Tn}∞n=1, T ) satisfy

AKTT-Condition and F (T ) = F̂ (T ), then the sequence generated by {xn} converges strongly to

x∗ ∈ Ω1, where x∗ = ΠΩ1
x0.

Proof. To this end, it suffices to show that lim
n→∞

∥xn − Txn∥ = 0. By following the method of

proof in Theorem 3.1, we can show that {xn} is bounded and lim
n→∞

∥xn − Tnxn∥ = 0. Since JE1
p is
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uniformly continuous on bounded subsets of E1, we have

lim
n→∞

∥JE1
p (xn)− JE1

p (Tnxn)∥ = 0.

By Proposition 4.2, we see that

∥JE1
p (xn)− JE1

p (Txn)∥ ≤ ∥JE1
p (xn)− JE1

p (Tnxn)∥+ ∥JE1
p (Tnxn)− JE1

p (Txn)∥

≤ ∥JE1
p (xn)− JE1

p (Tnxn)∥+ sup
x∈{xn}

∥JE1
p (Tnx)− JE1

p (Tx)∥ → 0 as n → ∞.

Since J
E∗

1
p is norm-to-norm uniformly continuous on bounded subsets of E∗

1 ,

lim
n→∞

∥xn − Txn∥ = 0.

This completes the proof. □

4.1 Equilibrium problem

Let E be a real Banach space and let E∗ be the dual space of E. Let C be a closed convex subset

of E. Let f be a bifunction from C ×C to R, where R is the set of real numbers. The equilibrium

problem is to find:

x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C. (4.3)

The set of solutions of (4.3) is denoted by EP (f). For a given mapping T : C → E∗, define

f(x, y) = ⟨Tx, y − x⟩, for all x, y ∈ C. Then, x∗ ∈ EP (f) if and only if ⟨Tx∗, y − x∗⟩ ≥ 0, for all

y ∈ C i.e. is a solution of the variational inequality. Numerous problems in physics, optimization,

and economics reduce to find a solution of (4.3).

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following

conditions:

(A1) f(x, x) = 0 for all x ∈ C,

(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C,

(A3) for all x, y, z ∈ C,

lim sup
t→0

f(tz + (1− t)x, y) ≤ f(x, y),

(A4) for all x ∈ C, f(x, .) is convex and lower semicontinuous.
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Lemma 4.4 ([10]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive

Banach space E, let f be a bifunction from C × C to R satisfying (A1)− (A4), and let r > 0 and

x ∈ E. Then, there exists z ∈ C such that

f(z, y) +
1

r
⟨y − z, JP

E z − JP
E x⟩ ≥ 0 for all y ∈ C.

Lemma 4.5 ([39]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive

Banach space E, let f be a bifunction from C × C to R satisfying (A1)− (A4), and let r > 0 and

x ∈ E, define a mapping Tr : E → C as follows

T f
r (x) =

{
z ∈ C : f(z, y) +

1

r
⟨y − z, JP

E z − JP
E x⟩ ≥ 0 for all y ∈ C

}
,

for all x ∈ E. Then, the following hold:

1. T f
r is single-valued,

2. T f
r is a firmly nonexpansive-type mapping [21], i.e., for all x, y ∈ E,

⟨T f
r x− T f

r y, J
P
E T f

r x− JP
E T f

r y⟩ ≤ ⟨T f
r x− T f

r y, J
P
E x− JP

E y⟩

3. F (T f
r ) = EP (f),

4. EP (f) is closed and convex.

We consider the following split equilibrium problem, find x∗ ∈ C such that

f1(x
∗, x) ≥ 0, ∀x ∈ C, (4.4)

and y = Ax∗ ∈ Q solves

f2(y
∗, y) ≥ 0, ∀y ∈ Q, (4.5)

with the solution set Ω2 = {x∗ ∈ EP (f1) : Ax∗ ∈ EP (f2)}.

Theorem 4.6. Let f1, f2 be bifunctions satisfying (A1)−(A4) and assuming Ω2∩F (T ) ̸= ∅. Select
x0, x1 ∈ E1 and the sequence {xn} is generated by



vn = Jq
E∗

1
[Jp

E1
xn + θn(J

p
E1

xn − Jp
E1

xn−1)]

zn = T f1
r

[
Jq
E∗

1

(
Jp
E1

(vn)− ρn
fp−1(vn)

∥g(vn)∥p
g(vn)

)]
yn = Jq

E∗
1
[αnJ

p
E1

(zn) + (1− αn)J
p
E1

T (zn)]

Cn+1 = {u ∈ Cn : ∆p(yn, u) ≤ ∆p(vn, u)}

xn+1 = ΠCn+1x0, ∀n ≥ 1,

(4.6)
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where f(vn) = 1
p∥(I − T f2

r )Avn∥p, g(vn) = A∗Jp
E2

(I − T f2
r )Avn and {ρn} ∈ (0,∞) satisfy

lim inf
n→∞

ρn(pq − Cqρ
q−1
n ) > 0 and suppose that the set Ψ = {n ∈ N : (I − T f2

r )Avn ̸= 0}, other-

wise zn = vn. Then the sequence generated by {xn} converges strongly to x∗ = ΠΩ2∩F (T )x0.

5 Numerical example

In this section, we present an example to show the behaviour of the Algorithm 3.1 presented in

this paper and compare its performance with algorithm (1.6) of Cholamjiak et al. [14] and (1.5)

of Bello Cruz et al. [9] by using MATLAB R2016(a). In numerical experiment, we will show that

the sequence generated by Algorithm 3.1 via the self-adaptive technique converges faster than

algorithms defined in (1.5) and (1.6) for different choices of the {ρn} and initial values to see the

convergence behaviour of Algorithm 3.1.

Example 1. Let E1 = E2 = l2(R), where l2(R) :=

{
r = (r1, r2, . . . , ri, . . . ), ri ∈ R :

∞∑
i=1

| ri |2< ∞

}
,

∥ri∥2 =

( ∞∑
i=1

| ri |2
) 1

2

, ∀r ∈ E1. Let C = C1 := {x ∈ E1 : ∥x∥2 ≤ 1}. Let T : E1 → E1 be defined

by Tx =
x

2
, ∀x ∈ E1. Let A : E1 → E2 be a mapping defined by Ax =

3x

4
,∀x ∈ E1. Let αn =

1

2n

and θn =
1 + n

5n
and

NB1

λ1
x = (1 + λ1B1)

−1x =
x

1 + 3λ1
, ∀x ∈ E1

and

MB2

λ2
y = (1 + λ2B2)

−1y =
y

1 + 5λ2
, ∀y ∈ E2,

furthermore, it can be verified that for λ1, λ2 ≥ 0.

By choosing different ρn and initial values with λ1 = λ2 = 1 for plotting the graphs of error

= |xn+1 − xn| against number of iterations with stopping criteria |xn+1 − xn| < 10−3 for the

following cases.

1. x1 = x0 =

(
2, 1,

2

3
, . . .

)
, ρn =

n

n+ 1
.

2. x1 = x0 =

(
5,

5

2
,
5

3
, . . .

)
, ρn =

n

n+ 1
.

3. x1 = x0 =

(
2, 1,

2

3
, . . .

)
, ρn =

3n

n+ 1
.

4. x1 = x0 =

(
5,

5

2
,
5

3
, . . .

)
, ρn =

3n

n+ 1
.

Thus we see that sequences generated by our algorithm 3.1 converges to the solution set Ω∩F (T ).

The computational result can be found in Table 1 and Figure.1,2.
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(a) Choice 1 in Example 1 (b) Choice 2 in Example 1

Figure 1

(a) Choice 3 in Example 1 (b) Choice 4 in Example 1

Figure 2

Choice Algorithm 3.1 (1.5) (1.6)

1. No. of Iteration 19 30 41
CPU Time(s) 0.0313 0.0469 0.0564

2. No. of Iteration 19 30 41
CPU Time(s) 0.0524 0.0625 0.125

3. No. of Iteration 18 27 39
CPU Time(s) 0.1125 0.313 0.1250

4. No. of Iteration 19 32 39
CPU Time(s) 0.5938 0.0625 0.469

Table 1
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