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ABSTRACT

We consider a second order boundary value problem with a

parameter. A new upper bound for positive solutions and
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RESUMEN

Consideramos un problema de valor en la frontera de segundo
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1 Introduction

Fourth order boundary value problems arise from the study of elasticity. They are models for

the deflection or bending of elastic beams (see [15, 16]). Recently, fourth order boundary value

problems for differential equations with parameters have received quite some attention in the

literature. For example, in 2003, Li [5] considered the fourth order boundary value problem

u(4) + βu′′ − αu = f(t, u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where α, β are parameters. For a partial list of some recent papers on boundary value problems

with parameters, we refer the reader to the papers [1, 2, 3, 4, 6, 7, 8, 9, 11, 12].

In 2011, Webb and Zima [10] studied the existence of multiple positive solutions for a class of

fourth order boundary value problems. They also studied in [10] a class of second order boundary

value problems with a parameter, which are closely related to the fourth order ones. One of the

problems that were considered in [10] consists of the equation

u′′(t) + k2u(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1, (1.1)

and the boundary conditions

u(0) = u(1) = 0, (1.2)

where k ∈ (0, π) is a positive constant. It is well-known that second order boundary value problems

are important in their own right. Second order problems arise in a wide variety of mathematical

models and have been studied extensively.

When k ∈ (0, π), the Green function G : [0, 1]× [0, 1] → [0,∞) for the problem (1.1)-(1.2) is given

by (see [10])

G(t, s) =



















sin(kt) sin(k(1 − s))

k sin k
, t ≤ s,

sin(ks) sin(k(1 − t))

k sin k
, s ≤ t.

The problem (1.1)-(1.2) is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)f(s, u(s)) ds, 0 ≤ t ≤ 1. (1.3)

It is easy to see that G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1. Webb and Zima proved a number of results

in [10]. In particular, in the case of k ∈ (π/2, π), they obtained the following upper and lower

estimates for the Green function G(t, s).
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Lemma 1.1 ([10, Lemma 2.1]). If k ∈ (π/2, π), then it holds that

cT (t)ΦT (s) ≤ G(t, s) ≤ ΦT (s), 0 ≤ t, s ≤ 1, (1.4)

where

ΦT (s) =
1

k sin k















sin(ks), s < 1− π/(2k),

sin(ks) sin(k(1− s)), 1− π/(2k) ≤ s ≤ π/(2k),

sin(k(1− s)), s > π/(2k),

and

cT (t) = min {sin(kt), sin(k(1− t))} , 0 ≤ t ≤ 1.

There are different approaches to solutions for boundary value problems. One important way of

finding positive solutions for boundary value problems is to apply fixed point index theorems on

a positive cone. To define a positive cone in a function space (for example, the space C[0, 1]), we

need some a priori upper and lower estimates for positive solutions of the boundary value problem.

Through the years, we have learned that sharper estimates can help define a smaller cone, and,

it is easier to search for the positive solution(s) in a smaller cone than in a larger cone. In other

words, finer upper and lower estimates can help us establish sharper existence and nonexistence

conditions. We refer the reader to the recent papers [14, 15] in which the author used a fixed

point theorem on cones to solve fourth order boundary value problems. In both papers, upper and

lower estimates for positive solutions play a crucial role in finding solutions for the boundary value

problems.

The main purpose of this paper is to further improve the upper estimate in (1.4). Throughout this

paper, we assume that

(H) k ∈ (π/2, π) is a real number, f : [0, 1]× [0,∞) → [0,∞) is a continuous function.

This paper is organized as follows. In Section 2, we establish a new upper estimate for the Green

function G(t, s). In Section 3, we prove an interval estimate for points where a positive solution to

the problem (1.1)-(1.2) can achieve its maximum. In Section 4, we establish a new upper estimate

for positive solutions to the problem (1.1)-(1.2). Here, by a positive solution, we mean a solution

u(t) to the the problem (1.1)-(1.2) such that u(t) > 0 for 0 < t < 1. In Section 5, we present an

example to illustrate that our new upper estimates can help us solve fourth order boundary value

problems.

We remark that some authors like to base their study on estimates for the Green function (like

the authors of [10]), and some other authors choose to base their study on estimates for positive

solutions (like we will do in Section 5 of this paper). Since both types of estimates have applications,

we in this paper will present both types (one type in Section 2, and a second type in Section 4).
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Though the two types are similar in form, usually they do not imply each other. This is a second

reason we choose to present both types of upper estimates in this paper.

2 New upper estimate for G(t, s)

In this section, we will prove a new upper estimate for the Green function G(t, s). Since the

analysis is on G(t, s) only, we will not mention any positive solution u(t) to the problem (1.1)-(1.2)

in this section.

We define the function b : [0, 1] → [0, 1] by

b(t) =



















sin(k(1 − t)), 0 ≤ t ≤ 1− π
2k ,

1, 1− π
2k ≤ t ≤ π

2k ,

sin(kt), π
2k ≤ t ≤ 1.

The function b(t) will be used to give a new upper estimate for the Green function of the problem

(1.1)-(1.2). Also, we define the function τ : [0, 1] → [0, 1] by

τ(t) = min
{ π

2k
,max

{

t, 1−
π

2k

}}

.

In other words,

τ(t) =























1− π
2k , 0 ≤ t ≤ 1− π

2k ,

t, 1− π
2k ≤ t ≤ π

2k ,

π
2k ,

π
2k ≤ t ≤ 1.

With this notation, we can rewrite the function ΦT (s) in Lemma 1.1 into a new form.

Lemma 2.1. We have

ΦT (s) = G(τ(s), s), 0 ≤ s ≤ 1.

Proof. If 0 ≤ s ≤ 1−
π

2k
, we have

τ(s) = 1−
π

2k
.

In this case, we have τ(s) ≥ s, therefore,

G(τ(s), s) =
sin(ks) sin(k(1− τ(s)))

k sin k
=

sin(ks) sin(k · (π/(2k)))

k sin k
=

sin(ks) sin(π/2)

k sin k

=
sin(ks)

k sink
= ΦT (s).

The other two cases — the case where 1−
π

2k
≤ s ≤

π

2k
and the case where

π

2k
≤ s ≤ 1 — can be
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handled in a similar way. The proof of the lemma is now complete. �

As a consequence of Lemma 2.1, we can now rewrite the upper estimate for G(t, s) in Lemma 1.1

as

G(t, s) ≤ G(τ(s), s), 0 ≤ t, s ≤ 1. (2.1)

We will obtain a new upper estimate for G(t, s), which is better than (2.1), in the next several

lemmas.

Lemma 2.2. If (H) holds and 0 ≤ t ≤ s ≤ 1, then G(t, s) ≤ b(t)G(τ(s), s).

Proof. We take six cases to prove the inequality.

Case 1: 0 ≤ t ≤ s ≤ 1− π/(2k). In this case, we have

0 ≤ s− t ≤ 1−
π

2k
,

and, consequently,

0 ≤ k(s− t) ≤ k −
π

2
<

π

2
.

Hence, in this case, we then have

b(t)G(τ(s), s) −G(t, s) =
sin(k − kt) sin(ks)

k sink
−

sin(kt) sin(k(1 − s))

k sin k
=

1

k
sin(k(s− t)) ≥ 0.

Case 2: 0 ≤ t ≤ 1− π/(2k) ≤ s ≤ π/(2k). In this case, we have

0 ≤ kt ≤ k −
π

2
<

π

2
.

It follows that
π

2
≤ k − kt ≤ k < π,

and therefore,

sin(k − kt) ≥ 0, cos(k − kt) ≤ 0. (2.2)

Also, since

k −
π

2
≤ ks ≤

π

2
,

we have
π

2
≤ π − ks ≤

3π

2
− k < π,

sin(ks) = sin(π − ks) ≥ sin

(

3π

2
− k

)

= − cos k. (2.3)
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By using (2.2) and (2.3), we have

b(t)G(τ(s), s) −G(t, s) =
sin(k − ks)

k sink
(sin(k − kt) sin(ks)− sin(kt))

≥
sin(k − ks)

k sink
(− sin(k − kt) cos k − sin(kt))

= −
sin(k − ks)

k sin k
· cos(k − kt) sin k

= −
sin(k − ks)

k
· cos(k − kt) ≥ 0.

Case 3: 0 ≤ t ≤ 1− π/(2k) and π/(2k) ≤ s ≤ 1. In this case, we have

0 ≤ kt ≤ k −
π

2
<

π

2
,

from where it follows that

π

2
≤ k − kt ≤ k < π and

π

2
< π − kt ≤ π.

In summary, we have
π

2
≤ k − kt ≤ π − kt ≤ π,

which implies that

sin(k − kt) ≥ sin(π − kt).

So, in this case, we have

b(t)G(τ(s), s) −G(t, s) =
sin(k − ks)

k sin k
(sin(k − kt)− sin(kt))

=
sin(k − ks)

k sin k
(sin(k − kt)− sin(π − kt)) ≥ 0.

Case 4: 1− π/(2k) ≤ t ≤ s ≤ π/(2k). In this case, we have

0 ≤ kt ≤ ks ≤
π

2

and

b(t)G(τ(s), s) −G(t, s) = G(s, s)−G(t, s) =
sin(k − ks)

k sin k
(sin(ks)− sin(kt)) ≥ 0.

Case 5: 1− π/(2k) ≤ t ≤ π/(2k) and π/(2k) ≤ s ≤ 1. In this case, we have

b(t)G(τ(s), s) −G(t, s) = G(π/(2k), s)−G(t, s) =
sin(k − ks)

k sin k
(1 − sin(kt)) ≥ 0.
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Case 6: π/(2k) ≤ t ≤ s ≤ 1. In this case,

b(t)G(τ(s), s) −G(t, s) = 0.

The proof is now complete. �

Lemma 2.3. If (H) holds and 0 ≤ s ≤ t ≤ 1, then G(t, s) ≤ b(t)G(τ(s), s).

Proof. First, we notice that, for all t, s ∈ [0, 1],

G(t, s) = G(1− t, 1− s), (2.4)

b(t) = b(1− t), (2.5)

τ(t) = τ(1 − t), (2.6)

and

G(τ(1 − s), 1− s) = G(τ(s), s). (2.7)

Now, if 0 ≤ s ≤ t ≤ 1, then 0 ≤ 1− t ≤ 1− s ≤ 1, and, by Lemma 2.2,

G(1 − t, 1− s) ≤ b(1− t)G(τ(1 − s), 1− s). (2.8)

In this case, if we combine (2.8) together with the symmetry properties (2.4), (2.5), (2.6), and

(2.7), we get

G(t, s) ≤ b(t)G(τ(s), s), for 0 ≤ s ≤ t ≤ 1.

The proof of the lemma is now complete. �

If we combine Lemmas 2.2 and 2.3, we get

Theorem 2.4. If (H) holds, then, for all t, s ∈ [0, 1], G(t, s) ≤ b(t)G(τ(s), s).

Since b(t) ≤ 1 for 0 ≤ t ≤ 1, it is clear that Theorem 2.4 improves the upper estimate (2.1) for

G(t, s) in Lemma 1.1.

3 Localization of the maximum

In this section, we shall prove some upper and lower estimates for the point where a solution to

the problem (1.1)-(1.2) achieves its maximum on the interval [0, 1]. In other words, we shall find

a subinterval of [0, 1] which contains the point where the maximum is achieved by a solution.
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Theorem 3.1. Suppose that k ∈ (π/2, π), and suppose that u ∈ C2[0, 1]. If

u′′(t) + k2u(t) ≤ 0 for 0 ≤ t ≤ 1, (3.1)

u(0) = u(1) = 0, and u(t) 6≡ 0 on [0, 1], then u(t) > 0 on (0, 1), and there exists a unique t0 ∈ (0, 1)

such that u(t0) = ‖u‖. Here,

‖u‖ := max
t∈[0,1]

|u(t)|.

Proof. For convenience, we define the auxiliary function

h(t) := −u′′(t)− k2u(t), 0 ≤ t ≤ 1.

Then, by (3.1), we have

u(t) =

∫ 1

0

G(t, s)(−u′′(s)− k2u(s)) ds ≥ 0, 0 ≤ t ≤ 1.

Since u(t) 6≡ 0, we have ‖u‖ > 0. Combining (3.1) and the fact that u(t) ≥ 0, we have

u′′(t) ≤ −k2u(t) ≤ 0, 0 ≤ t ≤ 1.

Since u′′(t) ≤ 0, by Theorem 1.2 of [13], we have

u(t) ≥ min{t, 1− t}‖u‖, 0 ≤ t ≤ 1.

This implies that

u(t) > 0 for 0 < t < 1. (3.2)

Again, by virtue of (3.1), we have

u′′(t) ≤ −k2u(t) < 0, 0 < t < 1.

This implies there exists a unique t0 ∈ (0, 1) such that u(t0) = ‖u‖ > 0. The proof of the theorem

is now complete. �

Theorem 3.2. Suppose that k ∈ (π/2, π), and suppose that u ∈ C2[0, 1] satisfies (3.1), u(0) =

u(1) = 0, and u(t) > 0 on (0, 1). If t0 ∈ (0, 1) is such that u(t0) = ‖u‖, then

1−
π

2k
≤ t0 ≤

π

2k
.

Proof. We define the auxiliary function h(t) the same way as in the proof of Theorem 3.1, that is,
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h(t) = −u′′(t)− k2u(t), 0 ≤ t ≤ 1. It is clear that h ∈ C[0, 1] and h(t) ≥ 0 on [0, 1], and

u(t) =

∫ 1

0

G(t, s)h(s) ds, 0 ≤ t ≤ 1.

Since u(t) 6≡ 0, we have h(t) 6≡ 0 on [0, 1]. Therefore, there exists a subinterval [α, β] ⊂ [0, 1] such

that

h(t) > 0, α ≤ t ≤ β. (3.3)

It is clear that, for 0 ≤ t ≤ 1,

u(t) =

∫ 1

0

G(t, s)h(s) ds =

∫ t

0

sin(ks) sin(k(1− t))

k sin k
h(s) ds+

∫ 1

t

sin(kt) sin(k(1 − s))

k sin k
h(s) ds.

Taking the derivative, we get

u′(t) = −

∫ t

0

sin(ks) cos(k(1− t))

sin k
h(s) ds+

∫ 1

t

cos(kt) sin(k(1− s))

sink
h(s) ds. (3.4)

We note that

sin(ks) > 0 for 0 < s < 1, (3.5)

sin(k(1− s)) > 0 for 0 < s < 1, (3.6)

− cos(k(1− t)) > 0 for 0 < t < 1−
π

2k
, (3.7)

cos(kt) > 0 for 0 < t < 1−
π

2k
. (3.8)

If we apply (3.3), (3.5), (3.6), (3.7), and (3.8) in (3.4), we get

u′(t) > 0, 0 ≤ t < 1−
π

2k
. (3.9)

So, if t0 ∈ (0, 1) is such that u(t0) = ‖u‖, then u′(t0) = 0 and therefore, in view of (3.9), it must

hold that t0 ≥ 1 −
π

2k
. In a similar way, we can show that t0 ≤

π

2k
. The proof of the theorem is

now complete. �

4 Upper estimate for positive solutions

In this section, we shall prove a new upper estimate for positive solutions to the problem (1.1)-

(1.2). Note that this new upper estimate for positive solutions can not be derived directly from

the upper estimate for the Green function G(t, s) that was obtained in Section 2, though these

upper estimates look similar.
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Theorem 4.1. Suppose that k ∈ (π/2, π). If u ∈ C2[0, 1] satisfies (3.1) and u(0) = u(1) = 0, then

u(t) ≤ b(t)‖u‖, 0 ≤ t ≤ 1. (4.1)

Proof. Again, let h(t) = −u′′(t)− k2u(t). It is clear that h(t) ≥ 0 for 0 ≤ t ≤ 1.

If u(t) ≡ 0, then the theorem is trivially true. So, in the rest of the proof, we assume that u(t) 6≡ 0

on [0, 1]. In this case, by Theorem 3.1, we have u(t) > 0 on (0, 1), and there exists a unique

t0 ∈ (0, 1) such that u(t0) = ‖u‖ > 0. By Theorem 3.2, the point t0 satisfies

1−
π

2k
≤ t0 ≤

π

2k
.

Without loss of generality, we assume that u(t0) = ‖u‖ = 1.

We will first show that

u(t) ≤ b(t)‖u‖ = b(t), 0 ≤ t ≤ 1− π/(2k). (4.2)

Assume, to the contrary, that there exists α ∈ (0, 1− π/(2k)) such that

u(α) > b(α) = sin(k − kα).

For easy reference, denote σ = 1− π/(2k). Then, we have 0 < α < σ. Define an auxiliary function

z(t) =
u(t)− sin(k − kt)

sin(kt+ π−k
2 )

, 0 ≤ t ≤ 1.

It is clear that

z(α) > 0, z(σ) ≤ 0, z(1) = 0. (4.3)

It follows that there exists t1 ∈ [α, 1) such that z′(t1) = 0, z(t1) ≤ 0, and

z(t1) ≤ z(t) for all α ≤ t ≤ 1.

Direct calculations show that

z′′(t) + p(t)z′(t) = q(t), (4.4)

where

p(t) =
2k cos(kt+ π−k

2 )

sin(kt+ π−k
2 )

, 0 ≤ t ≤ 1

and

q(t) = −
h(t)

sin(kt+ π−k
2 )

, 0 ≤ t ≤ 1.
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It is clear that p(t) and q(t) are continuous functions defined on [0, 1], and q(t) ≤ 0 for 0 ≤ t ≤ 1.

Define

P (t) = exp

(
∫ t

0

p(s)ds

)

, 0 ≤ t ≤ 1.

Multiplying Equation (4.4) by P (t), we get

(P (t)z′(t))
′
≤ 0, 0 ≤ t ≤ 1.

Since z′(t1) = 0, we have

P (t)z′(t) ≥ 0, 0 ≤ t ≤ t1.

That is, z(t) is non-decreasing on [0, t1]. Since z(t1) ≤ 0 and α < t1, we have z(α) ≤ 0, which

contradicts the first inequality in (4.3). Hence, (4.2) must be true.

In a similar way, we can show that

u(t) ≤ b(t)‖u‖, π/(2k) ≤ t ≤ 1.

And, it is obvious that

u(t) ≤ ‖u‖ = b(t)‖u‖, 1− π/(2k) ≤ t ≤ π/(2k).

The proof of the theorem is now complete. �

Corollary 4.2. Suppose that (H) holds. If u ∈ C2[0, 1] is a positive solution for the problem

(1.1)-(1.2), then u(t) satisfies (4.1).

Proof. If u ∈ C2[0, 1] is a positive solution for the problem (1.1)-(1.2), then u(t) satisfies the

boundary conditions (1.2), and, for 0 ≤ t ≤ 1,

u′′(t) + k2u(t) = −f(t, u(t)) ≤ 0.

That is, u(t) satisfies the inequality (3.1). By Theorem 4.1, u(t) satisfies (4.1). This completes the

proof of the corollary. �

5 Example

We conclude this paper with a concrete example. Consider the fourth order boundary value

problem

u′′′′(t)− ω4u(t) = f(t, u(t)), 0 ≤ t ≤ 1, (5.1)
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u(0) = u′′(0) = u′′(1) = u(1) = 0. (5.2)

Here, the function f : [0, 1]× [0,+∞) → [0,∞) is defined as

f(t, u) = 15max{(1 + 99u)/100, u2}, u ≥ 0. (5.3)

It is clear that this function f(t, u) is actually independent of t and continuous in u. Throughout

the section, we fix ω = 3.

We will adopt the same set of notations as in [10]. In particular, the symbols m,µ1, f
0, f∞, f0,r

are all defined the same way as in [10] (see pages 233, 234 of [10]). Also, the Green’s functions

G0(t, s), GT (t, s), GH(t, s) are defined the same way as in [10] (see equations (2.18), (2.19), and

(2.20) of [10]). Note that the function GT (t, s) of [10] is the same as the function G(t, s) that was

given in Section 1 of this paper. We know from [10] that all three functions GT (t, s), GH(t, s), and

G0(t, s) are non-negative functions.

For this special case (where ω = 3), the following computational results are given in [10, page 235]:

m ≈ 12.8961, µ1 ≈ 16.4091. (5.4)

According to [10], these numerical values can be used together with the following existence result

to solve the fourth order boundary value problem (5.1)-(5.2) for two positive solutions in the case

where µ1 < f0, f∞ ≤ +∞.

Lemma 5.1 ([10, Theorem 2.4, Case (D2)]). If

µ1 < f0 ≤ ∞, f0,r < m for some r > 0 and µ1 < f∞ ≤ ∞,

then the problem (5.1)-(5.2) has at least two positive solutions.

For the function f(t, u) defined in (5.3), it is straightforward to verify that f0 = f∞ = +∞ and,

for each r > 0, f0,r ≥ 15 > m. Therefore, Lemma 5.1 does not apply to the problem (5.1)-(5.2).

On the other hand, by applying the new upper estimate that was obtained in this paper, we are

able to show that the problem (5.1)-(5.2) has two positive solutions. For this purpose, we choose

our function space X = C[0, 1], which is equipped with the supremum norm ‖ ·‖. Define a positive

cone P of X by

P = {u ∈ X | b(t)u(1/2)/cT (1/2) ≥ u(t) ≥ cT (t)‖u‖ for 0 ≤ t ≤ 1}.
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Define the operator T : P → X by

(Tu)(t) =

∫ 1

0

G0(t, s)f(s, u(s)) ds, ∀ t ∈ [0, 1], ∀u ∈ P.

It is clear that T is completely continuous. It is also clear that, in order to show that the problem

(5.1)-(5.2) has two positive solutions, we need only to show that the operator T has two distinct

nonzero fixed points in P . Next, we shall prove that, for this particular cone P , it holds that T

maps P into P . We will need the upper estimate given in Theorem 4.1 in the proof of this fact.

Lemma 5.2. For each u ∈ X such that u(t) ≥ 0 for 0 ≤ t ≤ 1, it holds that Tu ∈ P . In particular,

T (P ) ⊂ P .

Proof. Let z(t) = (Tu)(t) and let h(t) = z′′(t) + ω2z(t) for 0 ≤ t ≤ 1. Then, we have

z′′′′(t)− ω4z(t) = f(t, u(t)), 0 ≤ t ≤ 1,

z(0) = z′′(0) = z′′(1) = z(1) = 0.

It follows that h(0) = h(1) = 0, and

h′′(t)− ω2h(t)− f(t, u(t)) = 0, 0 ≤ t ≤ 1.

Hence,

h(t) =

∫ 1

0

GH(t, s)(−f(s, u(s))) ds ≤ 0, 0 ≤ t ≤ 1.

Since z′′(t) + ω2z(t)− h(t) = 0 and z(0) = z(1) = 0, we have

z′′(t) + ω2z(t) ≤ 0, 0 ≤ t ≤ 1,

z(t) =

∫ 1

0

GT (t, s)(−h(s)) ds ≥ 0, 0 ≤ t ≤ 1.

Note that ω = 3 ∈ (π/2, π). If we apply Theorem 4.1, we get

z(t) ≤ b(t)‖z‖, 0 ≤ t ≤ 1.

For all t1, t2 ∈ [0, 1], by Lemma 1.1, we have

z(t1) =

∫ 1

0

GT (t1, s)(−h(s)) ds ≥

∫ 1

0

cT (t1)ΦT (s)(−h(s)) ds = cT (t1)

∫ 1

0

ΦT (s)(−h(s)) ds

≥ cT (t1)

∫ 1

0

GT (t2, s)(−h(s)) ds = cT (t1)z(t2).
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Since t2 ∈ [0, 1] is arbitrary, we have

z(t1) ≥ cT (t1)‖z‖, 0 ≤ t1 ≤ 1.

In summary, we have, for all 0 ≤ t ≤ 1,

z(t) ≤ b(t)‖z‖ ≤ b(t)z(1/2)/cT (1/2).

The proof of the lemma is now complete. �

Lemma 5.3. For each u ∈ P with ‖u‖ = 1, we have ‖Tu‖ < ‖u‖.

Proof. For each u ∈ P with ‖u‖ = 1, we have Tu ∈ P , and

(GT (1/2))‖Tu‖ ≤ (Tu)(1/2) =

∫ 1

0

G0(1/2, s)f(s, u(s)) ds

=

∫ 1

0

G0(1/2, s)(15 · (1 + 99u(s))/100) ds

≤

∫ 1

0

G0(1/2, s)(15 · (1 + 99b(s)/cT (1/2))/100) ds.

It follows that, for each u ∈ P with ‖u‖ = 1,

‖Tu‖ ≤ (GT (1/2))
−1 · (3/20) ·

∫ 1

0

G0(1/2, s)(1 + 99b(s)/cT (1/2)) ds.

A direct calculation shows that the right hand side of the last inequality is approximately 0.978566.

Thus, we have shown that, for each u ∈ P with ‖u‖ = 1, it holds that

‖Tu‖ < 0.979 < 1 = ‖u‖.

The proof is complete. �

In a similar way, since f0 = f∞ = +∞, we can show that

1. there exists a small positive number α ∈ (0, 1/2) such that, for each u ∈ P with ‖u‖ = α, it

holds that ‖Tu‖ ≥ ‖u‖; and

2. there exists a positive number β ∈ (2,+∞) such that, for each u ∈ P with ‖u‖ = β, it holds

that ‖Tu‖ ≥ ‖u‖.
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Now, by the norm type of the fixed point theorem of cone expansion and contraction (see Theorem

4 of [14]), the operator T has two fixed points u1 and u2 such that

0 < α ≤ ‖u1‖ < 1 < ‖u2‖ ≤ β.

It follows that the problem (5.1)-(5.2) has two positive solutions. Note that we are able to achieve

this because the new upper estimate (in terms of b(t)) from Section 4 can help us define a fine cone

P , which makes the search for positive solution(s) easier.
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