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ABSTRACT

In this note, we prove a fixed point existence theorem for

set-valued functions by extending the usual Banach orbital

condition concept for single valued mappings. As we show,

this result applies to various types of set-valued contractions

existing in the literature.

RESUMEN

En esta nota, demostramos un teorema de existencia de un

punto fijo para funciones a valores en conjuntos extendiendo

el concepto de la condición orbital de Banach usual para fun-

ciones univaluadas. Como mostramos, este resultado aplica

a diversos tipos de contracciones a valores en conjuntos exis-

tentes en la literatura.
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1 Introduction

Several authors, among others, Berinde [1], Berinde and Păcurar [3], Cho [4], Hicks and Rhoades

[8], Kasahara [9] and Kirk and Shahzad [10] studied the existence of fixed points of single and set-

valued operators, by stating conditions on the orbits of these operators. In the current work, we are

interested in investigating the existence of fixed points, for set-valued mappings or correspondences,

by a type of the so called Banach orbital condition. This condition is an adaptation of the usual

one, which we introduce motivated by the work of Hicks and Rhoades in [8].

The main result of this note establishes the existence of fixed points for set-valued mappings

satisfying the mentioned condition. Moreover, we show that this result and variants of it apply to

various multi-valued mappings existing in the literature.

The presentation of this work is subdivided into three sections. Apart of this introduction, in

Section 2, some notations and preliminary definitions are presented. The main result and its

consequences are introduced in Section 3. Finally, Section 4 is devoted to some examples existing

in the literature and satisfying the Banach orbital condition for set-valued mappings.

2 Preliminaries

In the sequel, (X, d) stands for a complete metric space and, for a ∈ X and r > 0, we denote

B(a, r) = {x ∈ X : d(x, a) < r}. A subset A is said to be bounded, whenever there exist a ∈ X

and r > 0 such that A ⊂ B(a, r). We denote by B(X) the family of all bounded sets of X and by

C(X) the family of all nonempty and closed subsets of X . In what follows, CB(X) = C(X)∩B(X)

and B(A, r) =
⋃

a∈A B(a, r), for each A ∈ B(X) and r > 0.

Let T : X → CB(X) be a set-valued mapping, x ∈ X and B be a subset of X . We denote

T (B) =
⋃

y∈B Ty and for each n ∈ N, T n+1x = T (T nx), with T 0x = {x}. The orbit of x under T

is defined as

O(x, T ) =
∞⋃

n=0

T nx.

Let x0 ∈ X . A function G : X → R is said to be (x0, T )-orbitally lower semicontinuous at x∗ ∈ X ,

if for any sequence {xn}n∈N in O(x0, T ) converging to x∗, we have G(x∗) ≤ lim inf G(xn). In the

sequel, GT : X → R stands for the function defined as GT (x) = d(x, Tx) and for ξ : X → X , we

denote Gξ = G{ξ}.

Given a set-valued mapping T : X → CB(X), x0 ∈ X , and k ∈ [0, 1), we say T satisfies the

multivalued Banach orbital (MBO) condition at x0 with constant k, whenever for all x ∈ O(x0, T ),

inf
y∈Tx

d(y, T y) ≤ kd(x, Tx), and that, T satisfies the strong multivalued Banach orbital (SMBO)

condition at x0 with constant k, whenever for all x ∈ O(x0, T ), sup
y∈Tx

d(y, T y) ≤ kd(x, Tx).
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3 Main results

Theorem 3.1. Let T : X → CB(X) be a set-valued mapping satisfying the MBO condition at

x0 ∈ X with constant k. Then, there exist x∗ ∈ X and a sequence {xn}n∈N converging to x∗ such

that, for all n ∈ N, xn+1 ∈ Txn, and the following two conditions hold:

(i) d(xn, T xn) ≤ d(xn, xn+1) ≤ knd(x0, T x0) and

(ii) d(x∗, T xn) ≤ {kn+1/(1− k)}d(x0, T x0), for all n ∈ N.

Moreover, the following conditions are equivalent:

(iii) x∗ ∈ Tx∗

(iv) GT is (x0, T )-orbitally lower semicontinuous at x∗, and

(v) the function h : X → R, defined by h(x) = d(x, Tx), is lower semicontinuous at x∗.

Proof. Let ρ ∈ (k, 1). If d(x0, T x0) = 0, we define xn = x0, for all n ≥ 1. Otherwise, from

assumption, there exists x1 ∈ Tx0 such that d(x1, T x1) < ρd(x0, T x0). If d(x1, T x1) = 0, we define

xn = x1, for all n ≥ 2. Otherwise, there exists x2 ∈ Tx1 such that d(x2, T x2) < ρd(x1, T x1) <

ρ2d(x0, T x0). It follows by induction that there exists a sequence {xn}n∈N in X such that, for all

n ∈ N, d(xn, T xn) ≤ d(xn, xn+1) ≤ ρnd(x0, T x0) and xn+1 ∈ Txn. Hence, condition (i) holds.

For all n ∈ N and m ≥ 1, we have

d(xn, xn+m) ≤
m−1∑

k=0

d(xn+k, xn+k+1) ≤
m−1∑

k=0

ρn+kd(x0, T x0) = ρn
m−1∑

k=0

ρkd(x0, T x0)

≤ ρn
m−1∑

k=0

ρkd(x0, T x0).

Hence, d(xn, xn+m) ≤ {ρn/(1 − ρ)}d(x0, T x0). In particular, {xn}n∈N is a Cauchy sequence and

consequently there exists x∗ ∈ X such that {xn}n∈N converges to x∗. By taking limit, as m → ∞,

in the last inequality, we have

d(x∗, T xn−1) ≤ d(x∗, xn) ≤ {ρn/(1− ρ)}d(x0, T x0), for all n ≥ 1,

and consequently condition (ii) holds.

Suppose x∗ ∈ Tx∗. Since GT (x
∗) = 0, it is clear that GT is (x, T )-orbitally lower semicontinuous

at x∗, for all x ∈ X . This proves that condition (iii) implies condition (iv). Next, conditions

(iv) and (v) are equivalent, by the first axiom of countability. Finally, by assuming the lower
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semicontinuity of h, we have d(x∗, T x∗) = h(x∗) ≤ lim inf h(xn) = 0, by condition (i). Since Tx∗

is closed, this proves that condition (v) implies condition (iii) and the proof is complete. �

Remark 3.2. Any lower semicontinuity set-valued mapping, T : X → CB(X), satisfying assump-

tions of Theorem 3.1, also satisfies the equivalent conditions (iii)−(v). Indeed, let h be the function

defined in condition (v) and a > 0. Hence, {x ∈ X : h(x) < a} = {x ∈ X : Tx ∩ B(x, a) 6= ∅}.

That is, h is upper semicontinuous.

Given x0 ∈ X and a single valued function, f : X → X , we denote O(x0, f) = O(x0, {f}). As

usual, {fn}n∈N denotes the sequence of functions defined recursively as f0 the identity function

and fn+1 = f ◦ fn, for all n ∈ N. The following corollary is an equivalent version of the main

result of Hicks and Rhoades in [8].

Corollary 3.3. Let ξ : X → X be a function and k ∈ [0, 1). Suppose there exists x0 ∈ X such

that, for all x ∈ O(x0, ξ), d(ξ(x), ξ
2(x)) ≤ kd(x, ξ(x)). Then, there exists x∗ ∈ X such that the

following two conditions hold:

(i) lim
n→∞

d(x∗, ξn(x0)) = 0 and

(ii) d(x∗, ξn(x0)) ≤ {kn/(1− k)}d(x0, ξ(x0)), for all n ∈ N.

Moreover, x∗ = ξ(x∗), if and only if, the function x ∈ X 7→ d(x, ξ(x)) ∈ R is (x0, ξ)-orbitally lower

semicontinuous at x∗.

Proof. By Theorem 3.1, there exist x∗
k ∈ X and a sequence {xn}n∈N converging to x∗

k such that

xn+1 = ξ(xn) = ξn(x0). Since the sequence {xn}n∈N only depends on x0 and not on k, neither

does x∗
k depend on k. Therefore, conditions (i) and (ii) follow from Theorem 3.1 and the proof is

complete. �

A set-valued mapping T : X → CB(X) is said to be Hausdorff upper semicontinuous, if for each

x ∈ X and ǫ > 0, there exists a neighborhood U of x such that Ty ⊂ B(Tx, ǫ), for all y ∈ U . This

concept is weaker that the upper semicontinuity ot T . However, as we see below, it contributes to

obtaining orbital lower semicontinuity for T .

Theorem 3.4. Let T : X → CB(X) be a Hausdorff upper semicontinuous set-valued mapping and

suppose T satisfies the MBO condition at x0 ∈ X with constant k. Then, there exists x∗ ∈ X such

that x∗ ∈ Tx∗.

Proof. By Theorem 3.1, there exist x∗ ∈ X and a sequence {xn}n∈N in O(x0, T ), converging to x∗

such that, for all n ∈ N, xn+1 ∈ Txn. Let ǫ > 0. From assumption, there exists a neighborhood U



CUBO
25, 1 (2023)

Fixed points of set-valued mappings satisfying... 155

of x∗ such that Tx ⊂ B(Tx∗, ǫ), for all x ∈ U . Let N ∈ N such that xn ∈ U , for all n ≥ N . Hence

Txn ⊂ B(Tx∗, ǫ), which implies that sup
y∈Txn

d(y, Tx∗) ≤ ǫ, for all n ≥ N . We have

d(x∗, T x∗) ≤ d(x∗, xn+1) + d(xn+1, T x
∗) ≤ d(x∗, xn+1) + ǫ, for all n ≥ N.

By taking inf-limit in n and considering that ǫ > 0 is arbitrary, we obtain d(x∗, T x∗) = 0. Since

Tx∗ is closed, we have x∗ ∈ Tx∗, which completes the proof. �

We denote by H the Pompeiu-Hausdorff metric (see [3]) associate to d, i.e., H : CB(X)×CB(X) →

R is defined as

H(U, V ) = inf {ǫ > 0 : U ⊂ B(V, ǫ) and V ⊂ B(U, ǫ)} .

Corollary 3.5. Let T : X → CB(X) be a continuous set-valued mapping with respect to the

Pompeiu-Hausdorff metric, i.e. lim
n→∞

H(Txn, T x) = 0, for all sequence, {xn}n∈N, in X converging

to x ∈ X. Suppose T satisfies the MBO condition at x0 ∈ X with constant k. Then, there exist

x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. It is a consequence of Theorem 3.4, and the Pompeiu-Hausdorff continuity of T implies its

Hausdorff upper semicontinuity. �

Remark 3.6. Let T : X → CB(X) be a set-valued mapping, x0 ∈ X and k ∈ [0, 1). Notice that,

a sufficient condition to T satisfies the MBO condition is d(y, T y) ≤ kd(x, y), for all x ∈ O(x0, T )

and y ∈ Tx, and a sufficient condition to T satisfies the SMBO condition is d(y, T y) ≤ kd(x, Tx),

for all y ∈ Tx.

4 Some examples

In this section, we introduce some special types of set-valued mappings, which satisfy the MBO

condition.

1. (Nadler contraction [6, 11]) A set-valued mapping T : X → CB(X) is a Nadler contraction,

if for all x, y ∈ X , H(Tx, T y) ≤ kd(x, y), for some k ∈ [0, 1). Let x ∈ X and y ∈ Tx. Hence,

d(y, T y) ≤ sup
z∈Tx

d(z, T y) ≤ H(Tx, T y) ≤ kd(x, y),

and consequently T satisfies the MBO condition. In this case, there exists x∗ ∈ X such that

x∗ ∈ Tx∗, by Corollary 3.5.

2. (Kannan contraction [12]) A set-valued mapping T : X → CB(X) satisfies the Kannan

contraction, if and only if, there exists k ∈ [0, 1/2) such that H(Tx, T y) ≤ k(d(x, Tx) +
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d(y, T y)), for all x, y ∈ X . Let k ∈ [0, 1/2) such that H(Tx, T y) ≤ k(d(x, Tx) + d(y, T y)),

for all x, y ∈ X . We have

d(y, T y) ≤ H(Tx, T y) ≤ k(d(x, Tx) + d(y, T y)),

and hence, (1− k)d(y, T y) ≤ kd(x, Tx). Accordingly,

d(y, T y) ≤ {k/(1− k)}d(x, Tx), for all x ∈ X and y ∈ Tx.

Since k/(1− k) ∈ [0, 1), we have T satisfies the SMBO condition with constant k/(1− k).

3. (Kannan generalized contraction [7, 12]) A set-valued mapping T : X → CB(X) satisfies the

generalized Kannan contraction, if and only if, there exists k ∈ [0, 1) such that H(Tx, T y) ≤

kmax{d(x, Tx), d(y, T y)}, for all x, y ∈ X . In this case, if for some y ∈ Tx, d(x, Tx) ≤

d(y, T y), then d(y, T y) = 0, otherwise d(y, T y) ≤ kd(x, Tx), for all y ∈ Tx. Consequently, T

satisfies the SMBO condition with constant k.

4. (Chatterjea contraction [13]) A set-valued mapping T : X → CB(X) satisfies the Chatterjea

contraction, if there exists k ∈ [0, 1/2) such that for all x, y ∈ X , H(Tx, T y) ≤ k(d(x, T y) +

d(y, Tx)). Let x ∈ X and y ∈ Tx. Hence,

d(y, T y) ≤ H(Tx, T y) ≤ k(d(x, T y) + d(y, Tx)) = kd(x, T y).

This fact along with the inequality d(x, T y) ≤ d(x, y) + d(y, T y) implies that

d(y, T y) ≤ {k/(1− k)}d(x, y), for all x ∈ X and y ∈ Tx.

Consequently, T satisfies the multivalued Banach orbital condition with constant k/(1−k) ∈

[0, 1).

5. (Chatterjea generalized contraction) A set-valued mapping T : X → CB(X) satisfies the

generalized Chatterjea contraction, if there exists k ∈ [0, 1/2) such that, for all x, y ∈ X ,

H(Tx, T y) ≤ kmax{d(x, T y), d(y, Tx)}. Let x ∈ X and y ∈ Tx. Hence,

d(y, T y) ≤ H(Tx, T y) ≤ kd(x, T y),

and accordingly, T satisfies the SMBO condition with constant k/(1− k) ∈ [0, 1).

6. (Berinde contraction [2]) A set-valued mapping T : X → CB(X) satisfies the Berinde con-

traction if there exist k ∈ [0, 1) and L ≥ 0 such that, for all x, y ∈ X , H(Tx, T y) ≤
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kd(x, y) + Ld(y, Tx). Let x ∈ X and y ∈ Tx. We have

H(Tx, T y) ≤ kd(x, y) + L(y, Tx) = kd(x, y), for all x ∈ X and y ∈ Tx,

and since y ∈ Tx, we obtain d(y, T y) ≤ kd(x, y) and hence T satisfy the MBO condition

with constant k.

7. (Ciric-Reich-Rus contraction [2]) A set-valued mapping T : X → CB(X) is said to verify the

Ciric-Reich-Rus contraction if and only if, there exists α, β, γ ∈ [0, 1] such that α + β + γ ∈

[0, 1) and, for all x, y ∈ X , H(Tx, T y) ≤ αd(x, y)+βd(x, Tx)+γd(y, T y). Let x ∈ X , y ∈ Tx.

We will prove that any Ciric-Reich-Rus contraction is a Berinde contraction. Let x, y ∈ X .

As we observed previously, we have the inequality

d(y, T y) ≤ d(y, z) + (z, T y),

for all z ∈ Tx. Replacing this, and by the fact d(x, Tx) ≤ d(x, z), we have

H(Tx, T y) ≤ αd(x, y) + βd(x, z) + γd(y, T y))

≤ αd(x, y) + β(d(x, y) + d(y, z)) + γ(d(y, z) + d(z, T y))

= (α + β)d(x, y) + (β + γ)d(y, z) + γd(z, T y)

≤ (α + β)d(x, y) + (β + γ)d(y, z) + γH(Tx, T y).

Hence,

H(Tx, T y) ≤ ({α+β)/(1−γ)}d(x, y)+{(β+γ)/(1−γ)}d(y, Tx), for all x ∈ X and y ∈ Tx,

and since α+β+γ < 1, it follows that (α+β)/(1−γ) < 1 and (β+γ)/(1−γ) ≥ 0. Therefore,

T is a Berinde contraction, and accordingly T satisfies the MBO condition.

8. (Ciric contraction [5]) A set-valued mapping T : X → CB(X) satisfies the Ciric contraction,

if there exist α ∈ [0, 1/2) such that for all x, y ∈ X ,

H(Tx, T y) ≤ α max{d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}.

We have T satisfies the multivalued Banach orbital condition. Indeed, let x ∈ X and y ∈ Tx.

Hence, for some α ∈ [0, 1/2), we have

H(Tx, T y) ≤ α max{d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)},
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but, since y ∈ Tx and d(x, Tx) ≤ d(x, y), we obtain

H(Tx, T y) ≤ α max{d(x, y), d(y, T y), d(x, T y)} ≤ k(d(x, y) + d(y, T y)).

Consequently,

d(y, T y) ≤ {k/(1− k)}d(x, y), for all x ∈ X and y ∈ Tx,

and therefore, T satisfies the MBO condition.

9. We introduce a new type of contraction, which satisfies the SMBO condition. Indeed, let

T : X → CB(X) be given as follows:

H(Tx, T y) ≤ α(d(x, T y) + d(y, T y)), for all x, y ∈ X,

where α ∈ [0, 1). Observe that, for all y ∈ Tx and x ∈ X , we have d(y, T y) ≤ αd(x, Tx).

Consequently, T satisfies the SMBO condition with constant α.

It is worth noting that the existence of a fixed point for contractions (1)-(6) was proved in [2].

Remark 4.1. Although the nine contraction set-valued mappings in this section satisfy the MBO

condition, only the Nadler contraction has a fixed point without additional assumptions. The

MBO condition for the other contractions is insufficient to have a fixed point.
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