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ABSTRACT

The present paper is dedicated to the study of a first-order
differential inclusion driven by time and state-dependent
maximal monotone operators with integral perturbation, in
the context of Hilbert spaces. Based on a fixed point method,
we derive a new existence theorem for this class of differential
inclusions. Then, we investigate an optimal control problem
subject to such a class, by considering control maps acting
in the state of the operators and the integral perturbation.

RESUMEN

El presente artículo está dedicado al estudio de una in-
clusión diferencial de primer orden impulsada por operadores
monótonos maximales dependiendo del tiempo y del estado
con una perturbación integral, en el contexto de espacios de
Hilbert. En base a un método de punto fijo, derivamos un
nuevo teorema de existencia para esta clase de inclusiones
diferenciales. A continuación investigamos un problema de
control óptimo sujeto a dicha clase, considerando funciones
de control actuando en el estado de los operadores y de la
perturbación integral.

Keywords and Phrases: Integro-differential inclusion, maximal monotone operator, integral perturbation, opti-

mal solution.

2020 AMS Mathematics Subject Classification: 34A60, 34G25, 47H10, 47J35, 49J52, 49J53, 45J05.

Published: 09 April, 2024

Accepted: 31 January, 2024

Received: 28 March, 2023

©2024 F. Fennour et al. This open access article is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2601.123
https://orcid.org/0009-0003-4004-7305
https://orcid.org/0000-0002-4242-8940
mailto:fennourfatima38@gmail.com
mailto:soumiasaidi44@gmail.com


124 F. Fennour & S. Saïdi CUBO
26, 1 (2024)

1 Introduction

Sweeping processes with integral forcing term or integro-differential sweeping processes have been

introduced in [8]. Later, the well-posedness result to the non-convex integro-differential sweeping

process has been shown in [20]. Recent investigations on this topic have been developed in [5–7].

More recently, differential inclusions with integral perturbation involving m-accretive operators

or subdifferentials or time-dependent maximal monotone operators have been studied in [4, 13,

14]. The aforementioned contributions find many areas of applications such as electrical circuits,

nonlinear integro-differential complementarity systems, optimal control, fractional systems, etc.

We are concerned, in this paper, with the following Integro-Differential Problem with time and

state-dependent maximal monotone operators A(t, u)

(IDPA(t,u))

 −u̇(t) ∈ A(t, u(t))u(t) +

∫ t

T0

f(t, s, u(s))ds a.e. t ∈ I := [T0, T ],

u(T0) = u0 ∈ D(A(T0, u0)),

where H stands for a real Hilbert space, A(t, x) : D(A(t, x)) ⊂ H ⇒ H is a maximal monotone

operator whose domain is denoted D(A(t, x)), for each (t, x) ∈ I ×H, and f : I × I ×H → H is a

single-valued map.

Our problem generalizes the Integro-Differential Problem with time-dependent maximal monotone

operators A(t)

(IDPA(t))

 −u̇(t) ∈ A(t)u(t) +

∫ t

T0

f(t, s, u(s))ds a.e. t ∈ I,

u(T0) = u0 ∈ D(A(T0)),

stated in [14]. So, we aim to study a more general case, that is, when the operator depends on

both time and state variables.

Note that the evolution problem when a single-valued map f(·, ·) instead of the integral perturba-

tion in (IDPA(t,u)) has been discussed in [1, 28, 34]. Here, we use Schauder’s fixed point theorem

(see also [1]) to establish our main existence result. For this purpose, we make use of the uniqueness

of the solution to (IDPA(t)) and an estimate of the velocity. However, the papers [28, 34] have

followed a discretization method.

In the next part of the paper, we deal with the Optimal Control Problem

(OCP) minϕ[u, a, b] = ϕ1(u(T )) +

∫ T

0

ϕ2(t, u(t), a(t), b(t), u̇(t), ȧ(t), ḃ(t))dt,

on the set of control maps (a(·), b(·)) and the associated solutions u(·) of the Controlled Problem
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(CPa,b)



−u̇(t) ∈ A(t, a(t))u(t) +

∫ t

0

f(t, s, b(s), u(s))ds a.e. t ∈ [0, T ],

u(t) ∈ D(A(t, a(t))), t ∈ [0, T ],

(a(·), b(·)) ∈ W 1,2([0, T ],Rn+m),

a(0) = a0, u(0) = u0 ∈ D(A(0, a0)),

where the cost functional ϕ1 : Rn → R and the running cost ϕ2 : [0, T ] × R4n+2m → R satisfy

convenient conditions.

This investigation is inspired by the related one on the controlled integro-sweeping process in

[5], see also [10–12, 17–19, 21–23, 29–32, 37], among others, for further contributions on optimiza-

tion problems subject to controlled sweeping processes or control problems governed by maximal

monotone operators.

Let us give the two following motivating examples: the first-one consists of minimizing a Bolza-type

functional subject to the controlled differential inclusion of the form

(CPx,a,b) − u̇(t) ∈ NC(x(t))(u(t)) + f1(a(t), u(t)) +

∫ t

0

f2(b(s), u(s))ds a.e. t ∈ [0, T ],

where A(t, x(t)) = NC(x(t)) is the normal cone of a moving set C(x(t)), (x(·), a(·), b(·)) are controls

acting in the moving sets, additive perturbations, and the integral part of the sweeping dynam-

ics (see [5]). The second example concerns an optimization problem subject to the controlled

differential inclusion described by

(CPx,a) − u̇(t) ∈ NC(t)(u(t)) + f(a(t), u(t)) a.e. t ∈ [0, T ],

where C(t) = C + x(t) and (x(·), a(·)) are control maps (see [12]).

The considered problem (OCP) is new, since we minimize over the solution set to the controlled

integro-differential inclusion (CPa,b), where the controls act in both the state of the (time and

state-dependent) operator and the integral perturbation. To the best of our knowledge, this topic

is new in the scientific literature.

The rest of the paper is organized as follows. After recalling some preliminaries in Section 2, we

handle (IDPA(t)). Then, we develop the case (IDPA(t,u)). Section 4 applies the obtained results

to show the well-posedness of (CPa,b) and establishes the existence of optimal solutions to (OCP).
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2 Notation and preliminaries

Let I := [T0, T ] be an interval of R and let H be a real separable Hilbert space whose inner product

is denoted ⟨·, ·⟩ and the associated norm by ∥ · ∥. Denote by BH the closed unit ball of H and

BH [x, r] its closed ball of center x ∈ H and radius r > 0.

On the space CH(I) of continuous maps x : I → H, we consider the norm of uniform convergence

on I, ∥x∥∞ = sup
t∈I

∥x(t)∥.

By Lp
H(I), for p ∈ [1,+∞[ (resp. p = +∞), we denote the space of measurable maps x : I → H

such that
∫
I
∥x(t)∥pdt < +∞ (resp. which are essentially bounded) endowed with the usual norm

∥x∥Lp
H(I) = (

∫
I
∥x(t)∥pdt)

1
p , 1 ≤ p < +∞ (resp. endowed with the usual essential supremum norm

∥ · ∥L∞
H (I)). Denote by W 1,2(I,H), the space of absolutely continuous functions from I to H with

derivatives in L2
H(I).

Recall the definition and some properties of maximal monotone operators, see [3, 9, 36].

Let A : D(A) ⊂ H ⇒ H be a set-valued operator whose domain, range and graph are defined by

D(A) = {x ∈ H : Ax ̸= ∅},

R(A) = {y ∈ H : ∃x ∈ D(A), y ∈ Ax} = ∪{Ax : x ∈ D(A)},

Gr(A) = {(x, y) ∈ H ×H : x ∈ D(A), y ∈ Ax}.

The operator A : D(A) ⊂ H ⇒ H is monotone, if ⟨y1−y2, x1−x2⟩ ≥ 0 whenever (xi, yi) ∈ Gr(A),

i = 1, 2. It is maximal monotone, if its graph could not be contained strictly in the graph of

any other monotone operator, in this case, for all µ > 0, R(IH + µA) = H, where IH stands for

the identity map of H. If A is a maximal monotone operator then, for every x ∈ D(A), Ax is

non-empty, closed and convex. Then, the projection of the origin onto Ax, A0(x), exists and is

unique.

Associated with any maximal monotone operator A is the so-called resolvent JA
µ = (IH + µA)

−1,

µ > 0, which turns out to be a nice firmly non-expansive operator with full domain. Resolvents not

only provide an alternative view on monotone operators because one can recover the underlying

maximal monotone operator via (JA
µ )

−1 − IH but they also are crucial for the formulation of

algorithms for finding zeros of A (e.g., the celebrated proximal point algorithm).

Recall that the Yosida approximation of A of index µ > 0 is defined by Aµ = 1
µ

(
IH − JA

µ

)
.

Yosida approximations are powerful tools to study monotone operators. They can be viewed

as regularizations and approximations of A because Aµ is a single-valued Lipschitz-continuous

operator on H and Aµ approximates A in the sense that Aµx → A0(x) ∈ Ax as µ → 0+.
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Let us summarize the following properties of these operators:

JA
µ x ∈ D(A) and Aµ(x) ∈ A(JA

µ x) for every x ∈ H, (2.1)

∥Aµ(x)∥ ≤ ∥A0(x)∥ for every x ∈ D(A).

The normal cone to a non-empty closed convex set S at x ∈ H denoted NS(x) defined by

NS(x) = {y ∈ H : ⟨y, z − x⟩ ≤ 0 ∀z ∈ S}, (2.2)

is a maximal monotone operator.

Let A : D(A) ⊂ H ⇒ H and B : D(B) ⊂ H ⇒ H be two maximal monotone operators, then, we

denote by dis (A,B) (see [35]) the pseudo-distance between A and B defined by

dis (A,B) = sup

{
⟨y − y′, x′ − x⟩
1 + ∥y∥+ ∥y′∥

: (x, y) ∈ Gr(A), (x′, y′) ∈ Gr(B)

}
.

Clearly, dis (A,B) ∈ [0,+∞], dis (A,B) = dis (B,A) and dis (A,B) = 0 iff A = B.

Let us first recall some useful lemmas that will be used in what follows (see [27]).

The first one permits to prove some inclusions using a convergence in the sense of the pseudo-

distance.

Lemma 2.1. Let An (n ∈ N), A be maximal monotone operators of H such that dis (An, A) → 0.

Suppose also that xn ∈ D(An) with xn → x and yn ∈ A(xn) with yn → y weakly for some x, y ∈ H.

Then, x ∈ D(A) and y ∈ A(x).

The next lemma deals with some modes of convergence in the sense of the pseudo-distance and

the element of minimal norm.

Lemma 2.2. Let An (n ∈ N), A be maximal monotone operators of H such that dis (An, A) → 0

and ∥A0
n(x)∥ ≤ c(1 + ∥x∥) for some c > 0, all n ∈ N and x ∈ D(An). Then, for every ζ ∈ D(A),

there exists a sequence (ζn) such that

ζn ∈ D(An), ζn → ζ and A0
n(ζn) → A0(ζ).

Another approach on how to prove some inclusions using an estimate involving the element of

minimal norm is provided by the following lemma.

Lemma 2.3. Let A be a maximal monotone operator. If x, y ∈ H are such that

⟨A0(z)− y, z − x⟩ ≥ 0 ∀z ∈ D(A),
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then, x ∈ D(A) and y ∈ A(x).

In the last lemma, we provide an estimate by means of the pseudo-distance, the element of minimal

norm, and the resolvent.

Lemma 2.4. Let A, B be maximal monotone operators of H. Then, for µ > 0 and x ∈ D(A) one

has

∥x− JB
µ (x)∥ ≤ µ∥A0(x)∥+ dis (A,B) +

√
µ
(
1 + ∥A0(x)∥

)
dis (A,B).

Recall the classical definition of Komlós convergence (see [16, p. 128]).

Definition 2.5. A sequence (un) in L1
H(I) Komlós converges to a function u ∈ L1

H(I) if for any

subsequence (vn) of (un), one has

lim
n→∞

1

n

n∑
j=1

vj(t) = u(t) a.e.

We also need the following theorem about the relationship between Komlós convergence and

bounded sequences in L1
H(I) (see [25, Theorem 3.1]).

Proposition 2.6. Let (un) be a bounded sequence in L1
H(I). Then, there exists a subsequence

(vn) of (un) and u ∈ L1
H(I) such that

lim
n→∞

1

n

n∑
j=1

wj(t) = u(t) a.e.

for any subsequence (wn) of (vn).

Let us recall the Schauder’s fixed point theorem (see [24]).

Theorem 2.7. Let C be a non-empty closed bounded convex subset of a Banach space E and let

f : C → C be a continuous map. If f(C) is relatively compact, then, f has a fixed point.

The discrete version of Gronwall’s lemma (see [27]) is given as follows:

Lemma 2.8. Let (αi), (βi), (γi) and (ηi) be sequences of non-negative real numbers such that

ηi+1 ≤ αi + βi(η0 + η1 + · · ·+ ηi−1) + (1 + γi)ηi for i ∈ N.

Then,

ηk ≤

η0 +

k−1∑
j=0

αj

 exp

k−1∑
j=0

(jβj + γj)

 for k ∈ N∗.

We end this section by recalling the Gronwall-like differential inequality proved in [6].
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Lemma 2.9. Let y : I → R be a non-negative absolutely continuous function and let h1, h2, g :

I → R+ be non-negative integrable functions. Suppose for some ε > 0

ẏ(t) ≤ g(t) + ε+ h1(t)y(t) + h2(t)(y(t))
1
2

∫ t

0

(y(s))
1
2 ds a.e. t ∈ I.

Then, for all t ∈ I, one has

(y(t))
1
2 ≤ (y(0) + ε)

1
2 exp

(∫ t

0

(h(s) + 1)ds

)
+

ε
1
2

2

∫ t

0

exp

(∫ t

s

(h(r) + 1)dr

)
ds

+ 2

[(∫ t

0

g(s)ds+ ε

) 1
2

− ε
1
2 exp

(∫ t

0

(h(r) + 1)dr

)]
+ 2

∫ t

0

(
h(s) + 1

)
exp

(∫ t

s

(h(r) + 1)dr

)(∫ s

0

g(r)dr + ε

) 1
2

ds,

where h(t) = max
(

h1(t)
2 , h2(t)

2

)
a.e. t ∈ I.

3 Main result

We start this section by giving some important details to [14, Proposition 4.4] which asserts the

existence result to (IDPA(t)). We succeed further to obtain the uniqueness of the solution and an

estimate of its derivative.

Theorem 3.1. Let A(t) : D(A(t)) ⊂ H ⇒ H be a maximal monotone operator for each t ∈ I,

satisfying

(h1) there exists a function β(·) ∈ W 1,2(I,R) which is non-negative on [T0, T [ and non-decreasing

with β(T0) = 0 and β(T ) < +∞ such that

dis (A(t), A(s)) ≤ |β(t)− β(s)| for all t, s ∈ I;

(h2) there exists a non-negative real constant c such that

∥A0(t)x∥ ≤ c(1 + ∥x∥) for all t ∈ I, x ∈ D(A(t));

(h3) the set D(A(t)) is relatively ball-compact for any t ∈ I.

Let f : I × I ×H −→ H be a map such that

(i) the map f(·, ·, x) is measurable on I × I for each x ∈ H;
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(ii) the map f(t, s, ·) is continuous on H for each (t, s) ∈ I × I, and for every η > 0, there exists

a non-negative function ξη(·) ∈ L1
R(I) such that for all t, s ∈ I and for any x, y ∈ BH [0, η]

∥f(t, s, x)− f(t, s, y)∥ ≤ ξη(t)∥x− y∥;

(iii) there exists a non-negative real constant m such that for all (t, s, x) ∈ I × I ×H, one has

∥f(t, s, x)∥ ≤ m(1 + ∥x∥).

Then, for all u0 ∈ D(A(T0)), the Integro-Differential Problem (IDPA(t)) has a unique absolutely

continuous solution u(·) that satisfies

∥u̇(t)∥ ≤ K(1 + β̇(t)) a.e. t ∈ I, (3.1)

for the non-negative real constant K = (2(T − T0)m+ 3
2c)(K1 + 1) + 2 where

K1 =

(
∥u0∥+

(
2(T − T0)m+

3

2
c+ 2

)
(T+β(T ))

)
exp

((
(T − T0)m+

3

2
c

)
(T − T0) +m(T + β(T ))2

)
.

Proof. [14, Proposition 4.4] ensures the existence of a solution u(·). Our main concern is to find a

suitable estimate of u̇(·), then, to prove that u(·) is unique.

For any n ≥ 1, define a subdivision of I by T0 = tn0 < tn1 < · · · < tnn = T.

Set for any n ≥ 1 and i = 0, 1, . . . , n− 1,

hn
i+1 = tni+1 − tni , βn

i+1 = β(tni+1)− β(tni ).

Suppose that

hn
i ≤ hn

i+1, βn
i ≤ βn

i+1.

Define the function γ(t) = t+ β(t), t ∈ I. Choose the subdivision such that for all i = 0, . . . , n− 1

and n ≥ 1,

γn
i+1 = βn

i+1 + hn
i+1 ≤ γ(T )

n
=: ηn. (3.2)

Fix any integer n ≥ 1. Let us start by setting un
0 := u0, for i = 0, . . . , n− 1 and τ ∈]tni , tni+1],

un
i+1 = Jn

i+1

(
un
i −

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ

)
, (3.3)

where

Jn
i+1 := J

A(tni+1)

hn
i+1

= (IH + hn
i+1A(tni+1))

−1.
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In view of (2.1) and (3.3), observe that

un
i+1 ∈ D(A(tni+1)), (3.4)

and

un
i −

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ ∈ un

i+1 + hn
i+1A(tni+1)u

n
i+1.

Then, one writes

−
un
i+1 − un

i

hn
i+1

∈ A(tni+1)u
n
i+1 +

1

hn
i+1

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ. (3.5)

Thanks to Lemma 2.4 and (3.3), one has

∥un
i+1 − un

i ∥

=

∥∥∥∥Jn
i+1

(
un
i −

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ

)
− un

i

∥∥∥∥
≤

∥∥∥∥Jn
i+1

(
un
i −

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ

)
− Jn

i+1(u
n
i )

∥∥∥∥
+ ∥Jn

i+1(u
n
i )− un

i ∥

≤
∫ tni+1

tni

∥∥∥∥ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

∥∥∥∥dτ + hn
i+1∥A0(tni )u

n
i ∥

+ dis (A(tni ), A(t
n
i+1)) +

√
hn
i+1(1 + ∥A0(tni )u

n
i ∥)dis (A(tni ), A(t

n
i+1)).

Using the fact that
√
ab ≤ 1

2 (a+ b) for all a, b ∈ R+, one has

∥un
i+1 − un

i ∥ ≤
∫ tni+1

tni

i−1∑
j=0

∫ tnj+1

tnj

∥f(τ, s, un
j )∥ds dτ +

∫ tni+1

tni

∫ τ

tni

∥f(τ, s, un
i )∥ds dτ

+
3

2
hn
i+1∥A0(tni )u

n
i ∥+

3

2
dis (A(tni+1), A(t

n
i )) +

1

2
hn
i+1.

Next, combining (h1), (h2) and (iii), one obtains

∥un
i+1 − un

i ∥ ≤ 3

2
hn
i+1c(1 + ∥un

i ∥) +
3

2
βn
i+1 +

1

2
hn
i+1 + hn

i+1m

i−1∑
j=0

hn
j+1(1 + ∥un

j ∥)

+

∫ tni+1

tni

(τ − tni )m(1 + ∥un
i ∥)dτ,
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along with (3.2) and the fact that τ − tni ≤ T − T0, one simplifies

∥un
i+1 − un

i ∥ ≤ hn
i+1

(
(T − T0)m+

3

2
c

)
∥un

i ∥+ γn
i+1

(
(T − T0)m+

3

2
c+ 2

)
+ hn

i+1m

i−1∑
j=0

hn
j+1(1 + ∥un

j ∥). (3.6)

Remember that hn
i+1 ≤ ηn for i = 0, . . . , n−1, and

∑i−1
j=0 h

n
j+1 ≤ T −T0, along with (3.2), one gets

∥un
i+1 − un

i ∥ ≤ hn
i+1

(
(T − T0)m+

3

2
c

)
∥un

i ∥+ γn
i+1

(
2(T − T0)m+

3

2
c+ 2

)
+ ηnm

i−1∑
j=0

hn
j+1∥un

j ∥.

This yields

∥un
i+1∥ ≤

(
1 + hn

i+1

(
(T − T0)m+

3

2
c

))
∥un

i ∥+ γn
i+1

(
2(T − T0)m+

3

2
c+ 2

)
+ η2nm

i−1∑
j=0

∥un
j ∥.

An application of Lemma 2.8, it follows that for all n ≥ 1 and i = 1, . . . , n

∥un
i ∥ ≤ K1, (3.7)

with

K1 :=

(
∥u0∥+

(
2(T − T0)m+

3

2
c+ 2

)
γ(T )

)
exp

((
(T − T0)m+

3

2
c

)
(T − T0) +mγ2(T )

)
.

Coming back to (3.6) with the help of (3.2), one gets

∥un
i+1 − un

i ∥ ≤ γn
i+1K, (3.8)

with

K :=

(
2(T − T0)m+

3

2
c

)
(K1 + 1) + 2.

For each n ≥ 1, we define the map un(·) : I → H by: for t ∈ [tni , t
n
i+1[, 0 ≤ i ≤ n− 1

un(t) = un
i +

t− tni
hn
i+1

(
un
i+1 − un

i +

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ

)

−
∫ t

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ, (3.9)

un(T ) = un
n, un(T0) = un

0 .
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It is clear that the function un(·) : I → H is absolutely continuous for each n ≥ 1, with un(t
n
i ) = un

i

and un(t
n
i+1) = un

i+1. Moreover, for all t ∈]tni , tni+1[

u̇n(t) =
1

hn
i+1

(
un
i+1 − un

i +

∫ tni+1

tni

{ i−1∑
j=0

∫ tnj+1

tnj

f(τ, s, un
j )ds+

∫ τ

tni

f(τ, s, un
i )ds

}
dτ

)

−
i−1∑
j=0

∫ tnj+1

tnj

f(t, s, un
j )ds−

∫ t

tni

f(t, s, un
i )ds. (3.10)

Combining (iii), (3.7), (3.8) and (3.9), it results

∥un(t)− un
i ∥ ≤ ∥un

i+1 − un
i ∥+ 2(T − T0)m(1 +K1)h

n
i+1 ≤ γn

i+1(K + 2(T − T0)m(1 +K1)),

along with (3.2) yields

∥un(t)− un
i ∥ ≤ Lηn (3.11)

where

L := K + 2(T − T0)m(1 +K1).

Fix s ∈ [tni , t
n
i+1[ and t ∈ [tnj , t

n
j+1[ with j > i. Then, by (3.2), (3.8) and (3.11), one has

∥un(t)− un(s)∥ ≤ ∥un(t)− un
j ∥+ ∥un

j − un
i ∥+ ∥un

i − un(s)∥

≤ ∥un
j − un

i ∥+ 2Lηn ≤
j−i−1∑
p=0

∥un
i+p+1 − un

i+p∥+ 2Lηn

≤ K

j−i−1∑
p=0

γn
i+p+1 + 2Lηn = K

(
γ(tnj )− γ(tni )

)
+ 2Lηn

≤ K (γ(t)− γ(tni )) + 2Lηn = K (γ(t)− γ(s) + γ(s)− γ(tni )) + 2Lηn

≤ K
(
γ(t)− γ(s) + γ(tni+1)− γ(tni )

)
+ 2Lηn

= K (γ(t)− γ(s)) +Kγn
i+1 + 2Lηn

≤ K (γ(t)− γ(s)) + (K + 2L)ηn.

Then, for any n ≥ 1 and T0 ≤ s ≤ t ≤ T , one gets

∥un(t)− un(s)∥ ≤ K
(
γ(t)− γ(s)

)
+ (K + 2L)ηn = K

(
t− s+ β(t)− β(s)

)
+ (K + 2L)ηn. (3.12)

Combining (3.4)-(3.5) and (3.9)-(3.10), it results that

−u̇n(t) ∈ A(δn(t))un(δn(t)) + gn(t) a.e. t ∈ I, un(δn(t)) ∈ D(A(δn(t))),

where gn(t) =
∫ t

T0
f(t, s, un(θn(s)))ds and the maps θn, δn : I → I are defined by θn(T0) = T0,
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θn(t) = tni if t ∈]tni , tni+1] and δn(T0) = T0, δn(t) = tni+1 if t ∈]tni , tni+1] for some i ∈ {0, . . . , n− 1}.

By Arzelà-Ascoli theorem (with the help of (h3)), it is easy to show that the constructed sequence

(un(·)) uniformly converges to some u(·) ∈ W 1,2(I,H). To verify that u(·) is a solution of the

required integro-differential inclusion, we proceed as in Step 3 in the proof of [2, Theorem 3.2] with

appropriate changes.

Finally, passing to the limit in (3.12) as n → ∞ (noting that ηn → 0) yields

∥u̇(t)∥ ≤ K(1 + β̇(t)) a.e. t ∈ I.

Uniqueness. Let u1(·) and u2(·) be two solutions to (IDPA(t)). Since A(t) is monotone then,

one has

1

2

d

dt
∥u2(t)− u1(t)∥2 ≤

〈∫ t

T0

f(t, s, u1(s))ds−
∫ t

T0

f(t, s, u2(s))ds, u2(t)− u1(t)

〉
. (3.13)

By the estimate of the velocity above, there exists a non-negative real constant η such that

∥u1(t)∥ ≤ η and ∥u2(t)∥ ≤ η, for each t ∈ I, along with (ii), there is ξη(·) ∈ L1
R(I) such that

∥f(t, s, u1(s))− f(t, s, u2(s))∥ ≤ ξη(t)∥u1(s)− u2(s)∥ for all (t, s) ∈ I × I,

so that coming back to (3.13), it follows that

1

2

d

dt
∥u2(t)− u1(t)∥2 ≤ ξη(t)∥u2(t)− u1(t)∥

∫ t

T0

∥u2(s)− u1(s)∥ds.

Hence, Lemma 2.9 with ε > 0 arbitrary yields u1 = u2 and guarantees the uniqueness of the

solution to (IDPA(t)).

Now, we are able to prove our main result concerning (IDPA(t,u)).

Theorem 3.2. Let A(t, x) : D(A(t, x)) ⊂ H ⇒ H be a maximal monotone operator for each

(t, x) ∈ I ×H satisfying

(H1) there exist a non-negative and non-decreasing real function α(·) ∈ W 1,2(I,R) and a non-

negative real constant λ < 1 such that

dis (A(t, x), A(s, y)) ≤ |α(t)− α(s)|+ λ∥x− y∥ ∀t, s ∈ I and ∀x, y ∈ H;

(H2) there exists a non-negative real constant c such that

∥A0(t, x)y∥ ≤ c(1 + ∥x∥+ ∥y∥) for all (t, x) ∈ I ×H and y ∈ D(A(t, x));
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(H3) for any bounded subset X of H, the set D(A(I ×X)) is relatively ball-compact.

Let f : I × I ×H −→ H be a map satisfying assumptions (i)-(ii)-(iii) of Theorem 3.1.

Put d = c(2 + ∥u0∥), S =
(
2(T − T0)m+ 3

2d
)
(S1 + 1) + 2, where

S1 =

(
∥u0∥+

(
2(T − T0)m+

3

2
d+ 2

)
(T + α(T ) + 1)

)
exp

((
(T − T0)m+

3

2
d

)
(T − T0) +m(T + α(T ) + 1)2

)
.

If λS < 1, then, the Integro-Differential Problem (IDPA(t,u)) admits an absolutely continuous

solution u(·) that satisfies

∥u̇(t)∥ ≤ φ̇(t) a.e. t ∈ I, (3.14)

where φ : I → R+ is the absolutely continuous solution to

φ̇(t) =
L

1− λL
(1 + α̇(t)), φ(T0) = 0,

for the non-negative real constant L =
(
2(T − T0)m+ 3

2d
)
(L1 + 1) + 2, where

L1 =

(
∥u0∥+

(
2(T − T0)m+

3

2
d+ 2

)
(T + α(T ) + λ)

)
exp

((
(T − T0)m+

3

2
d

)
(T − T0) +m(T + α(T ) + λ)2

)
.

Proof. Observe that 1 − λL > 0 (in the differential equation) noting that λS < 1 by assumption

and since L < S then, λ < 1
L .

Since φ(·) is absolutely continuous, then, there exists some non-negative real constant δ > 0 such

that ∫ T

T0

φ̇(s)ds < δ for all t ∈ I.

Let us just take δ = 1 (for simplicity) and suppose that

∫ T

T0

φ̇(s)ds < 1 for all t ∈ I. (3.15)

Let us consider the convex bounded closed subset Y of the Banach space CH(I) defined by

Y :=

{
u ∈ CH(I) : u(t) = u0 +

∫ t

T0

u̇(s)ds, ∥u̇(t)∥ ≤ φ̇(t), t ∈ I

}
.

Let h ∈ Y , and define the time-dependent maximal monotone operator Bh(t) = A(t, h(t)), t ∈ I
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(as in [15, Lemma 5]). For all T0 ≤ τ ≤ t ≤ T , one has using (H1)

dis (Bh(t), Bh(τ)) = dis (A(t, h(t)), A(τ, h(τ))) ≤ α(t)− α(τ) + λ∥h(t)− h(τ)∥

≤
∫ t

τ

α̇(s)ds+ λ

∫ t

τ

∥ḣ(s)∥ds ≤
∫ t

τ

[α̇(s) + λφ̇(s)] ds = β(t)− β(τ),

where β(·) ∈ W 1,2(I,R) is given by

β(t) =

∫ t

T0

[α̇(s) + λφ̇(s)] ds, ∀t ∈ I.

Furthermore, one writes using (H2) and (3.15)

∥B0
h(t)x∥ = ∥A0(t, h(t))x∥ ≤ c(1 + ∥h(t)∥+ ∥x∥)

≤ c

(
1 + ∥u0∥+

∫ t

T0

φ̇(s)ds+ ∥x∥
)

≤ c(2 + ∥u0∥+ ∥x∥) ≤ d(1 + ∥x∥),

for all t ∈ I and x ∈ D(A(t, h(t))), where d = c(2 + ∥u0∥).

In view of Theorem 3.1, there exists a unique absolutely continuous solution uh : I → H to the

integro-differential inclusion

(Ih)


−u̇h(t) ∈ Bh(t)uh(t) +

∫ t

T0

f(t, s, uh(s))ds a.e. t ∈ I, h ∈ Y,

uh(t) ∈ D(Bh(t)) = D(A(t, h(t))), ∀t ∈ I

uh(T0) = u0 ∈ D(Bh(T0)) = D(A(T0, u0)),

with

∥u̇h(t)∥ ≤ ρ(1 + α̇(t) + λφ̇(t)) a.e. t ∈ I, (3.16)

for the non-negative real constant ρ = (2(T − T0)m+ 3
2d)(ρ1 + 1) + 2, where

ρ1 =

(
∥u0∥+

(
2(T − T0)m+

3

2
d+ 2

)
(T + β(T ))

)
exp

((
(T − T0)m+

3

2
d

)
(T − T0) +m(T + β(T ))2

)
.

Now, for each h ∈ Y , let us consider the map Φ defined on Y by

Φ(h)(t) := uh(t), t ∈ I,

where uh(·) is the unique absolutely continuous solution to the latter integro-differential inclusion,

namely (Ih).
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Observe that ρ < L. Indeed, note by (H1) that α(·) is a non-decreasing and non-negative function,

along with the definition of β(·), one writes

β(T ) =

∫ T

T0

[α̇(s) + λφ̇(s)] ds ≤ α(T ) + λ

∫ T

T0

φ̇(s)ds ≤ α(T ) + λ,

using the fact that
∫ T

T0
φ̇(s)ds < 1 by (3.15). Then, from the definition of ρ1 and L1, this just

shows that ρ1 < L1. We return therefore to the expression of ρ and L to compare.

Thus, coming back to (3.16), one writes

∥u̇h(t)∥ ≤ L(1 + α̇(t) + λφ̇(t)) = φ̇(t). (3.17)

As a result, Φ(h) ∈ Y .

Also, note that using (3.15) for any h ∈ Y , one gets

∥uh(t)∥ ≤ ∥u0∥+ φ(T ) for all t ∈ I. (3.18)

Let us prove that Φ(Y ) is relatively compact in CH(I).

On the one hand, note by (3.18) that for any h ∈ Y

h(t) ∈ (∥u0∥+ φ(T ))BH .

On the other hand, since uh(t) ∈ D(A(t, h(t))) for each t ∈ I then,

uh(t) ∈ D(A(I × (∥u0∥+ φ(T ))BH)) ∩ (∥u0∥+ φ(T ))BH .

Using the ball-compactness assumption in (H3), one deduces that for each t ∈ I, {Φ(h)(t), h ∈ Y }
is relatively compact in H, for any t ∈ I. Moreover, (Φ(h)) is equi-continuous. By Arzelà-Ascoli

theorem, Φ(Y ) is relatively compact in CH(I).

Now, we check that Φ is continuous. It is sufficient to show that: if (hn) uniformly converges

to h in Y , then, the sequence of absolutely continuous solutions uhn associated with hn to the

integro-differential inclusion −u̇hn
(t) ∈ A(t, hn(t))uhn

(t) +

∫ t

T0

f(t, s, uhn
(s))ds a.e. t ∈ I, hn ∈ Y,

uhn(T0) = u0 ∈ D(A(T0, u0)),

uniformly converges to the absolutely continuous solution uh associated with h to the integro-

differential inclusion (Ih).
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As (uhn(t)) is relatively compact in H, for any t ∈ I (from above) and (uhn) is equi-absolutely con-

tinuous, along with the estimate (3.16), we may assume that there exists some map z ∈ W 1,2(I,H)

such that

(uhn
) uniformly converges to z(·), (3.19)

and

(u̇hn) σ(L
1
H(I), L∞

H (I))-converges to w ∈ L1
H(I) with w = ż a.e. (3.20)

Put η := ∥u0∥+ φ(T ). Then, by (ii), there exists a non-negative function ξη(·) ∈ L1
R(I) such that

for all t, s ∈ I

∥f(t, s, uhn
(s))− f(t, s, z(s))∥ ≤ ξη(t)∥uhn

(s)− z(s)∥.

This along with the pointwise convergence of (uhn) to z gives

lim
n→∞

∥f(t, s, uhn(s))− f(t, s, z(s))∥ = 0. (3.21)

Note by (3.18) and (iii) that for any n and any t, s ∈ I

∥f(t, s, uhn
(s))∥ ≤ m(1 + η), (3.22)

along with (3.21), it follows from the Lebesgue dominated convergence theorem that∥∥∥∥∫ t

T0

f(t, s, uhn(s))ds−
∫ t

T0

f(t, s, z(s))ds

∥∥∥∥ ≤
∫ t

T0

∥f(t, s, uhn(s))− f(t, s, z(s))∥ds → 0,

as n → ∞.

Moreover, thanks to (3.22), we note that for any t, s ∈ I∥∥∥∥∫ t

T0

f(t, s, uhn
(s))ds

∥∥∥∥ ≤ m(T − T0)(1 + η). (3.23)

This along with the convergence above, the Lebesgue dominated convergence theorem yields

lim
n→∞

∫ T

T0

∥∥∥∥∫ t

T0

f(t, s, uhn
(s))ds−

∫ t

T0

f(t, s, z(s))ds

∥∥∥∥ dt = 0. (3.24)

Define for any n ≥ 1, the functions gn, g on I by

gn(t) =

∫ t

T0

f(t, s, uhn
(s))ds, g(t) =

∫ t

T0

f(t, s, z(s))ds for any t ∈ I.

As uhn
(t) ∈ D(A(t, hn(t))) for all t ∈ I and uhn

(t) → z(t), (A0(t, hn(t))uhn
(t)) is bounded by (H2)
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and the boundedness of the sequences (uhn) and (hn) in CH(I), for every t ∈ I

dis (A(t, hn(t)), A(t, h(t))) ≤ λ∥hn(t)− h(t)∥ → 0, as n → ∞, (3.25)

by (H1) and the uniform convergence of (hn) to h in CH(I). Thus, from Lemma 2.1, one deduces

that z(t) ∈ D(A(t, h(t))), for each t ∈ I.

Now, let us verify that z satisfies the integro-differential inclusion

−ż(t) ∈ A(t, h(t))z(t) +

∫ t

T0

f(t, s, z(s))ds a.e. t ∈ I.

From (3.20) and (3.24), one deduces that (u̇hn(·)+gn(·)) σ(L1
H(I), L∞

H (I))-converges to ż(·)+g(·).
Hence, (u̇hn(·) + gn(·)) Komlós-converges to ż(·) + g(·), and there is a negligible set V such that

for t ∈ I \ V

lim
n→∞

1

n

n∑
j=1

(u̇hj
(t) + gj(t)) = ż(t) + g(t), (3.26)

and

−u̇hn
(t) ∈ A(t, hn(t))uhn

(t) + gn(t). (3.27)

Let x ∈ D(A(t, h(t))). From (H2) and (3.25) along with Lemma 2.2, there is a sequence (xn) such

that xn ∈ D(A(t, hn(t))),

xn → x and A0(t, hn(t))xn → A0(t, h(t))x. (3.28)

In view of (3.27), by the monotonicity of the operators A(t, hn(t)) for each n and t ∈ I, one has

⟨u̇hn(t) + gn(t), uhn(t)− xn⟩ ≤
〈
A0(t, hn(t))xn, xn − uhn(t)

〉
. (3.29)

Note that

⟨u̇hn
(t) + gn(t), z(t)− x⟩ = ⟨u̇hn

(t) + gn(t), uhn
(t)− xn⟩

+ ⟨u̇hn
(t) + gn(t), z(t)− uhn

(t)⟩+ ⟨u̇hn
(t) + gn(t), xn − x⟩,

then,

1

n

n∑
j=1

⟨u̇hj (t) + gj(t), z(t)− x⟩ = 1

n

n∑
j=1

⟨u̇hj (t) + gj(t), uhj (t)− xj⟩

+
1

n

n∑
j=1

⟨u̇hj
(t) + gj(t), z(t)− uhj

(t)⟩+ 1

n

n∑
j=1

⟨u̇hj
(t) + gj(t), xj − x⟩.
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Hence, combining (3.17), (3.23) and (3.29), one deduces that

1

n

n∑
j=1

⟨u̇hj (t) + gj(t), z(t)− x⟩ ≤ 1

n

n∑
j=1

〈
A0(t, hj(t))xj , xj − uhj (t)

〉

+ (φ̇(t) + (T − T0)m(1 + η))

 1

n

n∑
j=1

∥z(t)− uhj
(t)∥+ 1

n

n∑
j=1

∥xj − x∥

 .

Passing to the limit when n → ∞, using (3.19), (3.26), (3.28), this last inequality yields

⟨ż(t) + g(t), z(t)− x⟩ ≤ ⟨A0(t, h(t))x, x− z(t)⟩ a.e. ∀x ∈ D(A(t, h(t))).

It results from Lemma 2.3 that

−ż(t) ∈ A(t, h(t))z(t) + g(t) a.e. t ∈ I,

with z(T0) = u0 ∈ D(A(T0, u0)) and by uniqueness z = uh.

Therefore, one just checks that Φ(hn)− Φ(h) → 0 in CH(I) as n → ∞. Consequently, Φ : Y → Y

is continuous from the bounded convex closed subset Y of the Banach space CH(I) with Φ(Y ) is

relatively compact. Applying Schauder’s fixed point theorem (see Theorem 2.7) there exists h ∈ Y

such that h = Φ(h), that is, h(t) = uh(t). Furthermore, the estimation (3.14) holds true on I. The

proof of the theorem is then complete.

We derive from Theorem 3.2, the particular case of the sweeping process, that is, A(t, x) = NC(t,x),

for (t, x) ∈ I ×H.

Corollary 3.3. Let C : I ×H ⇒ H be a set-valued mapping satisfying:

(H ′
1) For each (t, y) ∈ I ×H, C(t, y) is a non-empty closed convex subset of H.

(H ′
2) There exist a non-negative real constant λ < 1, and a function α ∈ W 1,2(I,R) which is

non-negative on [T0, T [ and non-decreasing such that

|d(x,C(t, u))− d(x,C(s, v))| ≤ |α(t)− α(s)|+ λ||v − u|| ∀t, s ∈ I, ∀x, v, u ∈ H.

(H ′
3) For any bounded subset X of H, the set C(I ×X) is relatively ball-compact.

Let f : I × I ×H −→ H be a map satisfying assumptions of Theorem 3.2.
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Choose any d > 0 and put S =
(
2(T − T0)m+ 3

2d
)
(S1 + 1) + 2, where

S1 =

(
∥u0∥+

(
2(T − T0)m+

3

2
d+ 2

)
(T + α(T ) + 1)

)
exp

((
(T − T0)m+

3

2
d

)
(T − T0) +m(T + α(T ) + 1)2

)
.

If λS < 1, then, the integro-differential sweeping process −u̇(t) ∈ NC(t,u(t))u(t) +

∫ t

T0

f(t, s, u(s))ds a.e. t ∈ I,

u(T0) = u0 ∈ C(T0, u0),

has an absolutely continuous solution u(·). Moreover, an appropriate estimate of u̇(·) holds true.

Proof. We follow the arguments used in the proof of [33, Corollary 8].

Let A(t, x) = NC(t,x), for each (t, x) ∈ I ×H. Then, for any (t, x) ∈ I ×H, A(t, x) : D(A(t, x)) ⊂
H ⇒ H is a maximal monotone operator with D(A(t, x)) = C(t, x) and since the projection of

the origin onto NC(t,x)y equals 0 then ∥A0(t, x)y∥ = 0 for any (t, x) ∈ I ×H and any y ∈ C(t, x)

(keeping in mind (2.2) and (H ′
1)). So, (H2) holds true for any non-negative real constant c.

Moreover, it is easily seen that (H3) is satisfied. Let us verify (H1).

On the one hand, from [26], one has

dH(C(t, u), C(s, v)) = sup
x∈H

|d(x,C(t, u))− d(x,C(s, v))|, (3.30)

where dH(·, ·) denotes the Hausdorff distance between two closed subsets of H.

On the other hand, it is known from [35] that since C(t, u), C(s, v) are convex closed sets, then

dis (NC(t,u), NC(s,v)) = dH(C(t, u), C(s, v)). (3.31)

Combining (3.30) and (3.31) with (H ′
2), then, (H1) holds true.

Hence, all assumptions of Theorem 3.2 are satisfied. The latter ensures the existence of a solution

to the integro-differential sweeping process under consideration.

Furthermore, in view of (3.14), an appropriate estimate of u̇ is obtained.
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4 An optimal control problem

In this section, we focus on the Optimal Control Problem (OCP).

First, let us prove the existence and uniqueness of the solution to problem (CPa,b).

Proposition 4.1. Let H = Rn and I := [0, T ]. Fix a couple (a(·), b(·)) ∈ W 1,2(I,Rn+m). Assume

that for any (t, y) ∈ I × Rn, A(t, y) : D(A(t, y)) ⊂ Rn ⇒ Rn is a maximal monotone operator

satisfying assumptions (H1)-(H2). Let f : I × I × Rm+n → Rn be a map such that f(·, ·, x, y) is

measurable on I×I for each (x, y) ∈ Rm+n, f(t, s, ·, ·) is continuous on Rm+n for each (t, s) ∈ I×I

and satisfying the following assumptions

(i) there exists a non-negative real constant M , for any b(·) ∈ W 1,2(I,Rm) such that

∥f(t, s, b(s), x)∥ ≤ ∥b(s)∥+M∥x∥, ∀t, s ∈ I, ∀x ∈ Rn;

(ii) for a non-negative real constant η and any b(·) ∈ W 1,2(I,Rm), there exists a non-negative

real constant l such that

∥f(t, s, b(s), x1)− f(t, s, b(s), x2)∥ ≤ l∥x1 − x2∥, ∀t, s ∈ I, ∀x1, x2 ∈ BRn [0, η].

Then, this couple control generates a unique solution u(·) ∈ W 1,2(I,Rn) to the Controlled Problem

(CPa,b). Moreover, one has for a.e. t ∈ I

∥∥∥∥u̇(t) + ∫ t

0

f(t, s, b(s), u(s))ds

∥∥∥∥ ≤ K(1 + β̇(t)) + (1 + L)ζ, (4.1)

∥u̇(t)∥ ≤ K(1 + β̇(t)), (4.2)

where ζ = max
(
∥b∥L1

Rm (I), TM
)
, L = ∥u0∥+K

∫ T

0
(1 + β̇(s))ds, and the function β is defined by

β(t) =

∫ t

0

[α̇(s) + λ∥ȧ(s)∥]ds, t ∈ I,

and K is a non-negative real constant which depends on ∥u0∥, ∥a0∥, c, ζ, T , and β.

Proof. For any t ∈ I and any fixed a(·) ∈ W 1,2(I,Rn), define the time-dependent maximal mono-

tone operators Ba(t) := A(t, a(t)) and proceed as in the first part of the proof of Theorem 3.2.

Let τ, t ∈ I such that 0 ≤ τ ≤ t ≤ T . Then, one has by (H1)

dis (Ba(t), Ba(τ)) = dis (A(t, a(t)), A(τ, a(τ))) ≤ β(t)− β(τ),
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and clearly β(·) ∈ W 1,2(I,R) is defined by

β(t) =

∫ t

0

[α̇(s) + λ∥ȧ(s)∥]ds, t ∈ I.

Now, in view of (H2), there exists a non-negative real number c such that for t ∈ I, z ∈ D(A(t, a(t)))

∥B0
a(t)z∥ = ∥A0(t, a(t))z∥ ≤ c(1 + ∥a(t)∥+ ∥z∥) ≤ c

(
1 +

∥∥∥∥a0 + ∫ t

0

ȧ(s)ds

∥∥∥∥+ ∥z∥
)

≤ c1(1 + ∥z∥),

where c1 = c(1 + ∥a0∥+
∫ T

0
∥ȧ(s)∥ds).

Hence, the operator Ba(t) satisfies (h1)-(h2) of Theorem 3.1.

Next, for b(·) ∈ W 1,2(I,Rm) fixed, define the function fb on I × I × Rn by

fb(t, s, u) = f(t, s, b(s), u) for all (t, s, u) ∈ I × I × Rn.

It is clear that the function fb(·, ·, u) is measurable on I × I for any fixed u ∈ Rn, by assumption

and by continuity of b(·). Moreover, from (i) one gets

∥fb(t, s, u)∥ ≤ ∥b(s)∥+M∥u∥ ≤ ζ(1 + ∥u∥), (4.3)

for all (t, s, u) ∈ I × I × Rn, where ζ = max(∥b∥∞,M).

Now, by (ii) for a non-negative real constant η, there exists a non-negative real constant l such

that

∥fb(t, s, u1)− fb(t, s, u2)∥ ≤ l∥u1 − u2∥, ∀t ∈ I, ∀u1, u2 ∈ BRn [0, η].

Thus, the map fb satisfies assumptions of Theorem 3.1. Consequently, it follows the existence and

uniqueness of the solution to the considered integro-differential inclusion.

Furthermore, in view of (3.1) and (4.3) along with the absolute continuity of u(·), estimates (4.1)-

(4.2) hold true. The velocity u̇(·) is clearly in L2
Rn(I), and u(·) ∈ W 1,2(I,Rn). The proof of the

proposition is therefore finished.

We are going to impose convenient assumptions that guarantee the existence of (global) optimal

solutions to the Optimal Control Problem (OCP) subject to the solution set of the Controlled

Problem (CPa,b).

Theorem 4.2 (Existence of optimal solutions). Assume that for any (t, y) ∈ I × Rn, A(t, y) :

D(A(t, y)) ⊂ Rn ⇒ Rn is a maximal monotone operator satisfying assumptions (H1)-(H2). Let

f : I × I × Rm+n → Rn be a continuous map satisfying assumptions of Proposition 4.1. Suppose

that the terminal cost functional ϕ1 : Rn → R is lower semi-continuous, while the running cost

ϕ2 : I × R4n+2m → R is lower semi-continuous with respect to t and is majorized by a summable
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function on I along reference curves. Moreover, assume that ϕ2(t, ·) is bounded from below on

bounded sets for a.e. t ∈ I. Let the running cost ϕ2 be convex with respect to velocity variables u̇,

ȧ, ḃ, and that there is a minimizing sequence (uk(·), ak(·), bk(·)) of (OCP), which (ak(·), bk(·)) is

bounded in W 1,2(I,Rn+m). Then, the Optimal Control Problem (OCP) admits an optimal solution

in the space W 1,2(I,R2n+m).

Proof. From Proposition 4.1, one deduces that the set of feasible solutions to the Optimal Control

Problem (OCP) is non-empty. Let us fix the minimizing sequence of feasible solutions (uk(·), ak(·),
bk(·)) for (OCP) (from the statement of the theorem), which is bounded in W 1,2(I,R2n+m). This

implies in particular that there exists a couple (a0, b0) ∈ Rn+m such that (ak(0), bk(0)) → (a0, b0)

in this space as k → ∞, while the triple (u0, a0, b0) = (u(0), a(0), b(0)) clearly satisfies the initial

conditions. It is readily seen that the sequence (ȧk(·), ḃk(·)) is bounded in L2
Rn+m(I). Then, up to

a subsequence that we do not relabel, there exists a couple (va(·), vb(·)) ∈ L2
Rn+m(I) such that

(ȧk(·), ḃk(·)) weakly converges in L2
Rn+m(I) to (va(·), vb(·)).

Define now the functions

(â(t), b̂(t)) = (a0, b0) +

∫ t

0

(va(s), vb(s))ds, for all t ∈ I,

and observe that ( ˙̂a(t),
˙̂
b(t)) = (va(t), vb(t)) for a.e. t ∈ I, and that the couple (â(·), b̂(·)) belongs

to the space W 1,2(I,Rn+m). It follows from above and the estimates of Proposition 4.1 that the

sequence of the corresponding solutions (uk(·)) is uniformly bounded and equi-continuous on I.

By Arzelà-Ascoli theorem, up to a subsequence that we do not relabel, (uk(·)) uniformly converges

on I to some û(·) ∈ CRn(I) which is absolutely continuous on this interval. It follows from (4.2)

that (u̇k(·)) is bounded in L2
Rn(I) and hence it weakly converges in L2

Rn(I) up to a subsequence,

to some function w(·) with ˙̂u(t) = w(t) for a.e. t ∈ I, that is,

(u̇k(·)) weakly converges in L2
Rn(I) to ˙̂u(·). (4.4)

The next step is to check that the limiting triple ẑ(·) = (û(·), â(·), b̂(·)) satisfies the differential

inclusion (CPa,b).

Since f is continuous by assumption along with the preceding modes of convergence above, then,

one has

f(t, s, bk(s), uk(s)) → f(t, s, b̂(s), û(s)) as k → ∞, t, s ∈ I.

By (i), one has

∥f(t, s, bk(s), uk(s))∥ ≤ ∥bk(s)∥+M∥uk(s)∥, t, s ∈ I.
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which is uniformly bounded since (bk(·)) and (uk(·)) are bounded in CH(I).

From the Lebesgue dominated convergence theorem, it results

lim
k→∞

∥∥∥∥∫ t

0

f(t, s, bk(s), uk(s))ds−
∫ t

0

f(t, s, b̂(s), û(s))ds

∥∥∥∥ = 0.

Moreover, note that∥∥∥∥ ∫ t

0

f(t, s, bk(s), uk(s))ds

∥∥∥∥ < ∥bk∥L1
Rm (I) +M∥uk∥L1

Rn (I),

is uniformly bounded, then, the Lebesgue dominated convergence theorem yields

lim
k→∞

∫ T

0

∥∥∥∥∫ t

0

f(t, s, bk(s), uk(s))ds−
∫ t

0

f(t, s, b̂(s), û(s))ds

∥∥∥∥2 dt = 0. (4.5)

Observe that uk(t) ∈ D(A(t, ak(t))), ak(t) → â(t), uk(t) → û(t), for all t ∈ I, the sequence

(A0(t, ak(t))uk(t)) is bounded by (H2) for all t ∈ I, and

dis (A(t, ak(t)), A(t, â(t))) ≤ λ∥ak(t)− â(t)∥ → 0, when k → ∞, (4.6)

using (H1). Then, from Lemma 2.1 one deduces that û(t) ∈ D(A(t, â(t))),∀t ∈ I.

Now, we are going to verify that û(·) satisfies the integro-differential inclusion

− ˙̂u(t) ∈ A(t, â(t))û(t) +

∫ t

0

f(t, s, b̂(s), û(s))ds a.e. t ∈ I.

Define the maps gk and g on I by

gk(t) =

∫ t

0

f(t, s, bk(s), uk(s))ds, g(t) =

∫ t

0

f(t, s, b̂(s), û(s))ds, for any t ∈ I.

In view of (4.4) and (4.5),

(u̇k(·) + gk(·)) weakly converges in L2
Rn(I) to ˙̂u(·) + g(·).

Hence, (u̇k(·)+gk(·)) Komlós-converges to ˙̂u(·)+g(·) (see Proposition 2.6). So, there is a negligible

set Y such that for t ∈ I \ Y : u̇k(·) + gk(·) → ˙̂u(·) + g(·) Komlós, that is,

lim
k→∞

1

k

k∑
p=1

(
u̇p(t) +

∫ t

0

f(t, s, bp(s), up(s))ds

)
= ˙̂u(t) +

∫ t

0

f(t, s, b̂(s), û(s))ds, (4.7)

and

−u̇k(t) ∈ A(t, ak(t))uk(t) +

∫ t

0

f(t, s, bk(s), uk(s))ds.
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Let y ∈ D(A(t, â(t))). Applying Lemma 2.2 to the maximal monotone operators A(t, ak(t)) and

A(t, â(t)) that satisfy (4.6), ensures the existence of a sequence (yk) such that yk ∈ D(A(t, ak(t)))

yk → y and A0(t, ak(t))yk → A0(t, â(t))y. (4.8)

Since

−u̇k(t) ∈ A(t, ak(t))uk(t) +

∫ t

0

f(t, s, bk(s), uk(s))ds a.e.,

and A(t, ak(t)) is monotone, one has

⟨u̇k(t) + gk(t), uk(t)− yk⟩ ≤ ⟨A0(t, ak(t))yk, yk − uk(t)⟩. (4.9)

Note that

⟨u̇k(t) + gk(t), û(t)− y⟩ = ⟨u̇k(t) + gk(t), uk(t)− yk⟩+ ⟨u̇k(t) + gk(t), û(t)− uk(t)− (y − yk)⟩,

then,

1

k

k∑
p=1

⟨u̇p(t) + gp(t), û(t)− y⟩ = 1

k

k∑
p=1

〈
u̇p(t) + gp(t), yp − y

〉
+

1

k

k∑
p=1

〈
u̇p(t) + gp(t), up(t)− yp

〉
+

1

k

k∑
p=1

⟨u̇p(t) + gp(t), û(t)− up(t)⟩.

Thus, one gets using (4.9)

1

k

k∑
p=1

〈
u̇p(t) + gp(t), û(t)− y

〉
≤ 1

k

k∑
p=1

〈
u̇p(t) + gp(t), yp − y

〉
+

1

k

k∑
p=1

〈
A0(t, ap(t))yp, yp − up(t)

〉
+

1

k

k∑
p=1

〈
u̇p(t) + gp(t), û(t)− up(t)⟩.

A passage to the limit as k → ∞ with the use of (4.7)-(4.8), the boundedness of (u̇p(·) + gp(·)) in

Rn, and the preceding modes of convergence above, yields

〈
˙̂u(t) +

∫ t

0

f(t, s, b̂(s), û(s))ds, û(t)− y
〉
≤

〈
A0(t, â(t))y, y − û(t)

〉
a.e.

Hence, Lemma 2.3 guarantees that

− ˙̂u(t) ∈ A(t, â(t))û(t) +

∫ t

0

f(t, s, b̂(s), û(s))ds a.e. t ∈ I,

with û(t) ∈ D(A(t, â(t))) for all t ∈ I. By uniqueness, it follows that û is the unique solution



CUBO
26, 1 (2024)

On a class of evolution problems driven by maximal monotone... 147

to (CP â,b̂) associated to the couple control maps (â(·), b̂(·)). To justify further the optimality of

(û(·), â(·), b̂(·)) in (OCP), it is sufficient to show that

ϕ[û, â, b̂] ≤ lim inf
k→∞

ϕ[uk, ak, bk] (4.10)

for the Bolza-type functional in (OCP). The latter (4.10) readily follows from the assumptions on

the cost functions ϕ1 and ϕ2 due to the Mazur weak closure theorem and the Lebesgue dom-

inated convergence theorem. Indeed, Mazur’s theorem ensures that the weak convergence of

{u̇k, ȧk, ḃk} to { ˙̂u, ˙̂a, ˙̂b} in L2
R2n+m(I) yields the L2

R2n+m(I) strong convergence of convex combi-

nations of (u̇k, ȧk, ḃk) to ( ˙̂u, ˙̂a,
˙̂
b), and thus the a.e. convergence of a subsequence of these convex

combinations on I to the limiting triple.

Employing finally the assumed convexity of the running cost ϕ2 with respect to the velocity vari-

ables verifies (4.10) and hence completes the proof of the theorem.

We derive from Theorem 4.2, the particular case of the controlled sweeping process.

Corollary 4.3. Let C : I × Rn ⇒ Rn be a set-valued map with non-empty closed convex values.

Suppose that there exist a non-negative real constant λ < 1, and a function β ∈ W 1,2(I,R) which

is non-negative on [0, T [ and non-decreasing with β(T ) < ∞ and β(0) = 0 such that

|d(u,C(t, y))− d(u,C(s, z))| ≤ |β(t)− β(s)|+ λ∥y − z∥ ∀t, s ∈ I, ∀u, y, z ∈ Rn.

Let f : I × I ×Rm+n → Rn, ϕ1 : Rn → R and ϕ2 : I ×R4n+2m → R be defined as in Theorem 4.2.

The optimal control problem is

minϕ[u, a, b] = ϕ1(u(T )) +

∫ T

0

ϕ2(t, u(t), a(t), b(t), u̇(t), ȧ(t), ḃ(t))dt,

on the set of controls (a(·), b(·)) and the associated solutions u(·) of the controlled integro-sweeping

process 

−u̇(t) ∈ NC(t,a(t))u(t) +

∫ t

0

f(t, s, b(s), u(s))ds a.e. t ∈ I,

u(t) ∈ C(t, a(t)), t ∈ I,

(a(·), b(·)) ∈ W 1,2(I,Rn+m),

a(0) = a0, u(0) = u0 ∈ C(0, a0).

Then, the minimizing problem above admits an optimal solution in the space W 1,2(I,R2n+m).
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