Naturality and definability II

Downloads

DOI:

https://doi.org/10.4067/S0719-06462019000300009

Abstract

We regard an algebraic construction as a set-theoretically defined map taking structures A to structures B which have A as a distinguished part, in such a way that any isomorphism from A to A' lifts to an isomorphism from B to B'. In general the construction defines B up to isomorphism over A. A construction is uniformisable if the set-theoretic definition can be given in a form such that for each A the corresponding B is determined uniquely. A construction is natural if restriction from B to its part A always determines a map from the automorphism group of B to that of A which is a split surjective group homomorphism. We prove that there is no transitive model of ZFC (Zermelo-Fraenkel set theory with Choice) in which the uniformisable constructions are exactly the natural ones. We construct a transitive model of ZFC in which every uniformisable construction (with a restriction on the parameters in the formulas defining the construction) is ‘weakly‘ natural. Corollaries are that the construction of algebraic closures of fields and the construction of divisible hulls of abelian groups have no uniformisations definable in ZFC without parameters.

Keywords

Naturality , uniformisability , transitive models , ZFC set theory
  • Pages: 09–27
  • Date Published: 2020-01-08
  • Vol. 21 No. 3 (2019)
[1] Jiri Adámek, Horst Herrlich, Jirí Rosick´y and Walter Tholen, ‘Injective hulls are not natural‘, Algebra Universalis 48 (2002) 379–388.
[2] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge 1990.
[3] H. Friedman, ‘On the naturalness of definable operations‘, Houston J. Math. 5 (1979) 325– 330.
[4] W. Hodges, ‘On the effectivity of some field constructions‘, Proc. London Math. Soc. (3) 32 (1976) 133–162.
[5] W. Hodges, ‘Definability and automorphism groups‘, in Proceedings of International Congress in Logic, Methodology and Philosophy of Science, Oviedo 2003, ed. Petr Hájek et al., King‘s College Publications, London 2005, pp. 107–120; ISBN 1-904987-21-4.
[6] W. Hodges and S. Shelah, ‘Naturality and definability I‘, J. London Math. Soc. 33 (1986) 1–12.
[7] T. Jech, Set theory (Academic Press, New York, 1978).
[8] G. Melles, ‘Classification theory and generalized recursive functions‘, D.Phil. dissertation, University of California at Irvine, 1989.

Downloads

Download data is not yet available.

Published

2020-01-08

How to Cite

[1]
W. Hodges and S. Shelah, “Naturality and definability II”, CUBO, vol. 21, no. 3, pp. 09–27, Jan. 2020.

Issue

Section

Articles