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Facultad de Ciencias, Universidad de Chile

Casilla 653. Santiago – Chile

Ramm Alexander G.

ramm@math.ksu.edu

Department of Mathematics

Kansas State University

Manhattan KS 66506-2602 – USA

Rebolledo Rolando

rolando.rebolledo@uv.cl

Instituto de Matemáticas
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ABSTRACT

We study the K-theory ranks for crossed products of C∗-algebras by the group of

integers. As an application, we obtain certain estimates for the K-theory ranks of

the group C∗-algebras of torsion free, finitely generated, nilpotent or solvable discrete

groups, written as successive semi-direct products.

RESUMEN

Estudiamos los rangos de K-teoŕıa para productos cruzados de C∗-álgebras por el grupo

de los enteros. Como aplicación, obtenemos ciertas estimaciones para los rangos de K-

teoŕıa de las C∗-álgebras de grupos libres de torsión, finitamente generados, nilpotentes

o solubles, escritos como productos semidirectos sucesivos.
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1 Introduction

In this paper we study the (free or Z) ranks of the K-theory groups for crossed products of

C∗-algebras by Z the group of integers. Such C∗-algebras and their K-theory play fundamental

roles in the theory of C∗-algebras and K-theory (cf. Blackadar [1], Pedersen [2], Tomiyama [10],

Wegge-Olsen [11]). By using the Pimsner-Voiculescu six-term exact sequence (PV) of the K-

theory groups of the crossed product C∗-algebra A ⋊α Z of a C∗-algebra A by an action α of Z

by automorphisms (Pimsner and Voiculescu [3], cf. [1]), in Section 2 we estimate the K-theory

group ranks of A ⋊α Z in terms of those of A. This simple result should be new in some insight

and interesting in some sense, as another introductory step in this developed research area. As

an easy, direct application of PV, in Section 3 we obtain certain estimates for the K-theory ranks

of the group C∗-algebras of torsion free, finitely generated, nilpotent or solvable discrete groups,

written as successive semi-direct products by torsion free, abelian groups. There may be more other

applications left to be considered, but not so many probably. May as well refer to [5], [6], [7], [8],

[9] for some related details. In particular, in [5], [7], and [9], the K-theory groups of the C∗-algebras

of the generalized Heisenberg discrete nilpotent groups as typical examples of non-type I discrete

amenable groups are computed by some methods of determining K-theory class generators as

projections or unitaries, of the K-theory groups, but it seems that still, the K-theory groups of the

C∗-algebras of general (torsion free, finitely generated) nilpotent (or solvable) discrete groups are

not yet done completely, because of some difficulties involving successive unknown group actions.

However, this time, without determining their K-theory groups as groups, the K-theory group rank

estimates are obtained by us in such a way mentioned above, as the motivated examples, as given

in Section 3.

2 The K-theory ranks for crossed product C∗-algebras by Z

Let A be a C∗-algebra. We denote by A ⋊α Z the crossed product C∗-algebra of A by an action

α of Z on A by automorphisms, where αn = αn = α ◦ · · · ◦ α as the n-fold composition of

α = α1 : A→ A for n ∈ Z (cf. Blackadar [1], Pedersen [2], Tomiyama [10]). There is the following

Pimsner-Voiculescu six-term exact sequence of the K-theory abelian groups (K0 additive and

K1 multiplicative) (Pimsener and Voiculescu [3], cf. [1]):

K0(A)
(id−α)∗−−−−−→ K0(A)

i∗−−−−→ K0(A ⋊α Z)

∂

x




ind exp





y
∂

K1(A⋊α Z)
i∗←−−−− K1(A)

(id−α)∗
←−−−−− K1(A),

where id : A → A is the identity map and i : A → A ⋊α Z is the canonical inclusion map and the

K-theory group maps (id − α)∗ and i∗ are induced by id − α and i, respectively, and the upward
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and downward arrows as the boundary maps ∂ are the index map as ind and the exponential map

as exp, respectively.

It follows from exactness of the PV diagram above that

Lemma 2.1. For any C∗-algebra A and any A⋊α Z, we have the following short exact sequences:

for j = 0, 1,

0 −→ Kj(A)/(id − α)∗Kj(A) = Kj(A)/ker(i∗)

i∗−→ Kj(A ⋊α Z)
∂−→ im(∂) = ker(id − α)∗ → 0

with (id−α)∗Kj(A) = ker(i∗) ⊂ Kj(A), where (id−α)∗Kj(A) is the image of Kj(A) under (id−α)∗

and ker(id − α)∗ is the kernel of (id − α)∗ on K0 or K1, and im(∂) is the image of the boundary

map ∂ equal to exp or ind.

Let G be an abelian group. We denote by rankZ G the Z-rank (or free rank) of G, which is

also called the Betti number of G, denoted as b(G). For a C∗-algebra A, set bj(A) = b(Kj(A)) for

j = 0, 1, each of which we call the j-th Betti number of A (cf. [6]). We denote by t(G) the torsion

rank of G, which is defined to be the number of direct sum components of indecomposable, finite

cyclic groups in G. Set tj(A) = t(Kj(A)) for j = 0, 1, each of which we may call the j-th torsion

rank of A.

Recall as a fundament fact in group theory that a finitely generated abelian group H has the

following direct product decomposition:

H ∼= Z
b(H) × Zp

n1
1

× · · ·Z
p

nt(H)

t(H)

,

where p1, · · ·pt(H) are primes and n1, · · · , nt(H) are some positive integers and each Z
p

nj
j

=

Z/p
nj

j Z for 1 ≤ j ≤ t(H) is the finite cyclic group of order p
nj

j , that is indecomposable, and these

powers of primes are distinct.

Lemma 2.2. For a short exact sequence 1 → H → G → G/H → 1 of finitely generated, abelian

groups, we have b(H) ≤ b(G) and b(G/H) ≤ b(G) and b(G) = b(H) + b(G/H).

Proof. Note that there is no homomorphism from a finite torsion group to a torsion free group.

Hence b(H) ≤ b(G), and b(G/H) = b(G) − b(H) ≤ b(G).

Proposition 1. For any A⋊α Z, we have that for j = 0, 1,

bj(A⋊α Z) ≤ b0(A) + b1(A)

and b(Kj(A)/(id− α)∗Kj(A)) ≤ bj(A ⋊α Z).
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Proof. By using the Lemmas 2.1 and 2.2 above, we obtain

bj(A⋊α Z) = bj(Kj(A)/ker(i∗)) + bj+1(ker(id − α)∗)

≤ bj(Kj(A)) + bj+1(Kj+1(A))

for j = 0, 1 and j+ 1 (mod 2), and bj(A⋊α Z) ≥ bj(Kj(A)/ker(i∗)).

Let G be an abelian group. Let Gf and Gt denote the free and torsion parts of G respectively,

so that G ∼= Gf ×Gt with b(G) = b(Gf) and t(G) = t(Gt).

Lemma 2.3. Let G be a finitely generated, abelian group and H a subgroup. Then there is the

following short exact sequence of groups, preserving the free and torsion parts of H and G :

0→ H = Hf ×Ht → G = Gf × Gt → G/H = (Gf/Hf)× (Gt/Ht)→ 0

with Gt
∼= Ht × (Gt/Ht) and (Gf/Hf)t × (Gt/Ht) ∼= (G/H)t and (Gf/Hf)f = (G/H)f. It then

follows that

t(H) ≤ t(G) ≤ t(H) + t(G/H).

Proof. Note that there are injective maps from Z to Z and from Zk to Zl with k ≤ l, but there

is no injective map from Z to a finite cyclic group. It follows that an injective map from H to G

preserves their free and torsion parts. Note also that Gt/Ht is a torsion group, but Gf/Hf may

have its free part (Gf/Hf)f and torsion part (Gf/Hf)t.

Remark. The inequality t(G/H) ≤ t(G) does not hold in general. For instance, there is a

quotient map from G = Z to Z2 = Z/2Z, with H = 2Z, so that t(H) = t(G) = 0 < 1 = t(G/H) =

t(H) + t(G/H).

Proposition 2. It then follows that for j = 0, 1 ∈ Z2,

tj(A⋊α Z) ≤ t(Kj(A)/(id− α)∗Kj(A)) + t(ker(id − α)∗)

with ker(id− α)∗ ⊂ Kj+1(A) as a subgroup, and

t(Kj(A)/(id − α)∗Kj(A)) ≤ tj(A⋊α Z).

Remark. Let A be a C∗-algebra. Set χ(A) = b0(A) − b1(A), which is called the Euler charac-

teristic of A, where we assume that it is defined to be an integer or ±∞ (or formally ∞ −∞). If

χ(A) and χ(A⋊α Z) are finite, then it holds that χ(A⋊α Z) = 0 by using the PV diagram (see [6]

or [8]).

Let A be a C∗-algebra. We denote by A ⋊α(1) Z · · · ⋊α(n) Z the n-fold successive crossed

product C∗-algebra of A by successive actions α(j) of Z (1 ≤ j ≤ n). It then follows that
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Theorem 2.1. For such an n-fold successive crossed product C∗-algebra of a C∗-algebra A by n

successive actions of Z as above or below, we have

bj(A⋊α(1) Z · · ·⋊α(n) Z) ≤ 2n−1(b0(A) + b1(A))

for j = 0, 1.

Proof. When n = 2, we have

bj(A⋊α(1) Z ⋊α(2) Z) ≤ b0(A⋊α(1) Z) + b1(A⋊α(1) Z)

≤ 2(b0(A) + b1(A)).

When n = 3, we have

bj(A ⋊α(1) Z⋊α(2) Z ⋊α(3) Z) ≤ b0(A⋊α(1) Z ⋊α(2) Z) + b1(A ⋊α(1) Z ⋊α(2) Z)

≤ 2[b0(A ⋊α(1) Z) + b1(A ⋊α(1) Z)]

≤ 22(b0(A) + b1(A)).

The general case follows by induction with respect to n.

3 Examples and more

Example 1. Let C(Tn) be the C∗-algebra of all continuous, complex-valued functions on the n-

dimensional torus Tn, which is also the univesal C∗-algebra generated by mutually commuting n

unitaries. The C∗-algebra is regarded as the successive crossed product C∗-algebra of C by trivial

actions id of Z:

C(Tn) ∼= C∗(Zn) ∼= C⋊α(1) Z · · ·⋊α(n) Z

with α(j) = id for 1 ≤ j ≤ n, via the Fourier transform from C∗(Zn) to C(Tn), with Tn as the

dual group of Zn. It then follows that

bj(C(T
n)) ≤ 2n−1(b0(C) + b1(C)) = 2n−1(1+ 0) = 2n−1

for j = 0, 1. Moreover, the estimate equality holds. Because Kj(C(T
n)) ∼= Z2n−1

(cf. [11]), which

is also deduced by using the Pimsner-Voiculescu six-term exact sequence repeatedly.

Example 2. Let Tn
Θ denote the n-dimensional noncommutative torus, which is the C∗-algebra

generated by n unitaries uj such that ujuk = e2πiθj,kukuj for 1 ≤ j, k ≤ n, where i =
√
−1 and

Θ = (θj,k) is a n× n skew adjoint matrix over R of reals so that −Θ = Θt the transpose of Θ (cf.

[1], [11]). The C∗-algebra is regarded as the successive crossed product C∗-algebra of C by id of Z:

T
n
Θ

∼= C ⋊id Z ⋊α(2) Z · · ·⋊α(n) Z
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and by successive actions α(j) for 2 ≤ j ≤ n given by

α(j)uk = Ad(uj)uk = ujuku
∗

j = e2πiθj,kuk

for 1 ≤ k ≤ j− 1. It then follows that

bj(T
n
Θ) ≤ 2n−1(b0(C) + b1(C)) = 2n−1(1+ 0) = 2n−1

for j = 0, 1. Moreover, the estimate equality holds. b Because Kj(T
n
Θ)

∼= Z2n−1

, which is deduced

by using the Pimsner-Voiculescu six-term exact sequence repeatedly. Note that Example 3.1 is

just the case where Θ is the zero matrix.

Example 3. Let H2n+1 be the discrete Heisenberg nilpotent group of rank 2n + 1, consisting of

the following (n + 2)× (n + 2) invertible matrices:

H2n+1 =














1 a c

0n,1 1n bt

0 01,n 1









∈ GLn+2(R) |a, b ∈ Z
n, c ∈ Z






where 1n is the n × n identity matrix and 0j,k is the j × k zero matrix, and with a, b ∈ Zn as

row vectors and bt the transpose of b. The group H2n+1 is viewed as the semi-direct product

Zn+1 ⋊α Zn of tuples (c, b, a) identified with the matrices above, where the action α is defined by

matrix multiplication as

αa(c, b) = a(c, b)a−1 = (c+

n∑

j=1

ajbj, b) ∈ Z
n+1,

where a = (a1, · · · , an) = (0, 0n, a) and (c, b) = (c, b1, · · · , bn) = (c, b, 0n), with 0n = (0, · · · , 0)
the zero of Zn. Then the group C∗-algebra C∗(H2n+1) = C∗(Zn+1

⋊α Z
n) is regarded as the

crossed product C∗-algebra C∗(Zn+1)⋊α Zn, where the action α of the semi-direct product group

is extended and identified with that of the crossed product C∗-algebra, by the same symbol as

α (also in what follows). Note that each element of an amenable (such as nilpotent or solvable)

discrete group Γ is identified with the corresponding unitary under the left regular representation

λ on l2(Γ) the Hilbert space of all square summable, complex-valued functions on Γ (cf. [2]). Let

ej (1 ≤ j ≤ 2n + 1) be the canonical basis for Zn+1 and Zn in Zn+1 ⋊α Zn and let uj = λej

(1 ≤ j ≤ 2n + 1) be the corresponding unitaries in C∗(Zn+1 ⋊α Zn). Then we have that

αa(u1) = λαa(e1) = λe1
= u1,

αa(uj) = λαa(ej) = λaj−1e1+ej
= u

aj−1

1 uj

for 2 ≤ j ≤ n+ 1. It then follows that

bj(C
∗(H2n+1)) ≤ 2n−1(b0(C(T

n+1)) + b1(C(T
n+1)) = 2n−1(2n + 2n) = 22n

for j = 0, 1. In fact, it is computed in [9, Theorem 4.7] that Kj(C
∗(H2n+1)) ∼= Z2n(2n−1)+1 for

j = 0, 1, with 2n(2n − 1) + 1 ≤ 22n for n ≥ 1 (cf. [5], [7]).
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Theorem 3.1. Let G be a successive semi-direct product of torsion free, finitely generated discrete

group, written as G = Zn0 ⋊α(1) Z
n1 · · ·⋊α(k) Z

nk for some n0, · · · , nk ≥ 1, k ≥ 1. Let C∗(G) be

the group C∗-algebra of G. Then bj(C
∗(G)) ≤ 2n0+n1+···+nk−1 for j = 0, 1.

Proof. Note that

C∗(G) ∼= C∗(Zn0)⋊α(1) Z
n1 · · ·⋊α(k) Z

nk

with C∗(Zn0) ∼= C(Tn0), where the right hand side above is viewed as an n1+ · · ·+nk fold, crossed

product C∗-algebra by the successive actions of Z.

Theorem 3.2. Let G be a torsion free, finitely generated nilpotent discrete group, with b(G) = n.

Then bj(C
∗(G)) ≤ 2n−1 for j = 0, 1.

Proof. It is well known that such a nilpotent discrete group can be written as such a successive

semi-direct product as in the theorem above.

Remark. These theorems above partially answer to a question as given in the Remark of [9,

Theorem 4.7]. Note that any torsion free, finitely generated solvable discrete group may be not

be written as such a successive semi-direct product as above, in the sense as neither always being

split nor being supper-solvable with such a normal series (cf. [4]).

Acknowledgement. The author would like to thank the referee for several critical comments and

suggestions for some improvement as in the introduction.
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Math. Japon. 77, No. 1 (2014), 119-138 :e-2013, 621-640.

[9] T. Sudo, The K-theory for the C∗-algebras of nilpotent discrete groups by examples, Bulletin

of the Faculty of Science, University of the Ryukyus, No. 104, (September 2017), 1-40.

[10] J. Tomiyama, Invitation to C∗-algebras and topological dynamics, World Scientific (1987).

[11] N. E. Wegge-Olsen, K-theory and C∗-algebras, Oxford Univ. Press (1993).



CUBO A Mathematical Journal
Vol.21, No

¯ 03, (09–27). December 2019
http: // dx. doi. org/ 10. 4067/ S0719-06462019000300009

Naturality and definability II

Wilfrid Hodges1 and Saharon Shelah2

1Herons Brook, Sticklepath,

Devon EX20 2PY, England.

wilfrid.hodges@btinternet.com

2Institute of Mathematics, Hebrew University,

Jerusalem, Israel.

shelah@math.huji.ac.il

ABSTRACT

We regard an algebraic construction as a set-theoretically defined map taking struc-

tures A to structures B which have A as a distinguished part, in such a way that any

isomorphism from A to A′ lifts to an isomorphism from B to B′. In general the con-

struction defines B up to isomorphism over A. A construction is uniformisable if the

set-theoretic definition can be given in a form such that for each A the corresponding

B is determined uniquely. A construction is natural if restriction from B to its part

A always determines a map from the automorphism group of B to that of A which is

a split surjective group homomorphism. We prove that there is no transitive model of

ZFC (Zermelo-Fraenkel set theory with Choice) in which the uniformisable construc-

tions are exactly the natural ones. We construct a transitive model of ZFC in which

every uniformisable construction (with a restriction on the parameters in the formulas

defining the construction) is ‘weakly’ natural. Corollaries are that the construction of

algebraic closures of fields and the construction of divisible hulls of abelian groups have

no uniformisations definable in ZFC without parameters.

http://dx.doi.org/10.4067/S0719-06462019000300009
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RESUMEN

Consideramos una construcción algebraica como una aplicación conjuntista tomando

estructuras A a estructuras B que tienen a A como parte distinguida, de manera tal

que cualquier isomorfismo de A a A′ se levanta a un isomorfismo de B a B′. En general

la construcción define B salvo isomorfismo sobre A. Una construcción es uniformizable

si la definición conjuntista puede darse de forma tal que para cada A el B correspon-

diente está determinado únicamente. Una construcción es natural si la restricción de

B a su parte A siempre determina una aplicación desde el grupo de automorfismos

de B al correspondiente de A que es un homomorfismo de grupos sobreyectivo que

escinde. Probamos que no existe un modelo transitivo de ZFC (teoŕıa de conjuntos de

Zermelo-Fraenkel con Axioma de Elección) en el cual las construcciones uniformizables

sean exactamente las naturales. Construimos un modelo transitivo de ZFC en el cual

toda construcción uniformizable (con una restricción en los parámetros de las fórmulas

definiendo la construcción) es ‘débilmente’ natural. Como corolarios obtenemos que la

construcción de clausuras algebraicas de cuerpos y la construcción de cápsulas divisibles

de grupos abelianos no tienen uniformizaciones definibles en ZFC sin parámetros.

Keywords and Phrases: Naturality, uniformisability, transitive models, ZFC set theory

2010 AMS Mathematics Subject Classification: 08A35, 03E35
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1 Introduction

In two papers [4] and [6] we noted that in common practice many algebraic constructions are

defined only ‘up to isomorphism’ rather than explicitly. We mentioned some questions raised by

this fact, and we gave some partial answers. The present paper provides much fuller answers,

though some questions remain open. Our main result, Theorem 5.1, implies at once that there is

a transitive model of Zermelo-Fraenkel set theory with Choice (ZFC) in which every construction

explicitly definable without parameters is ‘weakly natural’ (a weakening of the notion of a natural

transformation). A corollary is that there are models of ZFC in which some well-known construc-

tions, such as algebraic closure of fields, are not explicitly definable without parameters; some of

these consequences were reported in [5]. We also show (Theorem 4.3) that there is no transitive

model of ZFC in which the constructions explicitly definable (with parameters) are precisely the

natural ones. The main questions left open are to extend Theorem 5.1 to constructions definable

with parameters, and to determine whether Theorem 5.1 holds without the word ‘weakly’.

Most of this work was done when the second author visited the first at Queen Mary, London

University under SERC Visiting Fellowship grant GR/E9/639 in summer 1989, and later when the

two authors took part in the Mathematical Logic year at the Mittag-Leffler Institute in Djursholm

in September 2000. The first author had made a conjecture relating uniformisability to naturality.

The second author proposed the approach of section 4 on the first occasion and the idea behind the

proof of Theorem 5.1 on the second. Between 1975 and 2000 the authors (separately or together)

had given some six or seven false proofs of versions of Theorem 5.1 or its negation. The authors

thank Ian Hodkinson for his invaluable help (while research assistant to Hodges under SERC grant

GR/D/33298) in unpicking some of the earlier false proofs. The first author also thanks the second

author for his willingness to persist for several decades with these highly elusive problems.

2 Constructions up to isomorphism

To make this paper self-contained, we repeat or paraphrase some definitions from [6].

Definition 2.1. Let M be a transitive model of ZFC. By a construction (in M) we mean a triple

C = 〈φ1, φ2, φ3〉 where

(1) φ1(x), φ2(x) and φ3(x) are formulas of the language of set theory, possibly with parameters

from M ;

(2) φ1 and φ2 respectively define first-order languages L and L− in M ; every symbol of L− is a

symbol of L, and the symbols of L \ L− include a 1-ary relation symbol P ;

(3) the class {a :M |= φ3(a)} is in M a class of L-structures, called the graph of C;
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(4) if B is in the graph of C then PB, the set of elements of B satisfying Px, forms the domain

of an L−-structure B− inside B; thus if Q is a relation symbol of L− then QB−

= QB ↾ PB,

and similarly for function symbols; the class of all structures B− as B ranges over the graph

of C is called the domain of C;

(5) the domain of C is closed under isomorphism; and if A,B are in the graph of C then every

isomorphism from A− onto B− extends to an isomorphism from A onto B.

A typical example is the construction whose domain is the class of fields, and the structures B

in the graph are the algebraic closures of B−, with B− picked out by the relation symbol P . The

algebraic closure of a field is determined only up to isomorphism over the field; in the terminology

below, algebraic closures are ‘representable’ but not known to be ‘uniformisable’. (What we called

‘definable’ in [6], and ‘explicitly definable’ in the introduction above, we now call ‘uniformisable’;

the new term agrees better with the common mathematical use of these words.)

Definition 2.2. (1) We say that the construction C is X-representable (in M) if X is a set in

M and all the parameters of φ1, φ2, φ3 lie in X. We say that C is small if the domain of C

(and hence also its graph) contains only a set of isomorphism types of structures.

(2) An important special case is where the domain of C contains exactly one isomorphism type

of structure; in this case we say C is unitype.

The map B− 7→ B on the domain of a construction C is in general not single-valued; but by

clause (5) it is single-valued up to isomorphism over B−.

Definition 2.3. (1) We say that C is uniformisable (in M) if its graph can be uniformised, i.e.

there is a formula φ4(x, y) of set theory (the uniformising formula) such that

for each A in the domain of C there is a unique B such that M |= φ4(A,B), and

this B is an L-structure in the graph of C with A = B−.

(2) We say that C is X-uniformisable (in M) if there is such a φ4 whose parameters lie in the

set X.

3 Splitting, naturality and weak naturality

Definition 3.1. Let ν : G→ H be a surjective group homomorphism.

(i) A splitting of ν is a group homomorphism s : H → G such that νs is the identity on H. We

say that ν splits if it has a splitting.

(ii) By a weak splitting of ν we mean a set-theoretic map s : H → G such that



CUBO
21, 3 (2019)

Naturality and definability II 13

(a) νs is the identity on H;

(b) The composite map

H
s

−→ G
nat
−→ G/Z(G)

is a homomorphism, where Z(G) is the centre of G and nat is the natural homomor-

phism.

In particular every splitting is a weak splitting.

(iii) We say that ν weakly splits if it has a weak splitting.

Definition 3.2. Let C be a construction. If B is in the graph of C and A = B−, then by (4) in

section 2, restriction from B to A induces a homomorphism ν : Aut(B) → Aut(A), and by (5) this

homomorphism is surjective. We say that C is natural if for every such B the homomorphism ν

splits. We say that C is weakly natural if for every such B the homomorphism ν weakly splits.

Note that if C is not (weakly) natural, then some structure B in the graph of C witnesses

this, so by restricting C to the isomorphism type of B we get a unitype construction which is not

(weakly) natural.

Example One. The construction of algebraic closures of fields is not weakly natural. The

construction of divisible hulls of abelian groups is not weakly natural. Both these facts are proved

in [5], using cohomology of finite abelian groups and (for the fields) some Galois theory. So they

hold in any model of ZFC.

Example Two. There are constructions that are weakly natural but not natural. The

simplest is as follows. The structures B in the graph have six elements a, b, c, d, e, f and the

positive diagram

Pa, Pb,Rac,Rae,Rbd,Rbf, Scd, Sde, Sef, Sfc.

The signature of B consists of the relation symbols P,R, S, and the signature of A = B− is empty.

Then Aut(B) = Z/4Z, Aut(A) = Z/2Z and ν : Aut(B) → Aut(A) is the natural surjection. There

is no splitting, because the automorphism of A of order 2 lifts only to automorphisms of B of order

4. But the construction is weakly natural because Aut(A) is abelian and hence is its own centre.

In [6] we conjectured that there are models of set theory in which each representable construc-

tion is uniformisable if and only if it is natural. Section 4 will show that no reasonable version of

this conjecture is true. Sections 5 and 6 will show that there are models in which uniformisability

implies weak naturality. Section 7 solves some of the problems raised in [4] and [6], and notes some

connections with other things in the literature.
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4 Uniformisability

Definition 4.1. A structure B is said to be rigid if it has no nontrivial automorphisms. We will

say that a construction C is rigid-based if for every structure B in the graph of C, B− has no

nontrivial automorphisms.

A rigid-based construction is trivially natural.

Let M be a transitive model of set theory. We will use a device that takes any construction

C in M to a construction Cr, called its rigidification. The device exploits the fact that if X is any

nonempty set and TC(X) is the transitive closure of X , then the structure (TC(X), ǫ) is rigid,

thanks to the axiom of Foundation.

Suppose B is in the graph of C. Then without affecting any of the relevant isomorphisms, we

can assume that none of the elements of B outside PB lie in TC(PB). For example we can make

a set-theoretic replacement of each element b outside PB by the ordered pair 〈b, TC(PB)〉.

To form Cr, each structure B− in the domain of C is replaced by a two-part structure Br−,

where the first part is B− and the second part consists of the set TC(PB) with a membership

relation ε copying that in M . Now the structure Br is defined to be the amalgam of B and Br−,

so that Br− is (Br)−. Then Cr is the closure of the class

{Br : B in the graph of C}

under isomorphism in M . It is clear that Cr and the map B 7→ Br are definable in M using no

parameters beyond those in the formulas representing C.

Lemma 4.2. If C is any construction, then C
r is rigid-based, natural and not small.

Proof. If B− is in the domain of C, then Br− is rigid because its set of elements is transitively

closed; so Cr is rigid-based. Naturality follows at once. Since the domain of C is closed under

isomorphism, the relevant transitive closures are arbitrarily large. �

Theorem 4.3. There is no transitive model M of ZFC in which both the following are true:

(a) Every rigid-based construction in M is uniformisable.

(b) Every unitype uniformisable construction in M is weakly natural.

In particular there is no transitive model of ZFC in which the natural constructions are exactly the

uniformisable ones.

Proof. Suppose M is a counterexample. By Example One in section 3 there are some non-

weakly-natural constructions in M . So by restricting to a single isomorphism type we can find a
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unitype non-weakly-natural construction C in M . Then Cr is rigid-based and hence uniformisable

by assumption. But we can use the uniformising formula of Cr to uniformise C with the same

parameters. So by the assumption on M again, C is weakly natural; contradiction. �

The next result gives some finer information about small constructions.

Theorem 4.4. Let M be a transitive model of ZFC, Y a set in M and c̄ a well-ordering of Y in

M . Assume:

In M , if X is any set, then every unitype X-representable rigid-based construction is

X ∪ Y -uniformisable.

Then

In M , every small ∅-representable construction is {c̄}-uniformisable,

and hence there are unitype {c̄}-uniformisable constructions that are not weakly natural.

Proof. Let γ be the length of c̄. Write v̄ for the sequence of variables (vi : i < γ). In M we

can well-order (definably, with no parameters) the class of pairs 〈j, ψ〉 where j is an ordinal and

ψ(x, y, z, v̄) is a formula of set theory. We write Hj for the set of sets hereditarily of cardinality

less than ℵj in M .

Let C be a small ∅-representable construction inM . Then Cr is an ∅-representable rigid-based

construction. It is not small; but if B is any structure in the graph of C, let CB be the construction

got from Cr by restricting the graph to structures isomorphic to Br. Then CB is a unitype and

{B}-representable rigid-based construction, so by assumption it is {B} ∪ Y -uniformisable, say by

a formula ψB(−,−, B, c̄) where B, c̄ are the parameters.

By the reflection principle in M there is an ordinal j such that

M |= ∃C(C ∈ CB∧C− = Br−∧C is the unique set such that “Hj |= ψB(B
r−, C,B, c̄)”).

Hence in M there is a first pair 〈jB, ψB〉, definable from B, such that

M |= ∃C(C ∈ CB∧C
− = Br−∧C is the unique set such that “HjB |= ψB(B

r−, C,B, c̄)”).

Since all of this is uniform in B, it follows that the construction C is {c̄}-uniformisable in M by

the formula φ(x, y, c̄) which says

y = C|L where Hjx |= ψx(x
r−, C, x, c̄).

The last clause of the theorem follows by choosing C suitably, for example using Example One of

section 3. �
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5 The set theory

Theorem 5.1. Let M be a countable transitive model of ZFC and GCH, and λ a transfinite

cardinal in M . Then there is a forcing extension N of M with the following property. If C is a

uniformisable unitype construction defined in N with parameters in M , whose graph contains a

structure B in M with B and Aut(B) both of cardinality 6 λ, then C is weakly natural in N .

The proof of this theorem will occupy this and the next section. The idea is to consider any

unitype construction C whose parameters lie in M , and introduce a very homogeneous generic

structure B⋆ into the graph of C. The homogeneity of B⋆ will make it impossible to uniformise

without some form of naturality. This is a novel argument. At present we can apply it simultane-

ously for all unitype constructions satisfying the stated restriction to a fixed λ. We expect that a

similar proof by class forcing will eliminate this restriction, but this is delayed.

Our notation for forcing mainly follows Jech [7]. We define P to be the notion of forcing in M

that consists of all partial maps from λ++ × λ++ × λ++ to 2 which have domain of cardinality at

most λ. We abbreviate λ++ × λ++ × λ++ to (λ++)3.

Lemma 5.2. The notion of forcing P is λ+-closed and satisfies the λ++-chain condition. �

For definiteness we take MP, the class of P-names, to be the smallest class of elements of

M such that if X is any subset of MP and for each y ∈ X , Iy is a non-empty antichain in

P, then {(p, y) : y ∈ X, p ∈ Iy} is a P-name in MP; the domain of this P-name is X . Then

for every P-generic G the interpretation of the name ẋ = {(p, y) : y ∈ X, p ∈ Iy} is the set

ẋ[G] = {y[G] : ∃p ∈ G, (p, y) ∈ ẋ}. We write ẋ for P-names, and x̌ for the canonical P-name of the

element x ∈M .

We take a P-generic set G overM and we put N =M [G]. We will prove Theorem 5.1 for this

N . In M we fix a unitype construction C, a structure B in the graph of C, and a uniformising

formula φ(x, y). We write A for B−.

Definition 5.3. In M we define two homomorphisms, I from the group of permutations of (λ++)3

to the group of automorphisms of P as ordered set; and J from the group of automorphisms of P

to the group of permutations of MP. Thus:

(a) Let α be a permutation of (λ++)3 and p ∈ P. Then we define αI(p) by

(αI(p))(α(i, j, k)) = p(i, j, k) for all i, j, k < λ++.
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(b) Let γ be an automorphism of P. Then γJ is defined on MP by induction on rank:

γJ ẋ = {(γp, γJ ẏ) : (p, ẏ) ∈ ẋ}.

The maps I and J are clearly homomorphisms.

Lemma 5.4. Let γ be an automorphism of P which is in M . Then:

(a) If G is a P-generic set over M , then γG is P-generic over M , and for every P-name ẋ we

have

(γJ ẋ)[γG] = ẋ[G]

(where γG = {γp : p ∈ G}).

(b) If ẋ is a P-name then (α) ⇒ (β), where we write

(α): for every pair (p, ẏ), (p, ẏ) ∈ ẋ if and only if (γp, γJ ẏ) ∈ ẋ.

(β): γJ(ẋ) = ẋ.

Proof. . For (a), by induction on the rank of ẋ,

ẋ[G] = {ẏ[G] : ∃p ∈ G, (p, ẏ) ∈ ẋ}

= {γJ ẏ[γG] : ∃γp ∈ γG, (γp, γJ ẏ) ∈ γJ ẋ}

= {ż[γG] : ∃q ∈ γG, (q, ż) ∈ γJ ẋ}

= (γJ ẋ)[γG].

Part (b) is immediate from the definition of γJ . �

Since G is P-generic,
⋃
G is a total map from (λ++)3 to 2. For each i < λ++ and j < λ++,

we define aij = {k < λ++ :
⋃
G(i, j, k) = 1} and a′i = {aij : j < λ+}, so that a′i is a set of λ++

independently generic subsets of λ++. If a and b are (in N) sets of subsets of λ++, we put a ≡ b

iff the symmetric difference of a and b has cardinality 6 λ. We write ai for the equivalence class

(a′i)
≡. The P-names ȧij , ȧ

′

i, ȧi can be chosen in MP independently of the choice of G.

Consider again the structures A and B in M . Without loss we can suppose that dom(A)

is an initial segment of λ. In M [G] there is a map e which takes each element i of A to the

corresponding set ai = ȧi[G]; by means of e we can define a copy A⋆ of A whose elements are the

sets ai (i ∈ dom(A)).

Lemma 5.5. The P-names Ȧ⋆, ė can be chosen to be independent of the choice of G. Also we can

take the boolean names ȧij and ȧ′i to be

ȧij = {(((i, j, k) 7→ 1), ǩ) : (i, j, k) ∈ (λ++)3},

ȧ′i = {(1, ȧij) : j < λ++}.
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�

A notion of forcing Q in M is said to be homogeneous if for any two conditions p, q ∈ P there

is an automorphism α of Q in M such that p and αq are compatible.

Lemma 5.6. P is homogeneous. �

By this lemma and the fact that A,B and the parameters of the uniformising formula φ lie in

M , the statement “φ uniformises a construction on the class of structures isomorphic to A, which

takes A to B” is true in N independently of the choice of G. In particular there are P-names Ḃ⋆, ε̇

such that

||Ḃ is the unique structure such that φ(Ȧ⋆, Ḃ∗) holds, (5.1)

ė : Ǎ→ Ȧ∗ is the isomorphism such that ė(̌ı) = ȧi for

each i ∈ dom(Ǎ), and ε̇ : B̌ → Ḃ∗ is an isomorphism

which extends ė||P = 1.

Lemma 5.7. Let G be P-generic over M . Then:

(a) Aut(A)M = Aut(A)M [G].

(b) Aut(B)M = Aut(B)M [G].

(c) The set of maps from Aut(A) to Aut(B) is the same in M as it is in M [G].

Proof. . P is λ+-closed by Lemma 5.2. Hence no new permutations of A or B are added since

|A| ≤ |B| ≤ λ in M ; this proves (a), (b). Likewise (c) holds since |Aut(A)| ≤ |Aut(B)| ≤ λ in M .

�

We regard Aut(A) as a permutation group on λ++ by letting it fix all the elements of λ++

which are not in dom(A).

We write Π for the cartesian product
∏

λ++ Aut(A) of λ++ copies of the group Aut(A), in the

sense of M . Then each element α of Π can be regarded as a map α : λ++ → Aut(A) in M . We

write N for the subgroup of Π consisting of those α such that for some finite sequence of ordinals

0 = i0 < i1 < . . . < in < in+1 = λ++

the map α is constant on each interval [ik, ik+1) (0 6 k 6 n). The elements of N will be called

neat maps. We write π for the map from N to Aut(A) which takes each neat map to its eventual

value. We write N− for the set of all neat maps α with π(α) = 1. For each ordinal i < λ++ we

write Ni for the set of neat maps α such that α(j) = 1 for all j < i. We write N−

i for N− ∩ Ni.
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Lemma 5.8. As a subset of the group Π, N forms a group with subgroups N−, Ni (i < λ++).

The map π : N → Aut(A) is a surjective group homomorphism.

Proof. . From the definitions. �

The neat map α ∈ Π determines a permutation αK of the set (λ++)3 by

αK(i, j, k) = (α(j)(i), j, k).

Hence α induces an automorphism αKIJ of MP.

Lemma 5.9. Suppose α : λ++ → Aut(A) is neat. Then αKIJ setwise fixes the set {ȧi : i ∈

dom(A)} of canonical names of the elements of Ȧ∗[G], and it acts on this set in the way induced

by π(α) and the map i 7→ ȧi. Thus αKIJ (ȧi) = ȧπ(α)(i).

Proof. . We use the boolean names in Lemma 5.5. For ȧij ,

αKIJ ȧij = {(αKI((i, j, k) 7→ 1), αKIJ(ǩ)) : (i, j, k) ∈ (λ++)3}

= {((αK(i, j, k) 7→ 1), ǩ) : (i, j, k) ∈ (λ++)3}

= {(α(j)(i), j, k) 7→ 1), ǩ) : (i, j, k) ∈ (λ++)3}

= ȧα(j)i,j .

Then for ȧ′i,

αKIJ ȧ′i = {(αKI(1, ȧij) : j < λ++}

= {(1, ȧα(j)i,j) : j < λ++}.

We claim that with boolean value 1, {(1, ȧα(j)i,j) : j < λ++} ≡ ȧ′πα(i). For this, first note that

ȧ′πα(i) = {(1, ȧπ(α)i,j) : j < λ++}.

Since α is neat, there is j0 < λ++ such that α(j) = πα whenever j > j0. So for any generic G,

{(1, ȧα(j)i,j) : j < λ++}[G] and ȧ′
πα(i)[G] differ in at most |j0| elements. The lemma follows. �

Lemma 5.10. For each element i of A and each neat map α, ȧπ(α)(i)[αG] = ȧi[G]. In particular

Ȧ⋆[αG] = Ȧ⋆[G].

Proof. By Lemma 5.9, ȧπ(α)(i)[αG] = (αȧi)[αG]. Then by Lemma 5.4 and the fact that αȧi lies in

MP,

(αȧi)[αG] = ȧi[G].

This shows that Ȧ⋆[αG] = Ȧ⋆[G].
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We write ε̇−1 for a P-name such that ε̇−1[G] = (ε̇[G])−1 for all generic G.

Lemma 5.11. Suppose α is a neat map and G is P-generic over M . Then Ḃ∗[α−1G] = Ḃ∗[G],

and the map (ε̇−1 ◦ αε̇)[G] is an automorphism of B which extends π(α).

Proof. SinceM [α−1G] =M [G] and Ȧ∗[α−1G] = Ȧ∗[G], statement (5.1) (before Lemma 5.7) tells us

that ė[α−1G](i) = ȧi[α
−1G] for each i ∈ dom(A), and that Ḃ∗[α−1G] = Ḃ∗[G] and ε̇[G]−1◦ε̇[α−1G]

extends ė[G]−1 ◦ ė[α−1G]. Now using Lemma 5.10,

ė[G]−1 ◦ ė[α−1G](i) = ė[G]−1(ȧi[α
−1G])

= ė[G]−1(ȧπ(α)(i)[G]) = π(α)(i).

Lemma 5.12. For every neat map α and all p ∈ P there are p′ 6 p and g ∈ AutB extending π(α),

such that

p′ ⊢P ε̇
−1 ◦ α(ε̇) = ǧ.

Proof. Let f be π(α). By Lemma 5.11 we have

1 = ||ε̇−1 ◦ αε̇ is an automorphism of B extending f̌ ||P

=
∑

g ||ε̇
−1 ◦ αε̇ = ǧ||P

where g ranges over the automorphisms of B that extend f .

Definition 5.13. (a) For each p ∈ P and each i < λ++, define tp,i to be the set of all pairs

(f, g), with f ∈ Aut(A) and g ∈ Aut(B), such that for some α ∈ Ni, π(α) = f and

p ⊢P ε̇
−1 ◦ αε̇ = ǧ.

(b) Clearly if p′ 6 p then tp′,i ⊇ tp,i. The number of possible values for f and g is 6 λ by choice

of λ, and P is λ+-closed; so there is pi such that for all p′ 6 pi,

tp′,i = tpi,i.

We fix a choice of pi for each i, and we write ti for the resulting value tpi,i.

(c) For each i and each (f, g) in ti we choose α in Ni with π(α) = f so that

pi ⊢P ε̇
−1 ◦ αε̇ = ǧ.

We write αi
f,g for this α.
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Lemma 5.14. For each i < λ++, ti is a subset of Aut(A) ×Aut(B) such that

(a) for each (f, g) in ti, g|A = f ;

(b) for each f in Aut(A) there is g with (f, g) in ti.

(So ti(−,−) is a first attempt at a lifting of the restriction map from Aut(B) to Aut(A).)

Proof. By Lemma 5.12 and the surjectivity of π.

Lemma 5.15. There is a stationary subset S of λ++ such that:

(a) for each i ∈ S and j < i, the domain of pj is a subset of i× i× i;

(b) for each i ∈ S and j < i, every map αj
f,g : λ++ → Aut(A) is constant on [i, λ++);

(c) for all i, j ∈ S, ti = tj;

(d) there is a condition p⋆ ∈ P such that for all i ∈ S, pi ↾ (i× i× i) = p⋆.

Proof. First, there is a club C ⊆ λ++ on which (a) and (b) hold. Let Sη be {δ < λ++ : cf(δ) = λ+}.

Clearly Sν = Sη ∩ C is stationary; and for each i ∈ Sν , pi ↾ (i × i × i) has domain ⊆ j × j × j for

some j = ji < i. Then by Fődor’s lemma there is a stationary subset S of Sν on which (c) and (d)

hold.

6 The weak lifting

Continuing Section 5, we use the notation S, p⋆ from Lemma 5.15. We write t for the constant

value of ti (i ∈ S) from clause (c) of Lemma 5.15, and t− for the set of all g such that (1, g) ∈ t.

We write ν : Aut(B) → Aut(A) for the restriction map. If X is a subset of Aut(B), we write 〈X〉

for the subgroup of Aut(B) generated by X .

Lemma 6.1. The relation t is a subset of Aut(A) × Aut(B) that projects onto Aut(A), and if

(f, g) is in t then ν(g) = f .

Proof. This repeats Lemma 5.14 (a) and (b).

Lemma 6.2. If (f1, g1) and (f2, g2) are both in t then (f1f2, g1g2) is in t.
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Proof. Take any i, j ∈ S with i < j. Put α1 = αj
f1,g1

, α2 = αi
f2,g2

and α3 = α1α2. Note that α1α2

is in Ni since i < j.

Trivially we have

pj ⊢ ε̇−1 ◦ α3(ε̇) = ε̇−1 ◦ α1(ε̇) ◦ (α1(ε̇))
−1 ◦ α3(ε̇)

and by assumption

pj ⊢ ε̇−1 ◦ α1(ε̇) = ǧ1.

So

pj ⊢ ε̇−1 ◦ α3(ε̇) = ǧ1 ◦ (α1(ε̇))
−1 ◦ α1(α2ε̇).

Also by assumption

pi ⊢ ε̇−1 ◦ α2(ε̇) = ǧ2.

Acting on this last formula by α1 gives

α1pi ⊢ α1ε̇
−1 ◦ α1α2ε̇ = α1ǧ2.

Now α1ǧ2 = ǧ2. Also α1pi = pi since the support of pi lies entirely below j (by Lemma 5.15(a)),

and α1 = αj
f1,g1

is the identity in this region since it lies in Nj . So we have shown that

pi ⊢ α1ε̇
−1 ◦ α1α2ε̇ = ǧ2.

Now we note that pi ∪ pj is a condition in P, by (a), (d) of Lemma 5.15. Hence we have that

pi ∪ pj ⊢ ε̇−1 ◦ α3ε̇ = ǧ1ǧ2.

Since α3 is in Ni, this shows that

(f1f2, g1g2) ∈ tpi∪pj ,i.

Then by the maximality property of pi,

(f1f2, g1g2) ∈ tpi,i

so that (f1f2, g1g2) is in t.

Corollary 6.3. If (f, g1) and (f, g2) are in t then g1g
−1
2 is in 〈t−〉.
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Proof. By Lemma 6.1 there is some g′ ∈ Aut(B) such that (f−1, g′) is in t. Then by Lemma 6.2,

(1, g1g
′) and (1, g2g

′) are in t and so g1g
′, g2g

′ are in t−. Hence the element

g1g
−1
2 = (g1g

′)(g2g
′)−1

lies in 〈t−〉.

Lemma 6.4. Every element of t− is central in Aut(B).

Proof. Suppose g2 ∈ t−, so that (1, g2) ∈ t. Consider (f1, g2) ∈ t, and apply the notation of the

proof of Lemma 6.2 with f2 = 1. In that notation, α1 is the identity below j and α2 is the identity

below i (since i, j ∈ S). But also g2 lies in t−, so α2 is the identity on [j, λ+). In particular α1

commutes with α2.

As in the proof of Lemma 6.2 we have

pi ⊢ ε̇−1 ◦ α3ε̇ = ε̇−1 ◦ α2ε̇ ◦ α2ε̇
−1 ◦ α3ε̇.

As before, we have that

pi ⊢ ε̇−1 ◦ α2ε̇ = ǧ2

and

α2pj ⊢ α2ε̇
−1 ◦ α2α1ε̇ = α2ǧ1.

Now the support of pj lies below i or within [j, λ+)× domA, and α2 is the identity in both these

regions, and so α2(pj) = pj . Thus, since α1 commutes with α2,

pj ⊢ α2ε̇
−1 ◦ α3ε̇ = ǧ1.

So as before,

pi ∪ pj ⊢ ε̇−1 ◦ α3ε̇ = ǧ2ǧ1.

Recalling that in the proof of Lemma 6.2 we showed that

pi ∪ pj ⊢ ε̇−1 ◦ α3(ε̇) = ǧ1ǧ2,

we deduce that

pi ∪ pj ⊢ ǧ1ǧ2 = ǧ2ǧ1.

But the equation g1g2 = g2g1 is about the ground model, and hence it is true.
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Now in M choose a map s : Aut(A) → Aut(B) so that for each f ∈ Aut(A), s(f) is some g

with (f, g) ∈ t. This is possible by Lemma 6.1.

Lemma 6.5. In M the map s is a weak splitting of ν : Aut(B) → Aut(A).

Proof. Trivially νs is the identity on Aut(A). Write s′ : Aut(A) → Z(Aut(B)) for the composite

of s and nat : Aut(B) → Z(Aut(B)). We show that s′ is a homomorphism as follows. Suppose

f1f2 = f3 in Aut(A). Put gi = s(fi) for each i (1 6 i 6 3). Then by Lemma 6.2, (f3, g1g2) is in t,

so by Corollary 6.3 and Lemma 6.4, g1g2g
−1
3 is in 〈t−〉 ⊆ Z(Aut(B)). Then

s′(f1)σ
′(f2) = g1Z(Aut(B)).g2Z(Aut(B))

= g1g2.Z(Aut(B))

= g3Z(Aut(B)) = s′(f3)

as required. �

This completes the proof of Theorem 5.1.

7 Answers to questions

The results above answer most of the problems stated in [6]. In that paper we showed:

Theorem 3 of [6] If C is a small natural construction in a model of ZFC, then C is

uniformisable with parameters.

We asked (Problem A) whether it is possible to remove the restriction that C is small. The answer

is No:

Theorem 7.1. There is a transitive model of ZFC in which some ∅-representable construction is

natural but not uniformisable (even with parameters).

Proof. Let N be the model of Theorem 5.1. Let C be some construction ∅-representable in N

which is not weakly natural (cf. Example One in section 3). Then by Theorem 5.1, C is not

uniformisable. The rigidifying construction Cr of section 3 is ∅-representable, natural and not

uniformisable.

Problem B asked whether in Theorem 3 of [6] the formula defining C can be chosen so that it

has only the same parameters as the formulas chosen to represent C. The answer is No:

Theorem 7.2. There is a transitive model N of ZFC with the following property:
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For every set Y there are a set X and a unitype rigid-based (hence small natural)

X-representable construction that is not X ∪ Y -uniformisable.

Proof. Take N to be the model given by Theorem 5.1. Let Y be any set in N . If N and Y are not

as stated above, then for every set X and every unitype rigid-based X-representable construction

in N , X is X∪Y -uniformisable. So the hypothesis of Theorem 4.4 holds, and by that theorem there

is in N a small {c̄}-uniformisable construction that is not weakly natural. But this contradicts the

choice of N .

Problem C asked whether there are transitive models of ZFC in which every uniformisable

construction is natural. Theorem 5.1 is the best answer we have for this; the problem remains

open.

In [4] one of us asked whether there can be models of ZFC in which the algebraic closure

construction on fields is not uniformisable.

Theorem 7.3. There are transitive models of ZFC in which:

(a) no formula without parameters defines for each field a specific algebraic closure for that field,

and

(b) no formula without parameters defines for each abelian group a specific divisible hull of that

group.

Proof. Let the model N be as in Theorem 5.1. In N the constructions of Example One in section

3 are not uniformisable, since they are not weakly natural. So these two examples prove (a) and

(b) respectively.

We close with some remarks on related notions in other papers.

One result in [4] was that there is no primitive recursive set function which takes each field

to an algebraic closure of that field. This is an absolute result which applies to every transitive

model of ZFC, and so it is not strictly comparable with the consistency results proved above. In

this context we note that Garvin Melles showed [8] that there is no “recursive set-function” (he

gives his own definition for this notion) which finds a representative for each isomorphism type of

countable torsion-free abelian group.

The paper [1] of Adámek et al. gives a simple universal algebraic sufficient condition for

injective hull constructions not to be natural, and notes that two of their examples are also in



26 Wilfrid Hodges and Saharon Shelah CUBO
21, 3 (2019)

[6]. The comparison between our notions and theirs is a little tricky. For both Adámek et al. and

us, ‘natural’ is as in ‘natural transformation’ in the categorical sense. But we work in different

categories. In this paper and [6], the relevant morphisms are isomorphisms; but for [1] they

include embeddings. Hence the notion of naturality in [1] is stricter than ours. For example

their condition implies that the MacNeille completion of posets, which embeds every poset in

a lattice, is not natural. But it is natural in our sense, since isomorphisms between posets lift

functorially to isomorphisms between their MacNeille completions. In fact this is clear from the

standard definition of MacNeille completions ([2] p. 40ff), which also provides a uniformisation of

this construction in any model of ZFC. It seems very unlikely that the condition in [1] adapts to

give a sufficient condition for failure of weak naturality in the sense above.

In a related context Harvey Friedman [3] used the term ‘naturalness’ in a weaker sense than

ours.
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1 Introduction

The famous Ostrowski ([3]) inequality motivates this work and has as follows:

∣

∣

∣

∣

∣

1

b− a

∫b

a

f (y)dy− f (x)

∣

∣

∣

∣

∣

≤

(

1

4
+

(

x− a+b
2

)2

(b− a)
2

)

(b− a) ‖f′‖
∞

,

where f ∈ C′ ([a, b]), x ∈ [a, b], and it is a sharp inequality. One can easily notice that

(

1

4
+

(

x− a+b
2

)2

(b− a)
2

)

(b− a) =
(x − a)

2
+ (b− x)

2

2 (b − a)
.

Another motivation is author’s article [1].

First we give a survey about Sugeno fuzzy integral and its basic properties. Then we derive a

series of Ostrowski-like inequalities to all directions in the context of Sugeno integral and its basic

important particular properties. We also give applications to special cases of our problem we deal

with.

2 Background

In this section, some definitions and basic important properties of the Sugeno integral which will

be used in the next section are presented.

Definition 2.1. (Fuzzy measure [5, 7]) Let Σ be a σ-algebra of subsets of X, and let µ : Σ → [0,+∞]

be a non-negative extended real-valued set function. We say that µ is a fuzzy measure iff:

(1) µ (∅) = 0,

(2) E, F ∈ Σ : E ⊆ F imply µ (E) ≤ µ (F) (monotonicity),

(3) En ∈ Σ (n ∈ N), E1 ⊂ E2 ⊂ ..., imply lim
n→∞

µ (En) = µ (∪∞

n=1En) (continuity from below);

(4) En ∈ Σ (n ∈ N), E1 ⊃ E2 ⊃ ..., µ (E1) < ∞, imply lim
n→∞

µ (En) = µ (∩∞

n=1En) (continuity

from above).

Let (X,Σ, µ) be a fuzzy measure space and f be a non-negative real-valued function on X. We

denote by F+ the set of all non-negative real valued measurable functions, and by Lαf the set:

Lαf := {x ∈ X : f (x) ≥ α}, the α-level of f for α ≥ 0.

Definition 2.2. Let (X,Σ, µ) be a fuzzy measure space. If f ∈ F+ and A ∈ Σ, then the Sugeno

integral (fuzzy integral) [6] of f on A with respect to the fuzzy measure µ is defined by

(S)

∫

A

fdµ := ∨α≥0 (α∧ µ (A ∩ Lαf)) , (1)

where ∨ and ∧ denote the sup and inf on [0,∞], respectively.
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The basic properties of Sugeno integral follow:

Theorem 2.3. ([4, 7]) Let (X,Σ, µ) be a fuzzy measure space with A,B ∈ Σ and f, g ∈ F+. Then

1) (S)
∫
A
fdµ ≤ µ (A) ;

2) (S)
∫
A
kdµ = k∧ µ (A) for a non-negative constant k;

3) if f ≤ g on A, then (S)
∫
A
fdµ ≤ (S)

∫
A
gdµ;

4) if A ⊂ B, then (S)
∫
A
fdµ ≤ (S)

∫
B
fdµ;

5) µ (A ∩ Lαf) ≤ α ⇒ (S)
∫
A
fdµ ≤ α;

6) if µ (A) < ∞, then µ (A ∩ Lαf) ≥ α ⇔ (S)
∫
A
fdµ ≥ α;

7) when A = X, (S)
∫
A
fdµ = ∨α≥0 (α ∧ µ (Lαf)) ;

8) if α ≤ β, then Lβf ⊆ Lαf;

9) (S)
∫
A
fdµ ≥ 0.

Theorem 2.4. ([7, p. 135]) Let f ∈ F+, the class of all finite nonnegative measurable functions

on (X,Σ, µ). Then

1) if µ (A) = 0, then (S)
∫
A
fdµ = 0, for any f ∈ F+;

2) if (S)
∫
A
fdµ = 0, then µ (A ∩ {x|f (x) > 0}) = 0;

3) (S)
∫
A
fdµ = (S)

∫
A
f · χAdµ, where χA is the characteristic function of A;

4) (S)
∫
A
(f + a)dµ ≤ (S)

∫
A
fdµ+ (S)

∫
A
adµ, for any constant a ∈ [0,∞).

Corollary 2.5. ([7, p. 136]) Let f, f1, f2 ∈ F+. Then

1) (S)
∫
A
(f1 ∨ f2)dµ ≥ (S)

∫
A
f1dµ∨ (S)

∫
A
f2dµ;

2) (S)
∫
A
(f1 ∧ f2)dµ ≤ (S)

∫
A
f1dµ∧ (S)

∫
A
f2dµ;

3) (S)
∫
A∪B

fdµ ≥ (S)
∫
A
fdµ∨ (S)

∫
B
fdµ;

4) (S)
∫
A∩B

fdµ ≤ (S)
∫
A
fdµ∧ (S)

∫
B
fdµ.

In general we have

(S)

∫

A

(f1 + f2)dµ 6= (S)

∫

A

f1dµ+ (S)

∫

A

f2dµ,

and

(S)

∫

A

afdµ 6= a (S)

∫

A

fdµ, where a ∈ R,

see [7, p. 137].

Lemma 2.6. ([7, p. 138]) (S)
∫
A
fdµ = ∞ if and only if µ (A ∩ Lαf) = ∞ for any α ∈ [0,∞).

We need
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Definition 2.7. ([2]) A fuzzy measure µ is subadditive iff µ (A ∪ B) ≤ µ (A) + µ (B), for all

A,B ∈ Σ.

We mention the following result

Theorem 2.8. ([2]) If µ is subadditive, then

(S)

∫

X

(f+ g)dµ ≤ (S)

∫

X

fdµ+ (S)

∫

X

gdµ, (2)

for all measurable functions f, g : X → [0,∞).

Moreover, if (2) holds for all measurable functions f, g : X → [0,∞) and µ (X) < ∞, then µ is

subadditive.

Notice here in (1) we have that α ∈ [0,∞).

We have the following corollary.

Corollary 2.9. If µ is aubadditive, n ∈ N, and f : X → [0,∞) is a measurable function, then

(S)

∫

X

nfdµ ≤ n (S)

∫

X

fdµ, (3)

in particular it holds

(S)

∫

A

nfdµ ≤ n (S)

∫

A

fdµ, (4)

for any A ∈ Σ.

Proof. By inequality (2).

A very important property of Sugeno integral follows.

Theorem 2.10. If µ is subadditive measure, and f : X → [0,∞) is a measurable function, and

c > 0, then

(S)

∫

A

cfdµ ≤ (c+ 1) (S)

∫

A

fdµ, (5)

for any A ∈ Σ.

Proof. Let the ceiling ⌈c⌉ = m ∈ N, then by Theorem 2.3 (3) and (4) we get

(S)

∫

A

cfdµ ≤ (S)

∫

A

mfdµ ≤ m (S)

∫

A

fdµ ≤ (c+ 1) (S)

∫

A

fdµ,

proving (5).
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3 Main Results

From now on in this article we work on the fuzzy measure space ([a, b] ,B, µ), where [a, b] ⊂ R, B

is the Borel σ-algebra on [a, b], and µ is a finite fuzzy measure on B. Typically we take it to be

subadditive.

The functions f we deal with here are continuous from [a, b] into R+.

We make the following remark

Remark 3.1. Let f ∈ C1 ([a, b] ,R+), and µ is a subadditive fuzzy measure such that µ ([a, b]) > 0,

x ∈ [a, b]. We will estimate

E :=

∣

∣

∣

∣

∣

(S)

∫

[a,b]

f (x)dµ (t) − µ ([a, b])∧ f (x)

∣

∣

∣

∣

∣

(6)

(by Theorem 2.3 (2))

=

∣

∣

∣

∣

∣

(S)

∫

[a,b]

f (t)dµ (t) − (S)

∫

[a,b]

f (x)dµ (t)

∣

∣

∣

∣

∣

.

We notice that

f (t) = f (t) − f (x) + f (x) ≤ |f (t) − f (x)|+ f (x) ,

then (by Theorem 2.3 (3) and Theorem 2.4 (4))

(S)

∫

[a,b]

f (t)dµ (t) ≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t) + (S)

∫

[a,b]

f (x)dµ (t) , (7)

that is

(S)

∫

[a,b]

f (t)dµ (t) − (S)

∫

[a,b]

f (x)dµ (t) ≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t) . (8)

Similarly, we have

f (x) = f (x) − f (t) + f (t) ≤ |f (t) − f (x)|+ f (t) ,

then (by Theorem 2.3 (3) and Theorem 2.8)

(S)

∫

[a,b]

f (x)dµ (t) ≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t) + (S)

∫

[a,b]

f (t)dµ (t) ,

that is

(S)

∫

[a,b]

f (x)dµ (t) − (S)

∫

[a,b]

f (t)dµ (t) ≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t) . (9)

By (8) and (9) we derive that

∣

∣

∣

∣

∣

(S)

∫

[a,b]

f (t)dµ (t) − (S)

∫

[a,b]

f (x)dµ (t)

∣

∣

∣

∣

∣

≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t) . (10)



34 George A. Anastassiou CUBO
21, 3 (2019)

Consequently it holds

E
(by (6), (10))

≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t)

(and by |f (t) − f (x)| ≤ ‖f′‖
∞

|t− x|)

≤ (S)

∫

[a,b]

‖f′‖
∞
|t− x|dµ (t)

(by (5))

≤ (‖f′‖
∞

+ 1) (S)

∫

[a,b]

|t− x|dµ (t) . (11)

We have proved the following Ostrowski-like inequality
∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −
µ ([a, b]∧ f (x))

µ ([a, b])

∣

∣

∣

∣

∣

≤ (12)

(‖f′‖
∞

+ 1)

µ ([a, b])
(S)

∫

[a,b]

|t− x|dµ (t) .

The last inequality can be better written as follows:
∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(‖f′‖
∞

+ 1)

µ ([a, b])
(S)

∫

[a,b]

|t− x|dµ (t) . (13)

Notice here that
(

1∧
f(x)

µ([a,b])

)

≤ 1, and 1
µ([a,b])

(S)
∫
[a,b]

f (t)dµ (t) ≤ µ([a,b])
µ([a,b])

= 1, where

(S)
∫
[a,b]

f (t)dµ (t) ≥ 0.

I.e. If f : [a, b] → R+ is a Lipschitz function of order 0 < α ≤ 1, i.e. |f (x) − f (y)| ≤

K |x− y|
α, ∀ x, y ∈ [a, b], where K > 0, denoted by f ∈ Lipα,K ([a, b] ,R+), then we get similarly

the following Ostrowski-like inequality:
∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(K+ 1)

µ ([a, b])
(S)

∫

[a,b]

|t− x|
α
dµ (t) . (14)

We have proved the following Ostrowski-Sugeno inequalities:

Theorem 3.2. Suppose that µ is a fuzzy subadditive measure with µ ([a, b]) > 0, x ∈ [a, b] .

1) Let f ∈ C1 ([a, b] ,R+), then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(‖f′‖
∞

+ 1)

µ ([a, b])
(S)

∫

[a,b]

|t− x|dµ (t) . (15)
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2) Let f ∈ Lipα,K ([a, b] ,R+), 0 < α ≤ 1, then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(K+ 1)

µ ([a, b])
(S)

∫

[a,b]

|t− x|
α
dµ (t) . (16)

We make the following remark

Remark 3.3. Let f ∈ C1 ([a, b] ,R+) and g ∈ C1 ([a, b]), by Cauchy’s mean value theorem we get

that

(f (t) − f (x))g′ (c) = (g (t) − g (x)) f′ (c) ,

for some c between t and x; for any t, x ∈ [a, b].

If g′ (c) 6= 0, we have

(f (t) − f (x)) =

(

f′ (c)

g′ (c)

)

(g (t) − g (x)) .

Here we assume that g′ (t) 6= 0, ∀ t ∈ [a, b]. Hence it holds

|f (t) − f (x)| ≤

∥

∥

∥

∥

f′

g′

∥

∥

∥

∥

∞

|g (t) − g (x)| , (17)

for all t, x ∈ [a, b] .

We have again as before (see (11))

E ≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t)
(by (17))

≤

(S)

∫

[a,b]

∥

∥

∥

∥

f′

g′

∥

∥

∥

∥

∞

|g (t) − g (x)|dµ (t)
(by (5))

≤

(∥

∥

∥

∥

f′

g′

∥

∥

∥

∥

∞

+ 1

)

(S)

∫

[a,b]

|g (t) − g (x)|dµ (t) . (18)

We have established the following general Ostrowski-Sugeno inequality:

Theorem 3.4. Suppose that µ is a fuzzy subadditive measure with µ ([a, b]) > 0, x ∈ [a, b]. Let

f ∈ C1 ([a, b] ,R+) and g ∈ C1 ([a, b]) with g′ (t) 6= 0, ∀ t ∈ [a, b] . Then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(∥

∥

∥

f′

g′

∥

∥

∥

∞

+ 1
)

µ ([a, b])
(S)

∫

[a,b]

|g (t) − g (x)|dµ (t) . (19)
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We give for g (t) = et the next result

Corollary 3.5. Suppose that µ is a fuzzy subadditive measure with µ ([a, b]) > 0, x ∈ [a, b]. Let

f ∈ C1 ([a, b] ,R+), then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(∥

∥

∥

f′

et

∥

∥

∥

∞

+ 1
)

µ ([a, b])
(S)

∫

[a,b]

∣

∣et − ex
∣

∣dµ (t) . (20)

When g (t) = ln t we get the following corollary.

Corollary 3.6. Suppose that µ is a fuzzy subadditive measure with µ ([a, b]) > 0, x ∈ [a, b] and

a > 0. Let f ∈ C1 ([a, b] ,R+) . Then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(‖tf′ (t)‖
∞

+ 1)

µ ([a, b])
(S)

∫

[a,b]

∣

∣

∣

∣

ln
t

x

∣

∣

∣

∣

dµ (t) . (21)

Many other applications of Theorem 3.4 could follow but we stop it here.

We make the following remark.

Remark 3.7. Let f ∈
[

C ([a, b] ,R+) ∩ Cn+1 ([a, b])
]

, n ∈ N, x ∈ [a, b]. Then by Taylor’s theorem

we get

f (y) − f (x) =

n∑

k=1

f(k) (x)

k!
(y− x)

k
+ Rn (x, y) , (22)

where the remainder

Rn (x, y) :=

∫y

x

(

f(n) (t) − f(n) (x)
) (y− t)

n−1

(n− 1) !
dt; (23)

here y can be ≥ x or ≤ x.

By [1] we get that

|Rn (x, y)| ≤

∥

∥f(n+1)
∥

∥

∞

(n + 1) !
|y− x|

n+1
, for all x, y ∈ [a, b] . (24)

Here we assume f(k) (x) = 0, for all k = 1, ..., n.

Therefore it holds

|f (t) − f (x)| ≤

∥

∥f(n+1)
∥

∥

∞

(n + 1) !
|t− x|

n+1
, for all t, x ∈ [a, b] . (25)
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Here we have again

E ≤ (S)

∫

[a,b]

|f (t) − f (x)|dµ (t)
(by Theorem 2.3 (3) and (25))

≤

(S)

∫

[a,b]

∥

∥f(n+1)
∥

∥

∞

(n+ 1) !
|t− x|

n+1
dµ (t)

(by (5))

≤

(
∥

∥f(n+1)
∥

∥

∞

(n + 1) !
+ 1

)

(S)

∫

[a,b]

|t− x|
n+1

dµ (t) . (26)

We have derived the following high order Ostrowski-Sugeno inequality:

Theorem 3.8. Let f ∈
[

C ([a, b] ,R+) ∩ Cn+1 ([a, b])
]

, n ∈ N, x ∈ [a, b]. We assume that

f(k) (x) = 0, all k = 1, ..., n. Here µ is subadditive with µ ([a, b]) > 0. Then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f (x)

µ ([a, b])

)

∣

∣

∣

∣

∣

≤

(

‖f(n+1)‖
∞

(n+1)!
+ 1

)

µ ([a, b])
(S)

∫

[a,b]

|t− x|
n+1

dµ (t) , (27)

which generalizes (15).

When x = a+b
2

we get the following corollary

Corollary 3.9. Let f ∈
[

C ([a, b] ,R+) ∩ Cn+1 ([a, b])
]

, n ∈ N. Assume that f(k)
(

a+b
2

)

= 0,

k = 1, ..., n. Here µ is subadditive with µ ([a, b]) > 0. Then

∣

∣

∣

∣

∣

1

µ ([a, b])
(S)

∫

[a,b]

f (t)dµ (t) −

(

1∧
f
(

a+b
2

)

µ ([a, b])

)∣

∣

∣

∣

∣

≤

(

‖f(n+1)‖
∞

(n+1)!
+ 1

)

µ ([a, b])
(S)

∫

[a,b]

∣

∣

∣

∣

t−
a+ b

2

∣

∣

∣

∣

n+1

dµ (t) . (28)
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ABSTRACT

In the case of nonlinear problems, whether in differential or difference equations, it

is difficult and in some cases impossible to invert the problem and obtain a suitable

mapping that can be effectively used in fixed point theory to qualitatively analyze its

solutions. In this paper we consider the existence of a positive sequence and utilize it

in the capacity of integrating factor to obtain a new variation of parameters formula.

Then, we will use the obtained new variation of parameters formula and revert to

the contraction principle to arrive at results concerning, boundedness, periodicity and

stability. The author is working on parallel results for the continuous case.

RESUMEN

En el caso de problemas no-lineales, ya sea en ecuaciones diferenciales o en diferencias,

es dif́ıcil y en algunos casos imposible invertir el problema y obtener una aplicación

apropiada que pueda ser efectivamente usada en teoŕıa de punto fijo para analizar

quantitativamente sus soluciones. En este paper consideramos la existencia de una

sucesión positiva y la usamos en la capacidad del factor de integración para obtener

una nueva fórmula de variación de parámetros. Luego, usaremos esta nueva fórmula de

variación de parámetros y volver al principio de contracción para obtener resultados que

involucran acotamiento, periodicidad y estabilidad. El autor se encuentra trabajando

en resultados paralelos para el caso continuo
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1 Introduction

For motivational purpose we consider the linear difference equation

x(t+ 1) = a(t)x(t), x(t0) = x0, t ≥ t0 ≥ 0. (1.1)

It is clear that the solution of (1.1) is given by

x(t) = x0

t−1
∏

s=t0

a(s), (1.2)

provided that a(t) 6= 0 for all t ∈ Z
+. Throughout this paper we adopt the convention that for any

sequence x(k)
b

∑

k=a

x(k) = 0 and

b
∏

k=a

x(k) = 1 whenever a > b.

For more on the calculus of difference equations we refer to [6]- [8] and [13].

Let v(t) be a sequence such that v : Z+ → R with v(t) 6= 0 for all t ∈ Z
+. Multiply both sides

of (1.1) by

t
∏

s=t0

v−1(s) to obtain

x(t+ 1)
t
∏

s=t0

v−1(s) = a(t)x(t)
t
∏

s=t0

v−1(s),

Thus the above expression can be written in the compact form

∆
[

x(t)

t−1
∏

s=t0

v−1(s)
]

=
[

(

a(t)− v(t)
)

x(t)
]

t
∏

s=t0

a−1(s). (1.3)

Summing equation (1.3) from t0 to t-1 gives

x(t) = x0

t−1
∏

s=t0

v(s) +
t−1
∑

r=t0

(

a(r) − v(r)
)

x(r)
t−1
∏

s=r+1

v(s). (1.4)

Note that (1.4) reduces to (1.2) if we set v(t) = a(t) in (1.4). To obtain asymptotic stability of the

zero solution of (1.1) using (1.2) one would have to assume that

t
∏

s=t0

a(s) → 0, as t→ ∞.

On the hand, if we use (1.4) instead, then such requirement is not necessary. But instead, we

would have to ask that
t
∏

s=t0

v(s) → 0, as t → ∞.
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Such technique of inversion is of more importance when the right hand of (1.1) is either totally

nonlinear or totally delayed. To see this, we consider the nonlinear difference equation

x(t+ 1) = f(t, x(t)), x(t0) = x0, (1.5)

where the function f : Z+ × R → R is continuous. The subject of stability and boundedness in

difference equations is vast and we refer to [16] and [17]. We begin by stating some definitions .

Definition 1.1. We say x(t) := x(t, t0, x0) is a solution of (1.5) if x(t0) = x0 and satisfies (1.5)

for t ≥ t0 ≥ 0.

Definition 1.2. The zero solution of (1.5) is stable if for any ǫ > 0 and any integer t0 ≥ 0 there

exists a δ > 0 such that |x0| ≤ δ implies |x(t, t0, x0)| ≤ ǫ for t ≥ t0.

Definition 1.3. The zero solution of (1.5) is asymptotically stable if it is stable and |x(t, t0, x0)| →
0 as t→ ∞.

For more on stability we refer to [9] and [11]. We begin with the following Lemma. Its proof

follows along the lines of the derivation of (1.4).

Lemma 1.4. If x(t) is a solution of (1.5) on an interval Z+ ∩ [0, T ] and satisfies the initial

condition x(t0) = x0, t0 ≥ 0, then x(t) is a solution of the summation equation if and only if

x(t) = x0

t−1
∏

s=t0

v(s) +

t−1
∑

r=t0

(

f(r, x(r)) − v(r)x(r)
)

t−1
∏

s=r+1

v(s), (1.6)

where v : Z+ → R with v(t) 6= 0 for all t ∈ Z
+.

Next, we will use (1.6) to define a mapping on the proper space and show the zero solution is

(AS). Let C be the set of all real-valued bounded sequences. Define the space

S = {φ : [0,∞) → R/φ ∈ C, |φ(t)| ≤ L, φ(t) → 0, as t→ ∞}.

Then

(S, || · ||)

is a complete metric space under the uniform metric

ρ(φ1, φ2) = ||φ1 − φ2||,

where

||φ|| = sup
t∈Z+

{|φ(t)|}.

Assume

f(t, 0) = 0. (1.7)
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We assume the function f is locally Lipschitz on the set S.
That is, for any φ1 and φ2 ∈ S, we have

|f(t, φ1)− f(t, φ2)| ≤ λ(t)||φ1 − φ2||, (1.8)

for λ : [0,∞) → (0,∞). Assume for φ ∈ S and positve constant L, we have that

∣

∣

∣
x0

t−1
∏

s=t0

v(s)
∣

∣

∣
+ L

t−1
∑

r=t0

(

|v(r)| + λ(r)
)

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
≤ L. (1.9)

Note that (1.9) implies that

t−1
∑

r=t0

(

|v(r)| + λ(r)
)

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
≤ α < 1.

The next theorem offers results about stability and boundedness. For more results on the stability

and boundedness using fixed point theory, we refer the interest reader to the book [18] and to the

paper [19].

Theorem 1.5. Assume (1.7)-(1.9). Suppose there exists a positive constant k such that

∣

∣

∣

t−1
∏

s=t0

v(s)
∣

∣

∣
≤ k, (1.10)

then the unique solution of (1.5) is bounded and its zero solution is stable.

If, in addition,
t−1
∏

s=t0

v(s) → 0, (1.11)

then the zero solution of (1.5) is asymptotically stable.

Proof. For φ ∈ S, define the mapping P : S → S by

(Pφ)(t) = x0

t−1
∏

s=t0

v(s) +

t−1
∑

r=t0

(

f(r, φ(r)) − φ(r)v(r)

t
∏

s=r+1

v(s) (1.12)

It is clear that (Pφ)(t0) = x0. Now for φ ∈ S, we have that

∣

∣(Pφ)(t)
∣

∣ ≤ |x0|k +
t−1
∑

r=t0

(

λ(r)|φ(r)| + |φ(r)|v(r)
)∣

∣

∣

t
∏

s=r+1

v(s)
∣

∣

∣
.

Consequently,

‖Pφ‖ ≤ |x0|k +
t−1
∑

r=t0

(

|v(r)| + λ(r)
)

∣

∣

∣

t
∏

s=r+1

v(s)
∣

∣

∣
||φ||
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Or,

‖Pφ‖ ≤ |x0|k + α‖φ‖ ≤ L. (1.13)

Since P is continuous we have that P : S → S. Next we show that P is a contraction.

For φ1, φ2 ∈ S, we have from (1.12) that

∣

∣(Pφ1)(t)− (Pφ2)(t)
∣

∣ ≤
t−1
∑

r=t0

(

|v(r)| + λ(r)
)

∣

∣

∣

t
∏

s=r+1

v(s)
∣

∣

∣
||φ1 − φ2||

≤ α||φ1 − φ2||.

This shows that P is a contraction. By Banach’s contraction mapping principle,P has a unique

fixed point x ∈ S which is bounded. Moreover, the unique fixed point is a solution of (1.5) on

[0,∞). Next we show the zero solution is stable. Let x be the unique solution. Let ε > 0 be given

and chose δ = ε 1−α
k
. Thus for |x0| < δ, we have by (1.13) that

(1− α)||x|| ≤ |x0|k < δk.

Or

||x|| ≤ ε.

Left to prove that

(Pϕ)(t) → 0, as t→ ∞.

We have already proved that the zero solution of (1.5) is stable. Let δ be the one from stability

such that |x0| < δ and define

S∗ =
{

ϕ : Z+ → R| ϕ(t0) = x0 , ||ϕ|| ≤ ǫ and ϕ(t) → 0 as t→ ∞
}

. (1.14)

Let P be given by (1.12) and define P : S∗ → S∗. The map P is contraction and it maps from S∗

into itself.

We next show that (Pϕ)(t) goes to zero as t goes to infinity.

The first term on the right of (1.12) goes to zero due to condition (1.11). Left to show that

|
t−1
∑

r=t0

(

f(r, x(r)) − v(r)φ(r)
)

t−1
∏

s=r+1

v(s)| → 0, as t→ ∞.

Let ϕ ∈ S∗ then |ϕ(t)| ≤ ǫ. Also, since ϕ(t) → 0 as t → ∞, there exists a t1 > 0 such that for

t > t1, |ϕ(t)| < ǫ1 for ǫ1 > 0. Due to condition (1.11) there exists a t2 > t1 such that for t > t2

implies that
∣

∣

∣

t
∏

s=t1

v(s)
∣

∣

∣
<
ǫ1
αǫ
.
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Thus for t > t2, we have

∣

∣

∣

t−1
∑

r=t0

(

f(r, x(r)) − v(r)φ(r)
)

t−1
∏

s=r+1

v(s)|
∣

∣

∣
≤

t−1
∑

r=t0

(

λ(r) + v(r)
)

|φ(r)|
∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

≤
t1−1
∑

r=t0

(

λ(r) + v(r)
)

|φ(r)|
t−1
∏

s=r+1

v(s)
∣

∣

∣

+

t−1
∑

r=t1

(

λ(r) + v(r)
)

|φ(r)|
∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

≤ ǫ

t1−1
∑

r=t0

(

λ(r) + v(r)
)

|φ(r)|
∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
+ ǫ1α

≤ ǫ

t1−1
∑

r=t0

(

λ(r) + v(r)
)

|
t1−1
∏

s=r+1

v(s)
∣

∣

∣

t−1
∏

s=t1

v(s)
∣

∣

∣
+ ǫ1α

≤ ǫ
∣

∣

∣

t−1
∏

s=t1

v(s)
∣

∣

∣

t1−1
∑

r=t0

(

λ(r) + v(r)
)∣

∣

∣

t1−1
∏

s=r+1

v(s)
∣

∣

∣
+ ǫ1α

≤ ǫα|
t−1
∏

s=t1

v(s)|+ ǫ1α

≤ ǫ1 + ǫ1α.

Since ǫ1 is arbitrary small, this shows that (Pϕ)(t) → 0 as t → ∞. As P has a unique fixed

point, say x it implies the asymptotic stability of the zero solution of (1.11). This completes the

proof.

2 Contraction Versus Large Contraction

Now we consider particular nonlinear equation and rewrite so we can invert the usual way. Con-

sequently, contraction mapping principle can no longer be useful. Let

f(t, x) = −a(t)x3 + l(t, x),

where l(t, x) continuous and satisfies a smallness condition. Thus, We consider

x(t + 1) = −a(t)x3 + l(t, x). (2.1)

mentioned paper as an example for illustrating the need for Large Contraction. In [4], the

author put (1.12) in the form

x(t+ 1) = −a(t)x+ a(t)(x− x3) + l(t, x). (2.2)
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Then by the variation of parameters formula we have

x(t) = x0

t−1
∏

s=t0

a(s) +

t−1
∑

r=t0

(

a(r)
(

x(r) − x3(r)
)

+ l(t, x(r))
)

t−1
∏

s=r+1

a(s). (2.3)

It is naive to believe that every map can be defined so that it is a contraction, even with the

strictest conditions. To see this, we consider

g(x) = x− x3

then for x, y ∈ R with |x|, |y| ≤
√
3
3 we have that

|g(x)− g(y)| = |x− x3 − y + y3| ≤ |x− y|
(

1− x2 + y2

2

)

and the contraction constant tends to one as x2+y2 → 0. As a consequence, the regular contraction

mapping principle failed to produce any results. For more on this and Large contraction, we refer

to [18], P: 52. To get around it, we let v(t) be a sequence such that v : Z+ → R with v(t) 6= 0 for

all t ∈ Z
+. By similar steps as in the development of (1.4) we arrive at the variation of parameters

formula

x(t) = x0

t−1
∏

s=t0

v(s) +

t−1
∑

r=t0

(

v(r)x(r) − a(t)x3(r) + l(t, x(r))
)

t−1
∏

s=r+1

v(s) (2.4)

Thus, one can show that the map given by

f(x) = v(r)x(r) − a(t)x3(r),

is a contraction on some bounded and small set provided a and v have small magnitudes. To better

illustrate our intention we set l(t, x) = 0, and consider (2.1). Then from the above variation of

parameters formula, we have that

x(t) = x0

t−1
∏

s=t0

v(s) +

t−1
∑

r=t0

(

v(r)x(r) − a(t)x3(r))
)

t−1
∏

s=r+1

v(s). (2.5)

Assume for φ ∈ S and positve constant L, we have that

∣

∣

∣
x0

t−1
∏

s=t0

v(s)
∣

∣

∣
+

t−1
∑

r=t0

(

L|v(r)| + L3|a(r)|
)

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
≤ L, (2.6)

and
t−1
∑

r=t0

(

|v(r)| + 3L2|a(r)|
)

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
≤ α < 1. (2.7)

The next theorem offers results about stability and boundedness. For more results on the stability

and boundedness using fixed point theory, we refer the interest reader to the book [18] and to the

paper [19].
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Theorem 2.1. Assume (1.7), (1.10), (2.6) and (2.7). Then the unique solution of (2.1) is bounded

and its zero solution is stable.

If, in addition, (1.11) holds, then the zero solution of (2.1) is asymptotically stable.

Proof. For φ ∈ S, define the mapping P : S → S, by

(Pφ)(t) = x0

t−1
∏

s=t0

v(s) +

t−1
∑

r=t0

(

v(r)φ(r) − φ3(r)a(r)
)

t
∏

s=r+1

v(s) (2.8)

It is clear that (Pφ)(t0) = x0. Now for φ ∈ S, we have that

∣

∣(Pφ)(t)
∣

∣ ≤ |x0|k +
t−1
∑

r=t0

(

|v(r)||φ(r)| + |φ3(r)||a(r)|
)∣

∣

∣

t
∏

s=r+1

v(s)
∣

∣

∣

≤
∣

∣

∣
x0

t−1
∏

s=t0

v(s)
∣

∣

∣
+

t−1
∑

r=t0

(

L|v(r)| + L3|a(r)|
)

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
.

Thus,

‖Pφ‖ ≤ L.

Since P is continuous we have that P : S → S. Next we show that P is a contraction.

For φ1, φ2 ∈ S, we have from (1.12) that

∣

∣(Pφ1)(t) − (Pφ2)(t)
∣

∣ ≤
t−1
∑

r=t0

(

|v(r)||φ1(r) − φ2(r)|

+

t−1
∑

r=t0

|a(r)||φ1(r)− φ2(r)|(φ21(r) + |φ1(r)φ2(r)| + φ21(r)
)

∣

∣

∣

t
∏

s=r+1

v(s)
∣

∣

∣

≤
t−1
∑

r=t0

(

|v(r)| + 3L2|a(r)|
)

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
||φ1 − φ2||

≤ α||φ1 − φ2||.

This shows that P is a contraction. By Banach’s contraction mapping principle,P has a unique

fixed point x ∈ S which is bounded. The proof for stability and asymptotic stability follow along

the lines of the proof of Theorem 1.5.

For the rest of this section we set l(t, x) = 0 in (2.3) and use large contraction and prove

parallel theorem to Theorem 2.1. We saw before that the function or map, g(x) = x− x3 does not

define a contraction. To get around it we use the notion of large contraction that was introduced

by Burton in [5] . We will restate the contraction mapping principle and Krasnoselskii’s fixed point

theorems in which the regular contraction is replaced with large contraction. Then based on the

notion of large contraction, we introduce a theorem to obtain boundedness results in which large

contraction is substituted for regular contraction.
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Definition 2.2. Let (M,d) be a metric space and B: M → M. The map B is said to be large

contraction if φ, ϕ ∈ M, with φ 6= ϕ then d(Bφ,Bϕ) ≤ d(φ, ϕ) and if for all ε > 0, there exists a

δ ∈ (0, 1) such that

[φ, ϕ ∈ M, d(φ, ϕ) ≥ ε] ⇒ d(Bφ,Bϕ) ≤ δd(φ, ϕ).

The next theorems are alternative to the regular contraction mapping principle and Krasnoselskii’s

fixed point theorem in which we substitute Large Contraction for regular contraction. The proofs

of the two theorems and the statement of Definition 2.2 can be found in [5].

Theorem 2.3. Let (M, ρ) be a complete metric space and B be a large contraction. Suppose there

are an x ∈ M and an L > 0 such that ρ(x,Bnx) ≤ L for all n ≥ 1. Then B has a unique fixed

point in M.

Next we state and prove a remarkable theorem by Adivar, Raffoul and Islam that generalizes

the concept of Large Contraction. Its proof can be found in [18]. The theorem provides easily

checked sufficient conditions under which a mapping is a large contraction. Several authors have

published it in their work without the proper citations.

Consider the mapping H defined by

H(x(u)) = x(u)− h(x(u)). (2.9)

Let α ∈ (0, 1] be a fixed real number and define the set Mα by

Mα = {φ : φ ∈ C(R,R) and ‖φ‖ ≤ α} . (2.10)

H.1. h : R → R is continuous on [−α, α] and differentiable on (−α, α),

H.2. The function h is strictly increasing on [−α, α],

H.3. sup
t∈(−α,α)

h′(t) ≤ 1.

Theorem 2.4. ([1] )[Adivar-Raffoul-Islam] (Classifications of Large Contraction Theorem) Let

h : R → R be a function satisfying (H.1-H.3). Then the mapping H in (2.9) is a large contraction

on the set Mα.

Example 2.5. Let α ∈ (0, 1) and k ∈ N be fixed elements and u ∈ (−1, 1).

1. The condition (H.2) is not satisfied for the function h1(u) =
1
2ku

2k.

2. The function h2(u) =
1

2k+1u
2k+1 satisfies (H.1-H.3).

Proof. Since h′1(u) = u2k−1 < 0 for −1 < u < 0, the condition (H.2) is not satisfied for h1.

Evidently, (H.1-H.2) hold for h2. (H.3) follows from the fact that h′2(u) ≤ α2k and α ∈ (0, 1).
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We have the following lemma. Define the mapping

H(x) = x− x3. (2.11)

Lemma 2.6. Let ‖ · ‖ denote the supremum norm. If

M =

{

φ : Z → R | φ(0) = φ0, and ‖φ‖ ≤
√
3

3

}

,

then the mapping H defined by (2.11) is a large contraction on the set M.

Proof. Let α =
√
3
3 and h(x) = x3. Then, clearly h satisfies (H.1-H.2). Moreover, sup

x∈(−α,α)

h′(x) = 1,

which satisfies H.3. Hence by Theorem 2.4 defines a large contraction.

For ψ ∈ M, we define the map B : M → M by

(Bψ)(t) = ψ0

t−1
∏

s=0

a(s) +
t−1
∑

s=0

(

a(s)H(ψ(s))
t−1
∏

u=s+1

a(u)
)

(2.12)

Lemma 2.7. Assume for all t ∈ Z

|ψ0|
∣

∣

∣

t−1
∏

s=0

a(s)
∣

∣

∣
+

2
√
3

9

t−1
∑

s=0

∣

∣

∣

t−1
∏

u=s

a(u)
∣

∣

∣
≤

√
3

3
. (2.13)

If H is a large contraction on M, then so is the mapping B.

Proof. It is easy to see that

|H(x(t))| = |x(t)− x(t)3| ≤ 2
√
3

9
for all x ∈ M.

By Lemma 2.6, H is a large contraction onM. Hence, for x, y ∈ M with x 6= y, we have ‖Hx−Hy‖ ≤
‖x− y‖. Hence,

|Bx(t) −By(t)| ≤
t−1
∑

s=0

|H(x(s)) −H(y(s))|
∣

∣

∣

t−1
∏

u=s

a(u)
∣

∣

∣

≤ 2
√
3

9

t−1
∑

s=0

∣

∣

∣

t−1
∏

u=s

a(u)
∣

∣

∣
‖x− y‖

= ‖x− y‖.

Taking supremum norm over the set [0,∞), we get that ‖Bx − By‖ ≤ ‖x − y‖. For a given

ε ∈ (0, 1), suppose x, y ∈ M with ‖x− y‖ ≥ ε. Then for δ = min
{

1− ε2/16, 1/2
}

, which implies

that 0 < δ < 1. Hence, for all such ε > 0 we know that

[x, y ∈ M, ‖x− y‖ ≥ ε] ⇒ ‖Hx−Hy‖ ≤ δ‖x− y‖.
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Therefore, using (2.13), one easily verify that

‖Bx−By‖ ≤ δ‖x− y‖.

The proof is complete.

We arrive at the following theorem in which we prove boundedness.

Theorem 2.8. Assume (2.13). Then (2.1) has a unique solution in M which is bounded.

Proof. (M, ‖ · ‖) is a complete metric space of bounded sequences. For ψ ∈ M we must show that

(Bψ)(t) ∈ M. From (2.12) and the fact that

|H(x(t))| = |x(t) − x(t)3| ≤ 2
√
3

9
for all x ∈ M,

we have

|(Bψ)(t)| ≤ |ψ0|
∣

∣

∣

t−1
∏

s=0

a(s)
∣

∣

∣
+

2
√
3

9

t−1
∑

s=0

∣

∣

∣

t−1
∏

u=s

a(u)
∣

∣

∣

≤
√
3

3
.

This shows that (Bψ)(t) ∈ M. Lemma 2.6 implies the map B is a large contraction and hence by

Theorem 2.3, the map B has a unique fixed point in M which is a solution of (2.1). This completes

the proof.

3 Periodic Solutions

In this section we apply our new method to linear or nonlinear difference equations to show the

existence of periodic solutions without the requirement of some classic conditions. To better

illustrate our approach, we consider the nonlinear difference equation

x(t+ 1) = a(t)x(t) + f(t, x(t)) (3.1)

where f is continuous in x. Let T be an integer such that T ≥ 1. We assume the periodicity

condition

a(t+ T ) = a(t), and f(t+ T, ·) = f(t, ·). (3.2)

Let BC is the space of bounded sequences φ : Z → R with the maximum norm || · ||. Define

PT = {φ ∈ BC, φ(t + T ) = φ(t)}. Then PT is a Banach space when it is endowed with the

maximum norm

‖x‖ = max
t∈[0,T−1]

|x(t)|.
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Also, we assume that
t−1
∏

s=t−T

a(s) 6= 1. (3.3)

Throughout this section we assume that a(t) 6= 0 for all t ∈ [0, T − 1]. Let x ∈ PT . Then Eqn.

(3.1) is equivalent to

∆
[

x(t)

t−1
∏

s=t0

a−1(s)
]

= f(t, x(t))

t
∏

s=t0

a−1(s). (3.4)

Summing equation (3.4) from t− T to t− 1 and using the fact that x(t − T ) = x(t), gives

x(t) =
(

1−
t−1
∏

s=t−T

a(s)
)−1 t−1

∑

r=t−T

f(r, x(r))
t−1
∏

s=r+1

a(s). (3.5)

Define the mapping P on PT by

(Pφ)(t) =
(

1−
t−1
∏

s=t−T

a(s)
)−1 t−1

∑

r=t−T

f(r, φ(r))

t−1
∏

s=r+1

a(s). (3.6)

One can easily verify that (Pφ)(t + T ) = (Pφ)(t), and hence P : PT → PT .

Theorem 3.1. Suppose a(t) 6= 0 for all t ∈ [0, T − 1] and assume (3.3). Suppose the function f

is Lipschitz continuous with Lipschitz constant k. If

k
∣

∣

∣

(

1−
t−1
∏

s=t−T

a(s)
)−1∣

∣

∣

t−1
∑

r=t−T

∣

∣

∣

t−1
∏

s=r+1

a(s)
∣

∣

∣
≤ α,

for α ∈ (0, 1), then Eqn. (3.1) has a unique periodic solution.

Proof. The proof is easily obtained by direct application of contraction mapping principle on the

set PT .

Next, we use our new technique to avoid the requirement that a(t) 6= 0 for all t ∈ [0, T − 1]

along with condition (3.3). Let v(t) be a sequence such that v : Z+ → R with v(t) 6= 0 for all

t ∈ [0, T − 1. Assume (3.2) and for v ∈ PT , multiply both sides of (3.1) by

t
∏

s=t0

v−1(s) to obtain

∆
[

x(t)

t−1
∏

s=t0

v−1(s)
]

=
[

(

a(t)x(t) − v(t)x(t) + f(t, x(t))
]

t
∏

s=t0

v−1(s). (3.7)

Summing equation (3.7) from t− T to t-1 gives and using the fact that x(t − T ) = x(t), gives

x(t) =
(

1−
t−1
∏

s=t−T

v(s)
)−1 t−1

∑

r=t−T

[a(r)x(r) − v(r)x(r) + f(r, x(r))]

t−1
∏

s=r+1

v(s). (3.8)
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Define the mapping P on PT by

(Pφ)(t) =
(

1−
t−1
∏

s=t−T

v(s)
)−1 t−1

∑

r=t−T

[a(r)x(r) − v(r)x(r) + f(r, φ(r))

t−1
∏

s=r+1

v(s). (3.9)

One can easily verify that (Pφ)(t + T ) = (Pφ)(t), and hence P : PT → PT .

Theorem 3.2. Suppose v(t) 6= 0 for all t ∈ [0, T − 1] and assume

t−1
∏

s=t−T

v(s) 6= 1. (3.10)

Suppose the function f is Lipschitz continuous with Lipschitz constant k,. If

∣

∣

∣

(

1−
t−1
∏

s=t−T

v(s)
)−1∣

∣

∣

t−1
∑

r=t−T

[|a(r)| + |v(r)| + k]
∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣
≤ α,

for α ∈ (0, 1), then Eqn. (3.1) has a unique periodic solution.

Proof. The proof is easily obtained by direct application of the contraction mapping principle on

the set PT .

Next we display an example.

Example 3.3. For positive constant k, we consider the difference equation

x(t+ 1) =
(

1− (−1)t
)

x(t) +
kx

1 + x2
(3.11)

It is clear that a(t) =
(

1 − (−1)t
)

is periodic of period T = 2 and a(0) = 0. Hence Theorem 3.1

can not be applied. On the other hand we may apply Theorem 3.2 by taking v(t) = (−1)t

2 , for

sufficiently small k.

4 Neutral Difference Equations

We extend the results of the previous sections to the neutral difference equation with functional

delay

x(t+ 1) = a(t)x(t) + b(t)x(t− g(t)) + c(t)∆x(t − g(t)) (4.1)

where where a, b, c : Z → R, and g : Z → Z
+. Moreover, we will discuss the concept of equi-

boundedness.

If for some positive constant k, |g| ≤ k then for any integer t0 ≥ 0, we define Z0 to be the set of

integers in [t0 − k, t0]. If g is unbounded then Z0 will be the set of integers in (−∞, t0]. We assume
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the existence of a given bounded initial sequence ψ(t) : Z0 → R. We will use the summation by

parts formula
∑

(

Ex(t)∆z(t)
)

= x(t)z(t)−
∑

z(t)∆x(t)

where E is defined as Ex(t) = x(t+ 1).

Definition 4.1. We say x(t) := x(t, t0, ψ) is a solution of (4.1) if x(t) = ψ(t) on Z0 and satisfies

(4.1) for t ≥ t0.

Definition 4.2. The zero solution of (4.1) is stable if for any ǫ > 0 and any integer t0 ≥ 0 there

exists a δ > 0 such that |ψ(t)| ≤ δ on Z0 implies |x(t, t0, ψ)| ≤ ǫ for t ≥ t0.

Definition 4.3. The zero solution of (4.1) is asymptotically stable if it is stable and if for any

integer t0 ≥ 0 there exists r(t0) > 0 such that |ψ(t)| ≤ r(t0) on Z0 implies |x(t, t0, ψ)| → 0 as t →
∞.

Definition 4.4. A solution x(t, t0, ψ) of (4.1) is said to be bounded if there exist a B(t0, ψ) > 0

such that |x(t, t0, ψ)| ≤ B(t0, ψ) for t ≥ t0.

Definition 4.5. The solutions of (4.1) are said to be equi-bounded if for any t0 and any B1 > 0,

there exists a B2 = B2(t0, B1) > 0 such that |ψ(t)| ≤ B1 on Z0 implies |x(t, t0, ψ)| ≤ B2 for t ≥ t0.

For the remaining of the section we assume that there is a positive constant k, |g| ≤ k.

Lemma 4.6. If x(t) is a solution of (4.1) and satisfies the initial condition x(t) = ψ(t) for t ∈ Z0,

then x(t) is a solution of the summation equation if and only if

x(t) =
[

x(t0)− c(t0 − 1)x(t0 − g(t0))
]

t−1
∏

s=t0

v(s) + c(t− 1)x(t− g(t))

+

t−1
∑

r=t0

[

(a(r) − v(r))x(r)

t−1
∏

s=r+1

v(s)
]

+

t−1
∑

r=t0

(

[b(r) − φ(r)]x(r − g(r))

t−1
∏

s=r+1

v(s)
)

, t ≥ t0 (4.2)

where

φ(r) = c(r) − c(r − 1)v(r).

[0, T ] where v : Z ∩ [−k,∞) → R with v(t) 6= 0.

Multiply both sides of (4.1) by
t
∏

s=t0

v−1(s) and then notice the resulting expression is equivalent
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to

∆
[

x(t)

t−1
∏

s=t0

v−1(s)
]

=
[

(a(t)− v(t))x(t) + b(t)x(t− g(t))

+ c(t)∆x(t − g(t))
]

t
∏

s=t0

v−1(s).

Summing the above expression from t0 to t-1 gives

x(t)

t−1
∏

s=t0

v−1(s)− x(t0) =

t−1
∑

r=t0

[

(a(r) − v(r))x(r)

+ b(r)x(r − g(r)) + c(r)∆x(r − g(r))
]

r
∏

s=t0

v−1(s)

Dividing both sides by

t−1
∏

s=t0

v−1(s), gives

x(t) = x(t0)

t−1
∏

s=t0

v(s) +

t−1
∑

r=t0

[

(a(r) − v(r))x(r)

t−1
∏

s=r+1

v(s)
]

+

t−1
∑

r=t0

[

b(r)x(r − g(r))

+c(r)∆x(r − g(r))
]

r
∏

s=t0

v−1(s)

t−1
∏

s=t0

v(s)

= x(t0)
t−1
∏

s=t0

v(s) +
t−1
∑

r=t0

[

(a(r) − v(r))x(r)
t−1
∏

s=r+1

v(s)
]

+
t−1
∑

r=t0

[

b(r)x(r − g(r))
]

t−1
∏

s=r+1

v(s)

+
t−1
∑

r=t0

[

c(r)∆x(r − g(r))
]

t−1
∏

s=r+1

v(s)

Using summation by parts and after some calculations and simplification we arrive at (4.2).

Theorem 4.7. Suppose v(t) 6= 0 for t ≥ t0 and v(t) satisfies

∣

∣

∣

t−1
∏

s=t0

v(s)
∣

∣

∣
≤M
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for M > 0. Also, suppose that there is an α ∈ (0, 1) such that

|c(t− 1)| +

t−1
∑

r=t0

∣

∣a(r) − v(r
∣

∣

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

+

t−1
∑

r=t0

[

|b(r)− φ(r)|
]∣

∣

∣

t−1
∏

s=r+1

a(s)
∣

∣

∣
≤ α, t ≥ t0. (4.3)

Then solutions of (4.1) are equi-bounded.

Proof. Let B1 and B2 be two positive constants to be defined later in the proof and let ψ(t) be a

bounded initial function satisfying |ψ(t)| ≤ B1 on Z0. Define

S =
{

ϕ : Z → R| ϕ(t) = ψ(t) on Z0 and ||ϕ|| ≤ B2

}

,

where

||ϕ|| = sup |ϕ(t)|.
t ∈ Z

Then
(

S, || · ||
)

is a complete metric space.

Define mapping P : S → S by
(

Pϕ
)

(t) = ψ(t) on Z0

and

(

Pϕ
)

(t) =
[

ψ(t0)− c(t0 − 1)ψ(t0 − g(t0))
]

t−1
∏

s=t0

v(s) + c(t− 1)ϕ(t− g(t))

+

t−1
∑

r=t0

[

(a(r) − v(r))ϕ(r)

t−1
∏

s=r+1

v(s)
]

+

t−1
∑

r=t0

[

(

b(r) − φ(r)
)

ϕ(r − g(r))

t−1
∏

s=r+1

v(s)
]

, t ≥ t0. (4.4)

Let B1 > 0 be given. Choose B2 such that

|1− c(t0 − 1)|MB1 + αB2 ≤ B2 (4.5)

We first show that P maps from S to S. By (4.5)

|(Pϕ)(t)| ≤ |1− c(t0 − 1)|MB1 + αB2

≤ B2 for t ≥ t0
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Thus P maps from S into itself. We next show that P is a contraction under the supremum norm.

Let ζ, η ∈ S. Then

|(Pζ)(t) − (Pη)(t)| ≤
(

|c(t− 1)|+
t−1
∑

r=t0

[

|b(r) − φ(r)|
]∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

)

||ζ − η||

+

t−1
∑

r=t0

∣

∣a(r) − v(r
∣

∣

∣

∣

∣

t−1
∏

s=r+1

v(s)||ζ − η||

≤ α||ζ − η||.

This shows that P is a contraction. Thus, by the contraction mapping principle, P has a unique

fixed point in S which solves (4.1). Hence solutions of (4.1) are equi-bounded.

Theorem 4.8. Assume that the hypotheses of Theorem 4.7 hold. Then the zero solution of (4.1)

is stable.

Proof. Let ǫ > 0 be given. Choose δ > 0 such that

|1− c(t0 − 1)|Mδ + αǫ ≤ ǫ. (4.6)

Let ψ(t) be a bounded initial function satisfying |ψ(t)| ≤ δ. Define the complete metric space S

by

S =
{

ϕ : Z → R| ϕ(t) = ψ(t) on Z0 and ||ϕ|| ≤ ǫ
}

.

Let P : S → S be defined by (4.4). Then, from the proof of Theorem 4.8 we have that P is a

contraction map and for any ϕ ∈ S, ||Pϕ|| ≤ ǫ.

Hence the zero solution of (4.1) is stable.

Theorem 4.9. Assume that the hypotheses of Theorem 4.7 hold. Also assume that

t−1
∏

s=t0

v(s) → 0 as t→ ∞, (4.7)

Then the zero solution of (4.1) is asymptotically stable.

Proof. We have already shown that the zero solution of (4.1) is stable. Let r(t0) be the δ of

stability of the zero solution.

Let ψ(t) be any initial discrete function satisfying |ψ(t)| ≤ r(t0). Define

S∗ =
{

ϕ : Z → R| ϕ(t) = ψ(t) on Z0, ||ϕ|| ≤ ǫ and ϕ(t) → 0 as t→ ∞
}

.
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Define P : S∗ → S∗ by (4.4). The from Theorem 4.7, the map P is a contraction and it maps from

S∗ into itself.

Left to show that (Pϕ)(t) → 0 as t→ ∞.

Let ϕ ∈ S∗. Then the first first term on the right of (4.4) goes to zero. The second term on the

right side of (4.4) goes to zero due condition (4.7) and the fact that ϕ ∈ S∗.

Now we show that the second term on the right side of (4.7) goes to zero as t → ∞. Let ϕ ∈ S∗

then |ϕ(t)| ≤ ǫ. Also, since ϕ(t) → 0 as t→ ∞, there exists a t1 > 0 such that for t > t1, |ϕ(t)| < ǫ1

for ǫ1 > 0. Due to condition (4.7) there exists a t2 > t1 such that for t > t2 implies that

∣

∣

∣

t
∏

s=t1

v(s)
∣

∣

∣
<
ǫ1
αǫ
.

Thus for t > t2, we have

∣

∣

∣

t−1
∑

r=t0

[

a(r)− v(r)
]

ϕ(r)

t−1
∏

s=r+1

v(s)
∣

∣

∣
≤

t−1
∑

r=t0

∣

∣

∣
(a(r) − v(r))ϕ(r)

t−1
∏

s=r+1

v(s)
∣

∣

∣

≤
t1−1
∑

r=t0

∣

∣

∣
(a(r) − v(r))ϕ(r)

t−1
∏

s=r+1

v(s)
∣

∣

∣

+

t−1
∑

r=t1

∣

∣

∣
(a(r) − v(r))ϕ(r)

t−1
∏

s=r+1

v(s)
∣

∣

∣

≤ ǫ

t1−1
∑

r=t0

∣

∣

∣
(a(r) − v(r))

t−1
∏

s=r+1

v(s)
∣

∣

∣
+ ǫ1α

≤ ǫ

t1−1
∑

r=t0

∣

∣

∣
[a(r)− v(r)]

t1−1
∏

s=r+1

v(s)
t−1
∏

s=t1

v(s)
∣

∣

∣
+ ǫ1α

≤ ǫ
∣

∣

∣

t−1
∏

s=t1

v(s)
∣

∣

∣

t1−1
∑

r=t0

∣

∣

∣
[a(r) − v(r)]

t1−1
∏

s=r+1

v(s)
∣

∣

∣
+ ǫ1α

≤ ǫα|
t−1
∏

s=t1

v(s)|+ ǫ1α

≤ ǫ1 + ǫ1α.

This shows that the second term of (4.4) goes to zero as t goes to infinity. Showing that the last

term on the right side of (4.7) goes to zero as t → ∞ is similar, and hence we omit. This implies

that (Pϕ)(t) → 0 as t→ ∞.

By the contraction mapping principle, P has a unique fixed point that solves (4.1) and goes to zero

as t goes to infinity. This concludes that the zero solution of (4.1) is asymptotically stable.
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Remark 4.10. If the delay function g(t) is unbounded, then we may prove a similar theorem to

Theorem 4.9 by making the additional requirement that t− g(t) → 0, as t→ ∞.

5 Example

Example 5.1. Solutions of the linear neutral difference equation

x((t+ 1) =
2t+1

8(1 + t)!
x(t− 2) +

2t+1

8(1 + t)!
∆x(t− 2), t ≥ 0 (5.1)

are equi-bounded and the zero solution is asymptotically stable.

Proof. Let v(t) =
1

3(1 + t)
. Comparing terms, we see that a(t) = 0, b(t) = c(t) =

2t+1

8(1 + t)!
. Set

t0 = 0. Then (4.3) is equivalent to

|c(t− 1)| +

t−1
∑

r=0

∣

∣v(r)
∣

∣

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

+
t−1
∑

r=0

[

|b(r) − φ(r)|
]∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

≤ 2t

8(t)!
+

t−1
∑

r=0

t−1
∏

s=r

1

3(1 + s)
+

t−1
∑

r=0

2r

8(1 + r)!

t−1
∏

s=r+1

1

3(1 + s)
.

Now,

t−1
∑

r=0

2r

8(1 + r)!

t−1
∏

s=r+1

1

3(1 + s)
≤ 1/3

t−1
∑

r=0

2r

8(1 + r)!

1

(r + 2)(r + 3)...(t)

≤ 1/3

t−1
∑

r=0

2r

8t!

≤ 1

24t!
(2t − 1) ≤ 2t

24t!
.

Similarly, by estimating 1
1+s

≤ 1, for s ≥ 0, we have that

t−1
∑

r=0

t−1
∏

s=r

1

3(1 + s)
≤

t−1
∑

r=0

(
1

3
)t−r

≤ (
1

3
)t

t−1
∑

r=0

3r = (
1

3
)t[

3r

2
]|t−1
0

≤ 1

6
[1− 21−t] ≤ 1/6
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Combining the two inequalities we end up with

|c(t− 1)| +

t−1
∑

r=0

∣

∣v(r)
∣

∣

∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

+

t−1
∑

r=0

[

|b(r)− φ(r)|
]∣

∣

∣

t−1
∏

s=r+1

v(s)
∣

∣

∣

≤ 2t

8(t)!
+

1

3
+

2t

24t!

≤ 1

4
+

1

6
+

1

12
=

1

2
< 1.

Hence (4.3) is satisfied. It is clear that condition (4.7) is satisfied for the specified value of v.

This implies the zero solution is asymptotically stable, by Theorem 4.9. Left to show solutions are

equi-bounded.

Since t0 = 0, we have that Z0 = [−2, 0].

Let B1 > 0 be given and ψ(t) : Z0 → R be a given initial function with |ψ(t)| ≤ B1. We

need to choose B2 so that (4.5) is satisfied. It is clear that c(t0 − 1) = c(−1) =
1

8
, and hence

|1− c(t0 − 1)| = 1− 1

8
=

7

8
. In addition

∣

∣

∣

t−1
∏

s=0

v(s)
∣

∣

∣
≤M

is satisfied for M = 1
3 . From the above calculation for asymptotic stability, we see that α = 1

2 .

Now we choose B2 such that
7

24
B1 ≤ B2

2
.

Then, in our case, inequality (4.5) corresponds to

|1− c(t0 − 1)|MB1 + αB2 ≤ B2.

Or equivalently,
7

24
B1 +

B2

2
≤ B2,

is satisfied.

Remark 5.2. We mention that the work of Islam-Yankson in [12] can not be applied to our

example due to the absence of the linear term a(t)x(t).

It is worth mentioning that the results of Section 4 can be easily extended to the nonlinear

neutral difference equation

x(t+ 1) = a(t)x(t) + c(t)∆x(t − g(t)) + q(t, x(t), x(t − g(t))) (5.2)
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where a(t), c(t) and g(t) are defined as before. We assume that, q(t, 0, 0) = 0 for the stability and

q is locally Lipschitz in x and y. That is, there is a K > 0 so that if |x|, |y|, |z| and |w| ≤ K then

|q(x, y)− q(z, w)| ≤ L|x− z|+ E|y − w|

for some positive constants L and E.

Note that

|q(x, y)| = |q(x, y)− q(0, 0) + q(0, 0)|
≤ |q(x, y)− q(0, 0)|+ |q(0, 0)|
≤ L|x|+ E|y|.

Remark 5.3. The method of Section 4 can be easily used to extend the existence of periodic

solutions to systems of the form of (4.1) and (5.2), see [15].



60 Youssef N Raffoul CUBO
21, 3 (2019)

References

[1] Adivar, M,. Islam, M. and Raffoul, Y., Separate contraction and existence of periodic solu-

tions in totally nonlinear delay differential equations, Hacettepe Journal of Mathematics and

Statistics, 41 (1) (2012), 1-13.

[2] T. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.

[3] T. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations,

Academic Press, New York, 1985.

[4] T. Burton and T. Furumochi, Fixed points and problems in stability theory, Dynam. Systems

Appl. 10(2001), 89-116.

[5] Burton, T.A. Integral equations, implicit functions, and fixed points, Proc. Amer. Math. Soc.

124 (1996), 2383-2390.

[6] S. Elaydi, An Introduction to Difference Equations, Springer, New York, 1999.

[7] S. Elaydi, Periodicity and stability of linear Volterra difference systems, J. Math. Anal. Appl.

,181(1994), 483-492.

[8] S. Elaydi and S. Murakami, Uniform asymptotic stability in linear Volterra difference equa-

tions, J. Differ. Equations Appl., 3(1998), 203-218.

[9] P. Eloe, M. Islam and Y. Raffoul, Uniform asymptotic stability in nonlinear Volterra discrete

systems, Special Issue on Advances in Difference Equations IV, Computers Math. Appl.,

45(2003), 1033-1039.

[10] Y. Hino and S. Murakami, Total stability and uniform asymptotic stability for linear Volterra

equations, J. London Math. Soc., 43(1991), 305-312.

[11] M. Islam and Y. Raffoul, Exponential stability in nonlinear difference equations , J. Differ.

Equations Appl., 9(2003), 819-825.

[12] M. Islam and E. Yankson Boundedness and stability in nonlinear delay difference equations

employing fixed point theory, Electronic Journal of Qualitative Theory of Differential Equations

2005, No. 26, 1-18.

[13] W. Kelley and A. Peterson, Difference Equations: An Introduction with Applications, Harcourt

Academic Press, San Diego, 2001.

[14] J. Liu, A First Course In The Qualitative Theory of Differential Equations,Pearson Education,

Inc., Upper Saddle River, New Jersey 07458, 2003.



CUBO
21, 3 (2019)

New Variation of Parameters 61

[15] M. Maroun and Y. Raffoul , Periodic solutions in nonlinear neutral difference equations with

functional delay, J. Korean Math. Soc. 42 (2005), no. 2, 255-268.

[16] R. Medina, Asymptotic behavior of Volterra difference equations, Computers Math. Appl.

41(2001), 679-687.

[17] R. Medina, The asymptotic behavior of the solutions of a Volterra difference equation, Com-

puters Math. Appl. 181(1994), 19-26.

[18] Y. Raffoul, Qualitative Theory of Volterra Difference Equations, Springer, New York, 2018.

[19] Y. Raffoul, Stability and periodicity in discrete delay equations, J. Math. Anal. Appl. 324

(2006) 1356-1362.

[20] Y. Raffoul, Stability in neutral nonlinear differential equations with functional delays using

fixed point theory, Mathematical and Computer Modelling, 40(2004), 691-700.

[21] Y. Raffoul, General theorems for stability and boundedness for nonlinear functional discrete

systems, J. Math. Anal. Appl. ,279(2003), 639-650.





CUBO A Mathematical Journal
Vol.21, No

¯ 03, (63–74). December 2019
http: // dx. doi. org/ 10. 4067/ S0719-06462019000300063

Beta-almost Ricci solitons on Sasakian 3-manifolds

Pradip Majhi and Debabrata Kar

Department of Pure Mathematics,

University of Calcutta,

35, Ballygaunge Circular Road,

Kolkata 700019, West Bengal, India

mpradipmajhi@gmail.com, debabratakar6@gmail.com

ABSTRACT

In this paper we characterize the Sasakian 3-manifolds admitting β-almost Ricci solitons

whose potential vector field is a contact vector field. Among others we prove that a β-

almost Ricci soliton whose potential vector field is a contact vector field on a Sasakian

3-manifold is shrinking, Einstein and non-trivial. Moreover, we prove that this type of

manifolds are isometric to a sphere of radius
√
7.

RESUMEN

En este art́ıculo caracterizamos las 3-variedades Sasakianas que admiten solitones β-

casi Ricci cuyo campo de vectores potencial es un campo de vectores de contacto. Entre

otros, probamos que un solitón β-casi Ricci cuyo campo de vectores potencial es un

campo de vectores de contacto en una 3-variedad Sasakiana se contrae, es Einstein y

no trivial. Más aún, probamos que este tipo de variedades son isométricas a una esfera

de radio
√
7.
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1 Introduction

In 1982, R. S. Hamilton [17] introduced the notion of Ricci flow to find a canonical metric on

a smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian manifold

defined as follows:

∂

∂t
g = −2S, (1)

where S denotes the Ricci tensor of g. Ricci solitons are special solutions of the Ricci flow

equation (1) of the form g = σ(t)ψ∗

tg with the initial condition g(0) = g, where ψt are diffeomor-

phisms of M and σ(t) is the scaling function. A Ricci soliton is a generalization of an Einstein

metric. We recall the notion of Ricci soliton according to [5]. On the manifold M, a Ricci soliton

is a triple (g, V, λ) with g, a Riemannian metric, V a vector field, called the potential vector field

and λ a real scalar such that

£Vg+ 2S+ 2λg = 0, (2)

where £ is the Lie derivative. Metrics satisfying (2) are interesting and useful in physics and are

often referred as quasi-Einstein ([6],[7]). Compact Ricci solitons are the fixed points of the Ricci

flow ∂
∂t
g = −2S projected from the space of metrics onto its quotient modulo diffeomorphisms

and scalings, and often arise blow-up limits for the Ricci flow on compact manifolds. Theoretical

physicists have also been looking into the equation of Ricci soliton in relation with string theory.

The initial contribution in this direction is due to Friedan [14] who discusses some aspects of it.

Recently, the notion of almost Ricci soliton has been introduced in [24] by Piagoli, Riogoli, Rimoldi

and Setti.

The Ricci soliton is said to be shrinking, steady or expanding according as λ is negative, zero or

positive respectively. Ricci solitons have been studied by several authors ([8], [9], [18], [19], [20],

[27], [28], and many others).

Recently, Gomes, Wang and Xia [26] generalized almost Ricci soliton to h -almost Ricci soliton as

follows:

Definition 1.1. A complete connected Riemannian manifold (M2n+1, g) is said to be a β-almost

Ricci soliton, denoted by (M2n+1, g, V, β, λ), if there exist a smooth vector field V on M2n+1 such

that

S+
β

2
£Vg+ λg = 0, (3)

where λ and β are smooth functions on M2n+1. λ is called soliton function and V is called the

potential vector field.
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A β-almost Ricci soliton is said to be shrinking, steady or expanding according as λ is negative,

zero or positive respectively. A β-almost Ricci soliton is called β-Ricci soliton if λ is constant. A

β-almost Ricci soliton is said to be trivial, that is, Einstein if the flow vector field V is homothetic,

that is, £Vg = cg, for some constant c. Otherwise, it is called non-trivial. A β-almost Ricci

soliton is said to be β-almost gradient Ricci soliton if the potential vector field V is the gradient of

a smooth function f onM2n+1, that is, V = Df, where D is the gradient operator of g onM2n+1.

For convenience, we denote (M2n+1, g,Df, β, λ) as a β-almost gradient Ricci soliton with potential

function f.

In particular, a Ricci soliton is a 1-almost Ricci soliton with constant soliton λ and an almost

Ricci soliton is nothing but a 1-almost Ricci soliton. Recently, Ghosh and Patra studied [16] the

k-almost Ricci solitons on contact geometry. In [1], Barros and Ribeiro proved that a compact

almost Ricci soliton with constant scalar curvature is isometric to an Euclidean sphere. In this

connection, a theorem has also been proved by Gomes, Wang and Xia in [26] for β-almost Ricci

soliton which is given as follows:

Theorem 1.1. [26] Let (Mn, g, V, β, λ), n ≥ 3 be a non-trivial β-almost Ricci soliton with constant

scalar curvature r. If Mn is compact, then it is isometric to a standard sphere Sn(c) of radius

c =

√

2n(2n+1)

r
.

The above Theorem will be used in later to prove our results.

The paper is organized as follows:

After preliminaries in Section 2, we study β-almost Ricci solitons on a Sasakian 3-manifold.

Among others we prove that β-almost Ricci solitons whose potential vector field is a contact vector

field on Sasakian 3-manifolds are shrinking and Einstein. Beside these, we prove that this type

of manifolds are isometric to a sphere of radius
√
7. Also we prove that a β-almost Ricci soliton

whose potential vector field is a contact vector field on a Sasakian 3-manifold is non-trivial.

2 Preliminaries

An odd dimensional smooth manifoldM2n+1 (n ≥ 1) is said to admit an almost contact structure,

sometimes called a (φ, ξ, η)-structure, if it admits a tensor field φ of type (1, 1), a vector field ξ

and a 1-form η satisfying ([2], [3])

φ2 = −I+ η⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0. (4)
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The first and one of the remaining three relations in (4) imply the other two relations in (4). An

almost contact structure is said to be normal if the induced almost complex structure J onMn×R

defined by

J(X, f
d

dt
) = (φX− fξ, η(X)

d

dt
) (5)

is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth function on

Mn × R. Let g be a compatible Riemannian metric with the (φ, ξ, η)-structure, that is,

g(φX,φY) = g(X, Y) − η(X)η(Y) (6)

or equivalently,

g(X,φY) = −g(φX, Y) (7)

and

g(X, ξ) = η(X), (8)

for all vector fields X, Y tangent to M. Then M becomes an almost contact metric manifold

equipped with an almost contact metric structure (φ, ξ, η, g).

An almost contact metric structure becomes a contact metric structure if

g(X,φY) = dη(X, Y), (9)

for all X, Y tangent to M. The 1-form η is then a contact form and ξ is its characteristic vector

field.

Given the contact metric manifold (M,η, ξ, φ, g), we define a symmetric (1,1)-tensor field h as

h = 1
2
Lξφ, where Lξφ denotes Lie differentiation in the direction of ξ. We have the following

identities ([2], [3]):

hξ = 0, hφ+ φh = 0, (10)

∇Xξ = −φX− φhX, (11)

∇ξφ = 0, (12)

R(ξ, X)ξ− φR(ξ,φX)ξ = 2(h2 + φ2)X, (13)

(∇ξh)X = φX− h2φX+ φR(ξ, X)ξ, (14)

S(ξ, ξ) = 2n − trh2, (15)

R(X, Y)ξ = −(∇Xφ)Y + (∇Yφ)X− (∇Xφh)Y + (∇Yφh)X. (16)

Here, ∇ is the Levi-Civita connection and R is the Riemannian curvature tensor of (M,g) with

the sign convention defined by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z (17)
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for vector fields X, Y, Z on M. The tensor l = R(., ξ)ξ is the Jacobi operator with respect to the

characteristic field ξ.

If the characteristic vector field ξ is a Killing vector field, the contact metric manifold (M,η, ξ, φ, g)

is called K-contact manifold. This is the case if and only if h = 0. The contact structure on M

is said to be normal if the almost complex structure on M × R defined by (5), is integrable. A

normal contact metric manifold is called a Sasakian manifold. Sasakian metrices are K-contact

and K-contact metrics on 3-manifolds are Sasakian. For a Sasakian manifold, the following hold

([2], [3]):

∇Xξ = −φX, (18)

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (19)

R(X, Y)ξ = η(Y)X− η(X)Y, (20)

Qξ = 2nξ, (21)

where Q denotes the (1, 1)-tensor metrically equivalent to the Ricci tensor of g. The curvature

tensor of a 3-dimensional Riemannian manifold is given by

R(X, Y)Z = [S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY]

−
r

2
[g(Y, Z)X − g(X,Z)Y], (22)

where S and r are the Ricci tensor and scalar curvature respectively and Q is the Ricci operator

defined by g(QX, Y) = S(X, Y).

It is known that the Ricci tensor of a Sasakian 3-manifold is given by [4]

S(X, Y) =
1

2
{(r− 2)g(X, Y) + (6− r)η(X)η(Y)} (23)

where r is the scalar curvature which need not be constant, in general. So, g is Einstein (hence

has constant curvature 1) if and only if r = 6.

As a consequence of (23), we have

S(X, ξ) = 2η(X). (24)

Contact metric manifolds have also been studied by several authors ([4], [10], [11], [12], [13],

[21], [22], [23], [25], and many others).
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Definition 2.1. ([16]) A vector field V on a contact manifold is said to be a contact vector field

if it preserves the contact form η, that is

£Vη = ψη, (25)

for some smooth function ψ on M. When ψ = 0 on M, the vector field V is called a strict contact

vector field.

Lemma 2.1. ([15]) If a vector field X leaves the structure tensor φ of the contact metric manifold

M invariant, then there exists a constant c such that £Xg = c(g+ η⊗ η).

3 β-almost Ricci solitons on Sasakian 3-manifolds

In this section we characterize Sasakian 3-manifolds M3 admitting β-almost Ricci solitons whose

potential vector field V is a contact vector field. Then the equations (3) and (25) hold good. The

equation (3) can be exhibited as

S(X, Y) +
β

2
{g(∇XV, Y) + g(X,∇YV)}+ λg(X, Y) = 0. (26)

Using (23) in the above equation we get

β{g(∇XV, Y) + g(X,∇YV)} = −(r+ 2λ − 2)g(X, Y)

+(r− 6)η(X)η(Y). (27)

Tracing the equation (27) we obtain

β divV = −(r+ 3λ). (28)

With the help of (25) we have

£Vdη = d£Vη = (dψ)∧ η+ψ(dη). (29)

Let us consider ω as the volume form of the manifold M3, that is,

ω = η∧ dη 6= 0. (30)

Taking Lie derivative of the preceding equation along the potential vector field V and using (25)

and (29) we have £Vω = 2ψω, and hence

divV = 2ψ. (31)
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Using the foregoing equation in (28) we infer

r = −2ψβ− 3λ. (32)

The soliton equation (3) also can be represented as

S(X, Y) +
β

2
(£Vg)(X, Y) + λg(X, Y) = 0. (33)

Substituting X = Y = ξ in (33) we get

βg(£Vξ, ξ) = λ + 2. (34)

Putting Y = ξ in (33) and using (24),

β

2
(£Vη)(X) −

β

2
g(X,£Vξ) + (λ + 2)η(X) = 0. (35)

Making use of (25) we obtain

β£Vξ = (ψβ + 2λ + 4)ξ. (36)

By the virtue of (34) and (36) we have

ψβ = −λ − 2. (37)

Using (37), (36) entails

β£Vξ = (λ + 2)ξ. (38)

From (9) we deduce that

(£Vdη)(X, Y) = (£Vg)(X,φY) + g(X, (£Vφ)Y). (39)

Multiplying both sides of (39) by β and then using (33) we infer

β(£Vdη)(X, Y) = −2S(X,φY) − 2λg(X,φY) + βg(X, (£Vφ)Y). (40)

In view of (23) and (40) we get

β(£Vdη)(X, Y) = −(r+ 2λ − 2)g(X,φY) + βg(X, (£Vφ)Y). (41)

From (29) we derive

(£Vdη)(X, Y) =
1

2
{dψ(X)η(Y) − dψ(Y)η(X)}+ψg(X,φY). (42)

Comparing (41) and (42), after simplification we obtain

2β(£Vφ)Y = 2(r + 2λ − 2)φY + βη(Y)Dψ− β(Yψ)ξ + 2ψβφY. (43)
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Replacing Y by ξ we get

2β(£Vφ)ξ = βDψ− β(ξψ)ξ. (44)

With the help of (4) and (36) we find that

β(£Vφ)ξ = 0. (45)

Applying (45) on (44) we have

Dψ = (ξψ)ξ. (46)

Taking inner product of (46) with X gives

dψ(X) = (ξψ)η(X), (47)

or equivalently,

dψ = (ξψ)η. (48)

Taking exterior derivative we get

d(ξψ)∧ η+ (ξψ)dη = 0. (49)

Taking wedge product of (49) with η we have

(ξψ)η ∧ dη = 0, (50)

from which it follows that

ξψ = 0, (51)

Since η∧ dη 6= 0, and by (48),

dψ = 0 (52)

and hence ψ is constant. Integrating (31) and then using Divergence Theorem we infer

ψ = 0. (53)

Thus the potential vector field V becomes a strict contact vector field and hence we have the

following:

Theorem 3.1. Let (M3, g, V, β, λ) be a non-trivial β-almost Ricci soliton whose potential vector

field is a contact vector field on a Sasakian 3-manifold. Then the potential vector field is a strict
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contact vector field.

By the virtue of (37) and (53) we find

λ = −2. (54)

Therefore, the β-almost Ricci soliton is shrinking. Thus we are in a position to state that

Theorem 3.2. A non-trivial β-almost Ricci soliton (M3, g, V, β, λ) whose potential vector field is

a contact vector field on a Sasakian 3-manifold is shrinking.

Making use of (53) and (54), from (32) we get

r = 6. (55)

Then we can conclude that

Theorem 3.3. The scalar curvature of a non-trivial β-almost Ricci soliton

(M3, g, V, β, λ) whose potential vector field is a contact vector field on a Sasakian 3-manifold is 6.

With the help of (55) from (23) we have

S(X, Y) = 2g(X, Y). (56)

Hence we can state the following:

Theorem 3.4. A non-trivial β-almost Ricci soliton (M3, g, V, β, λ) whose potential vector field is

a contact vector field on Sasakian 3-manifold is Einstein.

From (55) we can say that r is constant. Then in view of Theorem 1.1 we can conclude the

following:

Theorem 3.5. Let (M3, g, V, β, λ) be a non-trivial β-almost Ricci soliton whose potential vector

field is a contact vector field on a Sasakian 3-manifolds. Then (M3, g, V, β, λ) is isometric to a

sphere S3(c) of radius c =
√
7.

Using (53), (54) and (55) in (43) we infer

(£Vφ)Y = 0, (57)

as we have considered β as positive, that is, V leaves the structure tensor φ of the Sasakian

3-manifold invariant. Then, by Lemma 2.2, exists a constant a such that

£Vg = a(g+ η⊗ η), (58)
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which shows that the β-almost Ricci solitons are non-trivial. Thus our next theorem can be stated

as follows:

Theorem 3.6. Let (M3, g, V, β, λ) be a non-trivial β-almost Ricci soliton whose potential vector

field is a contact vector field on a Sasakian 3-manifolds. Then the β-almost Ricci solitons are

non-trivial.
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ABSTRACT

We prove the existence of weak solutions for discrete nonlinear system of Kirchhoff

type. We build some Hilbert spaces with suitable norms. We define the notion of weak

solution corresponding to the problem (1.1). The proof of the main result is based on
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RESUMEN

Probamos la existencia de soluciones débiles para sistemas discretos no-lineales de tipo

Kirchhoff. Construimos algunos espacios de Hilbert con normas apropiadas. Definimos
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Keywords and Phrases: Nonlinear difference equations, anisotropic nonlinear discrete systems,

minimization methods, weak solutions.

2010 AMS Mathematics Subject Classification: 47A75; 35B38; 35P30; 34L05; 34L30.

http://dx.doi.org/10.4067/S0719-06462019000300075


76 R. Sanou, I. Ibrango, B. Koné, A. Guiro CUBO
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1 Introduction

In this paper, we are going to investigate the existence of weak solutions for the following anisotropic

nonlinear discrete system.

For i = 1, · · · , n





−M (A(k− 1, ∆ui(k − 1)))∆(a(k − 1, ∆ui(k − 1)))=fi(k, u(k)), k ∈ Z[1, T ]

∆ui(0) = ∆ui(T) = 0

(1.1)

where ∆ui(k) = ui(k+ 1) − ui(k) is the forward difference operator for any i = 1, · · · , n;

Z[1, T ] = {1, . . . , T } for T ≥ 2 and a, fi are functions to be defined later.

In the last few years, great attention has been paid to the study of fourth-order nonlinear difference

equations. These equations have been widely used to study discrete models in many fields such as

computer science, economics, neural network, ecology, cybernetics, etc. For background and recent

results, we refer the reader to [2]-[12], [14] and the references therein.

Note that in recent years, much attention has been paid to problems not local since they appear in

physical phenomena like the theory of nonlinear elasticity, heat diffusion, etc. Among this problems,

we find Kirchhoff type problems, which are known by the presence of the term M(
∫
Ω
|∇u|2)∆u

in the continuous case. As far as we know, the first study which deals with anisotropic discrete

boundary value problems of p(.)-Kirchhoff type difference equation was done by Yucedag (see [11]).

The function M(A(k − 1, ∆u(k − 1))) which appear in the left-hand side of problem (1.1) is more

general.

The main operator ∆(a(k − 1, ∆u(k − 1))) in problem (1.1) can be seen as a discrete counterpart

of the anisotropic operator
N∑

i=1

∂

∂xi
a

(
x,

∂

∂xi
u

)
. The functional a derives from a potential with

a(k, ξ) = ∂
∂ξ

A(k, ξ).

Our goal is to use a minimization method in order to establish some existence results of solutions

of (1.1). The idea of the proof is to transfer the problem of the existence of solutions for (1.1) into

the problem of existence of a minimizer for some associated energy functional. This method was

successfully used by Bonanno et al. [1] for the study of an eigenvalue nonhomogeneous Neumann

problem, where, under an appropriate oscillating behaviour of the nonlinear term, they proved the

existence of a determined open interval of positive parameters for which the problem considered

admits infinitely many weak solutions that strongly converge to zero, in an appropriate Orlicz

Sobolev space.

Motivated by the work of [13] where J. Zhao proved the existence of positive solutions, the approach

presented in this article is different than the one given in the papers mentioned above. To the best of
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our knowledge , results on existence of weak solutions of system (1.1), using minimization method,

have not been found in the literature.

The remaining part of this paper is organized as follows. Section 2 is devoted to mathematical

preliminaries. The main existence result is proved in Section 3. In the Section 4, we give an

extension of our system.

2 Mathematical background

In the T -dimensional Hilbert space

H =
{
u : Z[0, T + 1] −→ Rn such that ∆u(0) = ∆u(T) = 0

}
,

with the inner product

〈u, v〉 =

n∑

i=1

T+1∑

k=1

∆ui(k − 1)∆vi(k − 1), ∀ u, v ∈ H,

we consider the norm

‖u‖ =

( n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|2
) 1

2

. (2.1)

We denote

Hi =
{
ui : Z[0, T + 1] −→ R such that ∆ui(0) = ∆ui(T) = 0

}
, for i = 1, · · · , n

with the norm

|ui|h =

(
T+1∑

k=1

|∆ui(k − 1)|2

) 1
2

∀ ui ∈ Hi for i = 1, · · · , n. (2.2)

Moreover, we may consider Hi with the following norm

|ui|m =

(
T∑

k=1

|ui(k)|
m

) 1
m

∀ ui ∈ Hi, m ≥ 2 for i = 1, · · · , n. (2.3)

We have the following inequalities (see [2])

T (2−m)/(2m)|ui|2 ≤ |ui|m ≤ T1/m|ui|2, ∀ ui ∈ Hi, m ≥ 2 for i = 1, · · · , n. (2.4)

Let the function

p : Z[0, T ] −→ (2,+∞) (2.5)

denoted by

p− = min
k∈Z[0,T ]

p(k) and p+ = max
k∈Z[0,T ]

p(k).
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For the data a and fi, we assume the following.

(H1).

{
a(k, .) : R → R, k ∈ Z[0, T ] and there exists A(., .) : Z[0, T ]× R → R

which satisfies a(k, ξ) = ∂
∂ξ

A(k, ξ) and A(k, 0) = 0, for all k ∈ Z[0, T ].

(H2). For all k ∈ Z[0, T ] and ξ 6= η

(a(k, ξ) − a(k, η)) .(ξ− η) > 0. (2.6)

(H3). For any k ∈ Z[0, T ], ξ ∈ R, we have

A(k, ξ) ≥
1

p(k)
|ξ|p(k). (2.7)

(H4). For each k ∈ Z[0, T ], the function fi(k, .) : R
n −→ R is jointly continuous and there exists

(αi(.))1≤i≤n : Z[0, T ] −→ (0,+∞) and a function (ri(.))1≤i≤n : Z[0, T ] −→ [2,+∞) such that

|fi(k, u)| ≤ αi(k)
(
1+ |ui(k)|

ri(k)−1
)

(2.8)

where 2 ≤ ri (k) < p− for i = 1, · · · , n.

In what follows, we denote by :

r− = min
{(k,i)∈Z[0,T ]×Z[1,n]}

ri(k) and r+ = max
{(k,i)∈Z[0,T ]×Z[1,n]}

ri(k).

For each i = 1, · · · , n, there exists hi ∈ Rn such that

∇Fi(k, u)(hi) = fi(k, u) ∀u ∈ H for i = 1, · · · , n. (2.9)

By (2.8) there exists (βi(.))1≤i≤n : Z[0, T ] −→ (0,+∞) such that

|Fi(k, u)| ≤ βi(k)
(
1+ |ui(k)|

ri(k)
)

for i = 1, · · · , n (2.10)

where

0 < β = inf
{(k,i)∈ Z[0,T ]×Z[1,n]}

βi(k) ≤ sup
{(k,i)∈ Z[0,T ]×Z[1,n]}

βi(k) = β < +∞. (2.11)

(H5). We also assume that the function M : (0,+∞) −→ (0,+∞) is continuous and non-decreasing

and there exist positive numbers B1, B2 with B1 ≤ B2 and α > 1 such that

B1t
α−1 ≤ M(t) ≤ B2t

α−1 for t > t∗ > 0. (2.12)

Example 2.1.

There are many functions satisfying both (H1) − (H4). Let us mention the following.
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• A(k, ξ) =
1

p(k)

((
1+ |ξ|2

)p(k)/2
− 1

)
, where a(k, ξ) =

(
1+ |ξ|2

)(p(k)−2)/2
ξ,

∀ k ∈ Z[0, T ], ξ ∈ R,

• fi(k, ξ) = 1+
∣∣ξi
∣∣p(k)−1

, ∀ (k, i) ∈ Z[0, T ]× Z[1, n] and ξ = (ξ1, · · · , ξn) ,

• M(t) = 1, ∀ t ∈ (0,+∞).

Moreover, we may consider H with the following norm

‖u‖m =

n∑

i=1

( T∑

k=1

|ui(k)|
m

) 1
m

, ∀ u ∈ H and m ≥ 2. (2.13)

Using the relation (2.4) we can prove the following lemma.

Lemma 2.2. We have the following inequalities

T (2−m)/(2m)‖u‖2 ≤ ‖u‖m ≤ T1/m‖u‖2, ∀ u ∈ H and m ≥ 2. (2.14)

We need the following auxiliary results throughout our paper.

Lemma 2.3.

(1) There exist two positive constant C1, C2 such that

n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1) ≥ C1

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|2

)p−

2

− C2,

(2.15)

for all u ∈ H with |ui|h > 1.

(2) For any m ≥ 2 there exists a positive constant cm such that

n∑

i=1

T∑

k=1

|ui(k)|
m ≤ cm

n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|m, ∀u ∈ H. (2.16)

Indeed,

(1) By [6], there exists the positive constants λi and µi for i = 1, · · ·n

T+1∑

k=1

|∆ui(k − 1)|p(k−1) ≥ λi

(
T+1∑

k=1

|∆ui(k − 1)|2

)p−

2

− µi ∀ ui ∈ Hi and |ui|h > 1.

n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1) ≥ min
1≤i≤n

(λi)

n∑

i=1

(
T+1∑

k=1

|∆ui(k − 1)|2

)p−

2

− max
1≤i≤n

(µi)n.
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Since the function x 7−→ x
p−

2 is convex because p− > 2, then we have

n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1) ≥ min
1≤i≤n

(λi)

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|2

)p−

2

− max
1≤i≤n

(µi)n.

We deduce that

n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1) ≥ C1

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|2

)p−

2

− C2.

(2) By [8], for any m ≥ 2 there exists a positive constant cm such that for i = 1, · · · , n

T∑

k=1

|ui(k)|
m ≤ cm

T+1∑

k=1

|∆ui(k − 1)|m ∀ ui ∈ Hi.

Therefore
n∑

i=1

T∑

k=1

|ui(k)|
m ≤ cm

n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|m ∀u ∈ H.

3 Existence of weak solutions

In this section, we study the existence of weak solution of problem (1.1).

Definition 3.1. A weak solutions of problem (1.1) is u ∈ H such that

n∑

i=1

[
M

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1))

)
T+1∑

k=1

a(k− 1, ∆ui(k − 1))∆vi(k − 1)

]

=

n∑

i=1

T∑

k=1

fi(k, u(k))vi(k)

(3.1)

for all v ∈ H.

Note that, since H is a finite dimensional space, the weak solutions coincide with the classical

solution the problem (1.1).

Theorem 3.2. Assume that (H1)−(H5) holds. Then, there exists a weak solution of the problem

(1.1).
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To prove this, we define the energy functional J : H −→ R by

J(u) =

n∑

i=1

M̂

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1))

)
−

n∑

i=1

T∑

k=1

Fi
(
k, u(k)

)
(3.2)

where M̂(t) =

∫t

0

M(s)ds.

Lemma 3.3. The functional J is well defined on H and is of class C1
(
H,R

)
with the derivative

given by

〈J ′(u), v〉 =

n∑

i=1

[
M

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1)

)
T+1∑

k=1

a(k − 1, ∆ui(k − 1))∆vi(k − 1)

]

−

n∑

i=1

T∑

k=1

fi(k, u(k))vi(k),

(3.3)

for all u, v ∈ H.

Indeed, let’s

I(u) =

n∑

i=1

M̂

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1))

)
and Λ(u) =

n∑

i=1

T∑

k=1

Fi
(
k, u(k)

)
.

Since M̂(.), A(k, .) and F(k, .) are continuous for all k ∈ Z[0, T ], then

|I(u)| =

∣∣∣∣
n∑

i=1

M̂

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1))

) ∣∣∣∣ < +∞,

|Λ(u)| =

∣∣∣∣
n∑

i=1

T∑

k=1

Fi
(
k, u(k)

)∣∣∣∣ < +∞.

The energy functional J is well defined on H.

It is not difficult to see that the functional I derivative are give by

〈I ′(u), v〉=

n∑

i=1

[
M

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1)

)
T+1∑

k=1

a(k− 1, ∆ui(k − 1))∆vi(k − 1)

]
(3.4)
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On the other hand, for all u, v ∈ H, there exists hi ∈ Rn such that

〈Λ ′(u), v〉 = lim
t→0+

Λ(u+ tv) −Λ(u)

t

= lim
t→0+

n∑

i=1

T∑

k=1

Fi(k, u(k) + tv(k)) − Fi(k, u(k))

t

=

n∑

i=1

T∑

k=1

lim
t→0+

Fi(k, u(k) + tv(k)) − Fi(k, u(k))

t

=

n∑

i=1

T∑

k=1

∇Fi(k, u(k))(hi)vi(k)

=

n∑

i=1

T∑

k=1

fi(k, u(k))vi(k).

The functional J is clearly of class C1
�

Lemma 3.4. The functional J is lower semi-continuous.

Indeed since the functional Λ is completely continuous and weakly lower semi-continuous, we have

to prove the semi-continuity of I.

A is convex with respect to the second variable according (H1) and (H2). With the assumption

(H5) we conclude that I is convex. Thus, it is enough to show that I is lower semi-continuous.

For this, we fix u ∈ H and ε > 0. Since I is convex, we deduce that, for any v ∈ H.

I(v) ≥ I(u) + 〈I′(u), v− u〉

≥ I(u) −

n∑

i=1

[
M

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1))

)

×

T+1∑

k=1

|a(k− 1, ∆ui(k − 1))||∆vi(k − 1) − ∆ui(k − 1)|

]

≥ I(u) − CM

(
n∑

i=1

T+1∑

k=1

|a(k− 1, ∆ui(k − 1))||∆vi(k− 1) − ∆ui(k − 1)|

)
,

where CM =

(
n∑

i=1

M

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1)

))
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By using Schwartz inequality, we get :

I(v) ≥ I(u) − CM

n∑

i=1

[(T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

)1
2

×

(
T+1∑

k=1

|∆vi(k − 1) − ∆ui(k − 1)|2

) 1
2 ]

≥ I(u) − CM




n∑

i=1

(
T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

) 1
2




×




n∑

i=1

(
T+1∑

k=1

|∆vi(k − 1) − ∆ui(k − 1)|2

) 1
2




By (2.2)

I(v) ≥ I(u) − CM




n∑

i=1

(
T+1∑

k=1

|a(k − 1, ∆ui(k − 1))|2

) 1
2



[

n∑

i=1

|vi − ui|h

]
.

Since Hi is finite dimensional, there exist the positive constants θi for i = 1, · · · , n such that

|vi|h ≤ θi|vi|2 ∀ vi ∈ Hi. (3.5)

Then,

I(v) ≥ I(u) − CM




n∑

i=1

(
T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

) 1
2



[

n∑

i=1

θi|vi − ui|2

]

≥ I(u) − max
1≤i≤n

(θi)CM




n∑

i=1

(
T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

)1
2



[

n∑

i=1

|vi − ui|2

]
.

Also, the space H is finite dimensional, there exists a positive constant γ such that:

‖u‖2 ≤ γ‖u‖ ∀ u ∈ H.

From this, we have

I(v) ≥ I(u) − γ max
1≤i≤n

(θi)CM




n∑

i=1

(
T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

) 1
2


 ‖v− u‖

≥ I(u) −


1+ γ max

1≤i≤n
(θi)CM

n∑

i=1

(
T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

) 1
2


 ‖v− u‖
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Finally

I(v) ≥ I(u) − S(T, u)‖v− u‖ ≥ I(u) − ε, (3.6)

for all v ∈ H with ‖v− u‖ < δ = ε
S(T,u)

, where

S(T, u) = 1+ γ max
1≤i≤n

(θi)CM

n∑

i=1

(
T+1∑

k=1

|a(k− 1, ∆ui(k − 1))|2

) 1
2

.

We conclude that J is weakly lower semi-continuous.

Proposition 3.5. The functional J is coercive and bounded from below.

Indeed, according to (2.7), (2.10)-(2.12) we have

J(u) =

n∑

i=1

M̂

(
T+1∑

k=1

A(k − 1, ∆ui(k− 1))

)
−

n∑

i=1

T∑

k=1

Fi
(
k, u(k)

)

≥
B1

α(p+)α

[
n∑

i=1

(
T+1∑

k=1

|∆ui(k− 1)|p(k−1)

)α]
−

n∑

i=1

T∑

k=1

Fi
(
k, u(k)

)

≥
B1

α(p+)α

[
n∑

i=1

(
T+1∑

k=1

|∆ui(k− 1)|p(k−1)

)α]
−

n∑

i=1

T∑

k=1

βi(k)
(
1+ |ui(k)|

ri(k)
)

≥
B1

α(p+)α

[
n∑

i=1

(
T+1∑

k=1

|∆ui(k− 1)|p(k−1)

)α]
− β

n∑

i=1

T∑

k=1

(
1+ |ui(k)|

ri(k)
)

≥
B1

α(p+)α

[
n∑

i=1

(
T+1∑

k=1

|∆ui(k− 1)|p(k−1)

)α]
− β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − βnT.

There exist ηi and νi such that

J(u) ≥
B1

α(p+)α

[
min

1≤i≤n
(ηi)

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1)

)α

− max
1≤i≤n

(νi)

]

− β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − βnT. (3.7)

To prove the coerciveness of the functional J, we may assume that ||u|| > 1 and we deduce from

the above inequality (2.15) that
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J(u) ≥
B1

α(p+)α


 min
1≤i≤n

(ηi)


C1

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|2

)p−

2

− C2




α

− max
1≤i≤n

(νi)




−β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − βnT.

There exist a function K(α,C) such that

J(u) ≥
B1

α(p+)α

(
min

1≤i≤n
(ηi)C

α
1 ||u||

αp−

− min
1≤i≤n

(ηi)K(α,C)C
α
2 − max

1≤i≤n
(νi)

)

− β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − βnT.

Namely

J(u) ≥ A1||u||
αp−

− β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) −A2,

where

A1 =
B1

α(p+)α
min

1≤i≤n
(ηi)C

α
1

and

A2 =
B1

α(p+)α

(
min

1≤i≤n
(ηi)K(α,C)C

α
2 + max

1≤i≤n
(νi)

)
+ βnT.

So

J(u) ≥ A1||u||
αp−

− β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) −A2

≥ A1||u||
αp−

− β

n∑

i=1

T∑

k=1

|ui(k)|
r+ − β

n∑

i=1

T∑

k=1

|ui(k)|
r− −A2.

Using (2.16)

J(u) ≥ A1||u||
αp−

− (Cr−)β

n∑

i=1

T∑

k=1

|∆ui(k)|
r− − (Cr+)β

n∑

i=1

T∑

k=1

|∆ui(k)|
r+ − A2

By using (2.4) there exists the positive constants K1 and K2 such that

J(u) ≥ A1||u||
αp−

− K1

n∑

i=1

(
T∑

k=1

|∆ui(k)|
2

) r−

2

− K2

n∑

i=1

(
T∑

k=1

|∆ui(k)|
2

) r+

2

−A2.
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There exist the positive constants A3, A4, A5 and A6 such that

J(u) ≥ A1||u||
αp−

− K1A3

(
n∑

i=1

T∑

k=1

|∆ui(k)|
2

) r−

2

− K1 A4 −A5 K2

(
n∑

i=1

T∑

k=1

|∆ui(k)|
2

) r+

2

− K2 A6 −A2.

Consequently, there exist the positive constants A7 , A8 and A9 such that

J(u) ≥ A1||u||
αp−

− A7||u||
r− −A8||u||

r+ −A9. (3.8)

Recall that p− >
r+

α
≥

r−

α
. Then J is coercive.

Besides, for ||u|| ≤ 1, we have with (3.7)

J(u) ≥
B1

α(p+)α

[
min

1≤i≤n
(ηi)

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1)

)α

− max
1≤i≤n

(νi)

]

− β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − βnT

≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − βnT

≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − β

n∑

i=1

T∑

k=1

|ui(k)|
r− − β

n∑

i=1

T∑

k=1

|ui(k)|
r+ − βnT.

Using (2.16)

J(u) ≥ − B1

α(p+)α
max

1≤i≤n
(νi) − (Kr−)β

n∑

i=1

T∑

k=1

|∆ui(k)|
r− − (Kr+)β

n∑

i=1

T∑

k=1

|∆ui(k)|
r+ − βnT.

By using (2.14) there exists the positives constants K′
1 and K′

2 such that

J(u) ≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − K′

1

n∑

i=1

(
T∑

k=1

|∆ui(k)|
2

) r−

2

− K′
2

n∑

i=1

(
T∑

k=1

|∆ui(k)|
2

) r+

2

− βnT.
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There exist the positive constants C′
3, C

′
4, C

′
5 and C′

6 such that

J(u) ≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − K′

1C
′
3

(
n∑

i=1

T∑

k=1

|∆ui(k)|
2

) r−

2

− K′
1 C′

4 − C′
5 K′

2

(
n∑

i=1

T∑

k=1

|∆ui(k)|
2

) r+

2

− K′
2 C′

6 − βnT.

Consequently, there exist the positive constants C′
7 and C′

8 such that

J(u) ≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − C′

7||u||
r− − K′

1 C′
4 − C′

8||u||
r+ − K′

2 C′
6 − βnT

≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − C′

7 − K′
1 C′

4 − C′
8 − K′

2 C′
6 − βnT.

Thus, J is bounded from below �

Since J is weakly lower semi-continuous, bounded from below and coercive on H, using the re-

lation between critical points of J and problem (1.1), we deduce that J has a minimizer which is a

weak solution to problem (1.1).

4 An extension

In this section we are going to show that the existence result obtained for system (1.1) can be

extended. Let’s consider the following system.

For i = 1, · · · , n






−M (A(k − 1, ∆ui(k − 1)))∆(a(k − 1, ∆ui(k − 1))) + σi(k)φ(k, ui(k))

= δi(k)fi(k, u(k)), ∀ k ∈ Z[1, T ]

∆ui(0) = ∆ui(T) = 0,

(4.1)

where T ≥ 2 is a fixed integer, and we shall use the following assumption.

(H6). σi : Z[1, T ] −→ R and δi : Z[1, T ] −→ R are such that σi(k) ≥ σ0 > 0 for

(k, i) ∈ Z[1, T ] × Z[1, n] and 0 < δi(k) ≤ sup
{(k,i)∈Z[1,T ]×Z[1,n]}

|δi(k)| = δ0.

(H7). φ(k, t) = |t|p(k)−2t for (k, t) ∈ Z[0, T ]× R.
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In the T−dimensional Hilbert space H with the inner product

〈u, v〉 =

n∑

i=1

T+1∑

k=1

∆ui(k − 1)∆vi(k− 1) +

n∑

i=1

T+1∑

k=1

ui(k)vi(k),

we consider the norm

‖u‖ =
√
〈u, u〉 =

(
n∑

i=1

T+1∑

k=1

|∆ui(k− 1)|2 +

n∑

i=1

T∑

k=1

|ui(k)|
2

)1
2

.

Definition 4.1. A weak solution of problem (4.1) is a function u ∈ H such that

n∑

i=1

[
M

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1)

)
T+1∑

k=1

a(k− 1, ∆ui(k − 1))∆vi(k − 1)

]

+

n∑

i=1

T∑

k=1

σi(k)|ui(k)|
p(k)−2ui(k)vi(k) =

n∑

i=1

T∑

k=1

δi(k)fi(k, u(k))vi(k).

for all v ∈ H.

Theorem 4.2. Under the assumptions (H1)- (H6) the problem (4.1) has a least weak solution in

H.

Indeed, for u ∈ H we define the energy functional corresponding to system (4.1) by

J(u) =

n∑

i=1

M̂

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1))

)
+

n∑

i=1

T∑

k=1

σi(k)

p(k)
|ui(k)|

p(k) −

n∑

i=1

T∑

k=1

δi(k)Fi
(
k, u(k)

)
.

Obviously, J is class C1 (H,R) and is weakly lower semicontinuous, and we show that

〈J ′(u), v〉 =

n∑

i=1

[
M

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1)

)
T+1∑

k=1

a(k− 1, ∆ui(k− 1))∆vi(k − 1)

]

+

n∑

i=1

T∑

k=1

σi(k)|ui(k)|
p(k)−2ui(k)vi(k) −

n∑

i=1

T∑

k=1

δi(k)fi
(
k, u(k)

)
vi(k).

for all u, v ∈ H.

This implies that the weak solution of system(4.1) coincides with the critical points of the func-

tional J. It suffices to prove that J is bounded below and coercive in order to complete the proof.
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J(u) =

n∑

i=1

M̂

(
T+1∑

k=1

A(k − 1, ∆ui(k − 1))

)
+

n∑

i=1

T∑

k=1

σi(k)

p(k)
|ui(k)|

p(k) −

n∑

i=1

T∑

k=1

δi(k)Fi
(
k, u(k)

)

≥

n∑

i=1

M̂

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1))

)
−

n∑

i=1

T∑

k=1

δi(k)Fi
(
k, u(k)

)

≥
n∑

i=1

M̂

(
T+1∑

k=1

A(k− 1, ∆ui(k − 1))

)
− δ0

n∑

i=1

T∑

k=1

Fi
(
k, u(k)

)
.

We obtain

J(u) ≥ B1

α(p+)α

[
min

1≤i≤n
(ηi)

(
n∑

i=1

T+1∑

k=1

|∆ui(k − 1)|p(k−1)

)α

− max
1≤i≤n

(νi)

]

− δ0β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − δ0βnT.

(4.2)

For ‖u‖ > 1, by the same procedure, we prove that

J(u) ≥ A′
1‖u‖

αp−

− A′
7‖u‖

r− −A′
8‖u‖

r+ −A′
9,

where A′
1, A

′
7, A

′
8 and A′

9 are the positive constants.

Hence p− >
r+

α
≥

r−

α
, J is coercive.

If ||u|| ≤ 1 by (4.2) we have

J(u) ≥ −
B1

α(p+)α
max

1≤i≤n
(νi) − δ0β

n∑

i=1

T∑

k=1

|ui(k)|
ri(k) − δ0βnT.

By the same reasoning

J(u) ≥ −D1 − δ0βnT

where D1 > 0.

Thus, J is bounded from below �

Since J is weakly lower semi-continuous, bounded from below and coercive on H, using the relation

between critical points of J and problem (4.1), we deduce that J has a minimizer which is a weak

solution to problem (4.1).
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ABSTRACT

The problem of oblique scattering of surface water waves by a vertical wall with a gap

submerged in infinitely deep water is re-investigated in this paper. It is formulated

in terms of two first kind integral equations, one involving the difference of potential

across the wetted part of the wall and the other involving the horizontal component

of velocity across the gap. The integral equations are solved approximately using one-

term Galerkin approximations involving constants multiplied by appropriate weight

functions whose forms are dictated by the physics of the problem. This is in contrast

with somewhat complicated but known solutions of corresponding deep water integral

equations for the case of normal incidence, used earlier in the literature as one-term

Galerkin approximation. Ultimately this leads to very closed (numerically) upper and

lower bounds of the reflection and transmission coefficients so that their averages pro-

duce fairly accurate numerical estimates for these coefficients. Known numerical results

for normal incidence and for a narrow gap obtained by other methods in the literature

are recovered, thereby confirming the correctness of the method employed here.

http://dx.doi.org/10.4067/S0719-06462019000300093
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RESUMEN

En este art́ıculo re-investigamos el problema de dispersión oblicua de ondas superfi-

ciales de agua por una pared vertical con una abertura sumergida en agua infinitamente

profunda. Se formula en términos de dos ecuaciones integrales de primera especie, una

involucrando la diferencia de potencial a través de la parte mojada de la pared y la otra

involucrando la componente horizontal de la velocidad a través de la apertura. Las ecua-

ciones integrales son resueltas aproximadamente usando aproximaciones de Galerkin de

un término involucrando constantes multiplicadas por funciones peso apropiadas, cuyas

formas son dictadas por la f́ısica del problema. Esto se contrapone con lo complicado de

soluciones conocidas para las correspondientes ecuaciones integrales de agua profunda

para el caso de incidencia normal, usadas anteriormente en la literatura como aproxima-

ciones de Galerkin de un término. Últimamente esto lleva a cotas superiores e inferiores

muy cercanas (numéricamente) para los coeficientes de reflexión y transmisión de tal

suerte que sus promedios producen estimaciones numéricas razonablemente precisas

para estos coeficientes. Se recuperan resultados numéricos conocidos en la literatura

para la incidencia normal y para una apertura delgada, confirmando que los métodos

empleados son correctos.

Keywords and Phrases: Thin vertical wall, submerged gap, integral equations, One-term

Galerkin approximations, Constant as basis, Reflection and transmission coefficients.

2010 AMS Mathematics Subject Classification: 76B07, 76B15.
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1 Introduction

The problem of oblique scattering of surface water waves by a thin vertical wall with a gap of

arbitrary width submerged in infinitely deep water is re investigated here within the framework of

linearized theory of water waves. Porter [10] investigated this problem for normal incidence of a

surface wave train employing a reduction procedure and also an integral equation formulation, both

leading to the same Riemann-Hilbert problem in the theory of complex variable, and the reflection

and transmission coefficients are obtained in closed forms in terms of some definite integrals which

could be computed numerically. When the gap is narrow, Tuck [12] earlier employed the method

of matched asymptotic expansion to obtained the transmission coefficient approximately in terms

of an analytical expression. Packham and Williams [9] employed an integral equation formulation

based on Green’s integral theorem to reduce the problem of narrow gap in uniform finite depth

water to a first kind integral equation in horizontal component of velocity across the gap. They

solved the integral equation approximately exploiting the concept of narrowness of the gap, and

obtained an approximate analytical expression for the transmission coefficient. Mandal [7] em-

ployed an integral equation formulation based on Havelock’s [6] expansion of water wave potential

to solve the narrow gap problem in deep water for normal incidence, and obtained the transmission

coefficients approximately by exploiting the concept of narrowness of the gap as has been done by

Packham and Williams [9]. Chakrabarti et al [1] re-investigated Porter’s problem by reducing it

to a special logarithmic singular integral equation involving two unknown constants, one involving

the unknown reflection coefficient, which were ultimately determined by two solvability criteria.

Das et al [2] investigated the oblique scattering problem by formulating it in terms of two first kind

integral equations after employing Havelock’s [6] expansion of water wave potential, one involving

the horizontal component of velocity across the gap and the other involving the difference of poten-

tial across the wetted parts of the wall. These were then solved approximately employing one-term

Galerkin approximations involving somewhat complicated but exact solutions of the correspond-

ing integral equations for the case of normal incidence as could be found from Porter [10]. Also,

one-term Galerkin technique was employed recently by Roy et al [11] while studying the problem

of water wave scattering by a pair of thin vertical barriers with unequal gaps submerged in deep

water. However, it involves somewhat complicated but known exact solutions of the corresponding

integral equations for a single barrier partially immersed in deep water and for normal incidence,

as basis functions.

In the present paper, this problem is re-investigated employing one-term Galerkin approxima-

tion technique wherein the one-term approximations are taken to be simply constants multiplied

by appropriate weight functions whose forms are dictated by the physics of the problem. This

technique leads to very accurate close bounds(numerical) for the reflection and transmission coef-
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ficients so that their averages produce accurate numerical estimates for these coefficients. Known

numerical results for normal incidence and also for a narrow gap obtained by other methods in the

literature are recovered from the results obtained by the present method as special cases, thereby

confirming the correctness of the method. Numerical results obtained by the present method are

displayed graphically in a number of figures. It may be noted that this type of one-term Galerkin

method to solve integral equations has not been employed in the literature on water waves earlier.

(0,a)Re
-Ky-iµx

e
-Ky+iµx 0

x

Free Surface

Te
-Ky+iµx

(0,b)

y

(a) Barrier configuration (b) Angle of incident wave

Figure 1: Sketch of the problem.

2 Mathematical formulation and solution

A Cartesian co-ordinate system is taken in which y-axis is chosen vertically downwards in the fluid

region and the x, z-plane is taken as the rest position of the free surface. For a thin vertical wall with

a gap submerged in deep water, its wetted parts are represented by x = 0, y ∈ L = (0, a)
⋃

(b,∞),

wherein the gap is represented by x = 0, y ∈ L̄ = (a, b). The problem is described in figure 1

wherein R and |T | denote the reflection and transmission coefficient respectively. Full details of the

problem is given in Das et al.[2] . For the problem of oblique scattering of surface water waves by

the wall with a gap, let f(y)(y ∈ L̄) denote the horizontal component of velocity across the gap,

g(y)(y ∈ L̄) denote the difference of potential function across the wetted parts of the wall, R and

T denote the reflection and transmission coefficients respectively. Then the behaviors of f(y) and

g(y) at the end points y = a, y = b are given by

f(y) =






O
(

(y− a)
− 1

2

)

as y → a+ 0,

O
(

(b− y)
− 1

2

)

as y → b − 0,
(2.1a)

and
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g(y) =






O
(

(a− y)
1

2

)

as y → a− 0,

O
(

(y− b)
1

2

)

as y → b+ 0.
(2.1b)

The relation between R, T and f(y), g(y) are given by

T = 1− R = −2i secα

∫

L̄

f(y)e−Kydy, (2.2a)

R = −K

∫

L

g(y)e−Kydy, (2.2b)

where α is the angle of incidence of train of surface water waves on the thin wall, K = σ2

g
, σ being

the angular frequency and g is the gravity.

Let

F(y) = −
2

πR
f(y), y ∈ L̄, (2.3a)

G(y) =
1

πiK cosα(1− R)
g(y), y ∈ L, (2.3b)

then it is easy to see that G(y) and F(y) satisfy the first kind integral equations (cf. Das et al [2],

Mandal and Chakrabarti [8])

(MG)(y) ≡

∫

L

G(u)M(y, u)du = e−Ky, y ∈ L (2.4a)

and

(NF)(y) ≡

∫

L

F(u)N (y, u)du = e−Ky, y ∈ L̄ (2.4b)

where

M(y, u) = lim
ǫ→+0

∫
∞

0

k1S(k, y)S(k, u)

k2 + K2
e−ǫkdk, (2.5a)

and

N (y, u) =

∫
∞

0

S(k, y)S(k, u)

k1(k2 + K2)
dk, (2.5b)

where k1 =
(

k2 + ν2
)

1

2 , ν = K sinα, S(k, y) = k cosky− K sinky while (2.2a) and (2.2b) produce

∫

L

F(y)e−Kydy = C, (2.6a)

∫

L

G(y)e−Kydy =
1

π2K2C
(2.6b)

where

C =
1− R

iπR
cosα. (2.7)
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(2.5a) and (2.5b) show that M(y, u) and N (y, u) are real and symmetric so that G(u), F(u) sat-

isfying (2.4a) and (2.4b) respectively are real and hence, C satisfying (2.6a) as well as (2.6b), is

an unknown real quantity. Once C is found R and T(= 1− R) can be calculated using (2.7).

If G(y) and F(y) are chosen as one-term Galerkin approximations given by

G(y) ≈ c0g0(y), y ∈ L; F(y) ≈ d0f0(y), y ∈ L̄, (2.8)

then exploiting the properties of symmetry, self-adjointness and positive semi-definiteness of the

integral operators (MG)(y) and (N f)(y) defined by (2.4) proceeding as in Evans and Morris [4]

and Das et al [2], it can be shown that C has the bounds A,B

B ≤ C ≤ A (2.9)

where A and B can be expressed in terms of integrals involving g0(y) and f0(y) respectively as

given by

A =
1

π2K2

∫
L
g0(y)(Mg0)(y)dy

(
∫
L
g0(y)e−Kydy)2

, (2.10)

B =
(
∫
L̄
f0(y)e

−Kydy)2
∫
L̄
f0(y)(N f)(y)dy

. (2.11)

It may be noted that A,B are independent of c0, d0 so that these can be chosen to be unity. The

upper and lower bounds for |R| and |T | are now obtained as

R1 ≤ |R| ≤ R2, T1 ≤ |T | ≤ T2 (2.12)

where

R1 =
1

(1+ π2A2 sec2 α)
1

2

, R2 =
1

(1+ π2B2 sec2 α)
1

2

, (2.13a)

T1 =
πB secα

(1+ π2A2 sec2 α)
1

2

, T2 =
πA secα

(1+ π2B2 sec2 α)
1

2

. (2.13b)

Das et al [2] chose g0(y) and f0(y) as the exact solutions of the integral equations (2.4a) and

(2.4b) for the case of normal incidence(α = 00) and these involve quite complicated expressions

(cf. Mandal and Chakrabarti [8]). Here we choose g0(y), f0(y) as

g0(y) =






(

1− y
a

)
1

2 , 0 < y < a,

e−Ky
(

y
b
− 1

)
1

2 , b < y < ∞

(2.14a)

and

f0(y) =
a

{(y− a)(b − y)}
1

2

, a < y < b. (2.14b)
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This choice of f0(y) and g0(y) is dictated by the behaviors of f(y) and g(y) at the end points

y = a and y = b.

Then, after substituting (2.14a) in (2.10), A is obtained as

A =

∫
∞

0
k1

k2+K2 [kU(a, b, k, K) − KV(a, b, k, K)]
2
dk

π2K2W2(a, b, k, K)
(2.15)

where

U(a, b, k, K) =

∫a

0

(

1−
y

a

)
1

2

coskydy+

∫
∞

b

e−Ky
(y

b
− 1

)
1

2

coskydy,

V(a, b, k, K) =

∫a

0

(

1−
y

a

)
1

2

sin kydy +

∫
∞

b

e−Ky
(y

b
− 1

)
1

2

sin kydy,

W(a, b, K) =

∫a

0

e−Ky
(

1−
y

a

)
1

2

dy+

∫
∞

b

e−2Ky
(y

b
− 1

)
1

2

dy.

U(a, b, k, K), V(a, b, k, K) and W(a, b, K) can be expressed analytically in terms of Young’s and

lower incomplete gamma functions(cf. Gradshteyn and Ryzhik [5]).

Similarly, after substituting (2.14b) in (2.11), B is obtained as

B =
M2

0,0(K(b − a))e−K(a+b)

K(b − a)
∫
∞

0

J2
0
(
k(b−a)

2
)

k1(k2+K2)

[

k cosk(a+b
2

) − K sin k(a+b
2

)
]2

dk
(2.16)

where M0,0 is the Whittaker function and J0 is the Bessel function.

3 Numerical results

The lower and upper bounds of the reflection and transmission coefficients |R| and |T | respectively

are evaluated numerically for various values of different parameters such as wavenumber Kb, angle

of incidence α and a
b
= 0.5. Only the lower and upper bounds R1 and R2 of |R| are displayed in

Table 1. Here we put α = 00 in the expressions for R1 and R2 for obtaining numerical estimates for

|R| for the case of normal incidence and the bounds are also compared with exact values derived

from Porter’s [10] exact analytical results. Numerical values of upper and lower bounds of |R|

coincide within 3 to 4 decimal places and hence their averages provide very accurate estimates for

the reflection coefficients. Similar computations have been carried out for the upper and lower
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bounds of |T |. However, these results are not displayed here. It has also been checked that these

numerical estimates satisfy the energy identity |R|2 + |T |2 = 1, which provides a partial check on

the correctness of the method. There are also other checks as described below. Also the numerical

results presented in Table 1 are compared with those in Table 3 of Das et al [2]. Almost the same

results are obtained. It may be noted that for the present method, the basis function g0(y) given

by (2.14a) decays exponentially as y → ∞ while for the method employed in Das et al [2] the basis

function f1(y) given by (5.2) (and (5.3)) of Das et al [2] decays algebraically as y → ∞. Because

of this, the one-term Galerkin method with simplified basis functions employed here provides high

accuracy in the numerical results.

α = 00 α = 300 α = 600 α = 850

Kb R1 R2 |R| Porter[1] R1 R2 R1 R2 R1 R2

0.05 0.7251 0.7257 0.7251 0.6582 0.6587 0.4106 0.4109 0.0831 0.0831

0.4 0.4343 0.4344 0.4343 0.3605 0.3625 0.1823 0.1875 0.0306 0.0307

1.2 0.6500 0.6504 0.6502 0.5872 0.5877 0.3752 0.3755 0.0733 0.0772

2.0 0.9448 0.9472 0.9466 0.9236 0.9238 0.7950 0.7954 0.2092 0.2099

3.0 0.9960 0.9987 0.9960 0.9936 0.9937 0.9725 0.9771 0.6100 0.6107

4.0 0.9996 0.9999 0.9996 0.9993 0.9994 0.9967 0.9969 0.9206 0.9206

Table 1. Lower and upper bounds for the reflection coefficient of |R| for various values of the

parameters Kb, α and a
b
= 0.5

As in Porter [10] and Tuck [12], let a = h(1− µ
2
), b = h(1+ µ

2
), λ = 2π

K
where h is the depth of the

center of the gap below the free surface , µ is the ratio of the width of the gap to its mean depth

and it lies between 0 to 2 and λ is the wavelength of the incident wave.

0 0.5 1 1.5 2 2.5
0
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h/g)
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µ=1.0
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Figure 2: |R|(...) and |T |(−) against Kh for different values of µ, and α = 00.

In figure 2, |R| and |T | are depicted against Kh(= K(a+b)

2
) for different values of µ(= 2(b−a)

b+a
)
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and for normal incidence(α = 00). Also |R| and |T | calculated from Porter’s [1] exact expressions

obtained by a completely different method are indicated in figure 2 by cross marks (x). From this

figure it is observed that the curves of |R| and |T | plotted on the basis of the numerical results

obtained by the present method and plotted on the basis of Porter’s [10] exact results coincide.

This gives another check on the correctness of the method.

In figure 3, |T |2 is depicted against h
λ
(=

K(a+b)

4π
) for different small values of µ = 0.05, 0.15, 0.4

and for normal incidence(α = 00) so that the gap is narrow. Also |T2| calculated from Tuck’s [12]

result (expression given in (6.2) there) are indicated in figure 3 by cross marks (x). From this figure

it is observed that the curves of |T2| plotted on the basis of the numerical results obtained by the

present method and plotted on the basis of Tuck’s [12] approximate result obtained by the method

of matched asymptotic expansion coincide. This provides yet another check for the correctness of

the results obtained by the present method.
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Figure 3: |T |2 against h
λ
for different values of µ, and α = 00.
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Figure 4: |R|(...) and |T |(−) against Kb for α = 00.

In figure 4, |R| and |T | are depicted graphically against the wavenumber Kb for a
b
= 0 so that

the upper part of the wall is absent and the wall becomes a submerged barrier considered by Dean

[3]. The curves of |R| and |T | almost coincide with the corresponding curves given by Dean [12]

(indicated here by cross (x) marks). This produces a final check for the correctness of the results

obtained by the present method.
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Figure 5: |T |2 against h
λ
for different values of α, and µ = 0.05

In figure 5, |T |2 is depicted against h
λ

for different values of α with fixed µ = 0.05(narrow

gap). This is in fact an extension of Tuck’s figure for a narrow gap and normal incidence to oblique

incidence. All the conclusion drawn by Tuck [12] for normal incidence about the transmission of

energy through a narrow gap can be extended for oblique incidence. For example, considerable

transmission of energy occurs for long waves. From the figure 5 it is observed that transmission

increases with the increase in the angle of incidence which is plausible. Also for a fixed angle of

incidence, transmission first increases as the wavenumber increases and then it decreases steadily

as the wavenumber further increases. This is due to the fact that for large wavenumber the waves

are confined near the free surface so that most of these are reflected by the upper part of the thin

wall.
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Figure 6: |R|(...) and |T |(−) against Kh for different values of α, and µ = 0.5

In figure 6, |R| and |T | are depicted against Kh for different values of α with fixed µ =

0.5(moderate gap). This is again an extension of Porter’s [10] curves for oblique incidence. This

figure shows that for a wall with a moderate gap, as the angle of incidence increases, reflection co-

efficient decreases while transmission increases for fixed wavenumber. Incident waves are reflected

by two parts of the wall. Obviously this reflection is maximum when waves are incident normally

(α = 00) on the wall and then reflection decreases gradually as α increases. This is plausible from

physical considerations. Here however results for values of α from 00 to 750 are presented.

Again for fixed angle of incidence the reflection coefficient first decreases with increase of

wavenumber and then increases asymptotically to unity as the wavenumber further increases.

This is also plausible since for large wavenumber, the waves are confined near the free surface as

mentioned earlier, so that most of the incident waves are reflected back. Reverse of this happens

for the transmission coefficient i.e, transmission increases with the increase in the angle of incidence

and for a fixed angle of incidence, transmission increases first with the increase of wavenumber and

then decreases steadily to zero as the wavenumber further increases. It is interesting to note that

for fixed angle of incidence, µ(0 < µ < 2) is a crucial parameter in determining the transmission

of wave energy through the gap at certain wavelengths. For µ = 1.0, |T | attains maximum near

Kh = 0.5 corresponding to about more than 90 percent of wave energy transmission. For fixed

α, as µ decreases i.e, as gap becomes smaller, |T | decreases for all finite Kh which is shown in the

figure 2. The curves in figures 5 and 6 may be regarded as new results.

4 Conclusion

The problem of water wave scattering by a thin vertical wall with a gap submerged in infinitely

deep water is re-investigated by using integral equation formulations based on Havelock’s expan-
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sion of water wave potential. Two first kind integral equations involving horizontal component of

velocity across the gap and difference of velocity potential across the upper and lower parts of the

wall are obtained. These are solved here approximately by using one-term Galerkin approximations

involving constants multiplied by appropriate weight functions whose forms are dictated by the

behaviour at the end points of the gap and at infinite depth. Exploitation of the symmetry and

positive semi-definiteness of the operators of the integral equations lead to expressions for upper

and lower bounds for the reflection and transmission coefficients. These bounds, when computed

numerically, coincide upto 3-4 decimal places so that their averages produce very accurate numeri-

cal estimates for the reflection and transmission coefficients. Known numerical results(in the form

of graphs) for the problem of water wave scattering by a thin wall with a gap, available in the

literature by employing different methods, are recovered from the results obtained by the present

method as special cases. The method employed here appears to be quite simple in comparison to

other known methods employed for this problem. It is felt that this type of one-term Galerkin

technique involving simple basis functions can be employed to study wave scattering by other

types of obstacles with submerged edges such as multiple thin vertical barriers, thick rectangular

barriers, wave scattering by step-type bottom topography etc.
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