
A  Mathematical  Journal

Cubo

2020
VOLUME 22 · ISSUE 1

I S S N  0 7 1 9 - 0 6 4 6  
O N L I N E  V E R S I O N

Facultad de Ingeniería y Ciencias

Departamento de Matemática y Estadística

Temuco - Chilewww.cubo.ufro.cl



CUBO

A Mathematical Journal

a
EDITOR-IN-CHIEF

a
Rub́ı E. Rodŕıguez
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bollobas@memphis.edu

Department of Mathematical Science

University of Memphis

Memphis TN 38152 – USA

Burton Theodore

taburton@olypen.com

Northwest Research Institute

732 Caroline ST

Port Angeles, WA 98362 – USA

Carlsson Gunnar

gunnar@math.stanford.edu

Department of Mathematics

Stanford University

Stanford, CA 94305-2125 – USA

Eckmann Jean Pierre

jean-pierre.eckmann@unige.ch
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ABSTRACT

In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the

general settings of measurable spaces and Lebesgue integral, which is a two functions

generalization of Gini mean difference that has been widely used by economists and

sociologists to measure economic inequality.

RESUMEN

En este art́ıculo establecemos algunas cotas para la (Φ, f)-diferencia media introdu-

cida en el contexto general de espacios medibles e integral de Lebesgue, que es una

generalización a dos funciones de la diferencia media de Gini que ha sido ampliamente

utilizada por economistas y sociólogos para medir desigualdad económica.

Keywords and Phrases: Gini mean difference, Mean deviation, Lebesgue integral, Expectation,

Jensen’s integral inequality.
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1. Introduction

Let (Ω,A, ν) be a measurable space consisting of a set Ω, a σ -algebra A of subsets of Ω and

a countably additive and positive measure ν on A with values in R ∪ {∞} . For a ν-measurable

function w : Ω → R, with w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫
Ω
w (x)dν (x) = 1,

consider the Lebesgue space

Lw (Ω,ν) := {f : Ω → R, f is ν-measurable and

∫

Ω

w (x) |f (x)|dν (x) < ∞}.

Let I be an interval of real numbers and Φ : I → R a Lebesgue measurable function on I. For

f : Ω → I a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) we define the generalized (Φ, f)-mean

difference RG (Φ, f;w) by

RG (Φ, f;w) :=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y) (1.1)

and the generalized (Φ, f)-mean deviation MD (Φ, f;w) by

MD (Φ, f;w) :=

∫

Ω

w (x) |(Φ ◦ f) (x) − E (Φ, f;w)|dν (x) , (1.2)

where

E (Φ, f;w) :=

∫

Ω

(Φ ◦ f) (y)w (y)dν (y)

the generalized (Φ, f)-expectation.

If Φ = e, where e (t) = t, t ∈ R is the identity mapping, then we can consider the particular

cases of interest, the generalized f-mean difference

RG (f;w) := RG (e, f;w) =
1

2

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y) (1.3)

and the generalized f-mean deviation

MD (f;w) := MD (e, f;w) =

∫

Ω

w (x) |f (x) − E (f;w)|dν (x) , (1.4)

where E (f;w) :=
∫
Ω
f (y)w (y)dν (y) is the generalized f-expectation.

If Ω = [−∞,∞] and f = e then we have the usual mean difference

RG (w) := RG (f;w) =
1

2

∫
∞

−∞

∫
∞

−∞

w (x)w (y) |x − y|dxdy (1.5)

and the mean deviation

MD (w) := MD (f;w) =

∫

Ω

w (x) |x− E (w)|dx, (1.6)
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where w : R →[0,∞) is a density function, this means that w is integrable on R and
∫
∞

−∞
w (t)dt =

1, and

E (w) :=

∫
∞

−∞

xw (x)dx (1.7)

denote the expectation of w provided that the integral exists and is finite.

The mean difference RG (w) was proposed by Gini in 1912 [21], after whom it is usually named,

but was discussed by Helmert and other German writers in the 1870’s (cf. H. A. David [13], see

also [26, p. 48]). It has a certain theoretical attraction, being dependent on the spread of the

variate-values among themselves and not on the deviations from some central value ([26, p. 48]).

Further, its defining integral (1.5) may converge when that of the variance σ (w) ,

σ (w) :=

∫
∞

−∞

(x− E (w))
2
w (x)dx, (1.8)

does not. It is, however, more difficult to compute than the standard deviation.

For some recent results concerning integral representations and bounds for RG (w) see [5], [6],

[8] and [9].

For instance, if w : R →[0,∞) is a density function we define by

W (x) :=

∫x

−∞

w (t)dt, x ∈ R

its cumulative function. Then we have [5], [6]:

RG (w) = 2Cov (e,W) =

∫
∞

−∞

(1−W (y))W (y)dy

= 2

∫
∞

−∞

xw (x)W (x)dx− E (w)

= 2

∫
∞

−∞

(x − E (w)) (W (x) − γ)w (x)dx

= 2

∫
∞

−∞

(x − δ)

(

W (x) −
1

2

)

w (x)dx (1.9)

for any γ, δ ∈ R and [6]:

RG (w) =

∫
∞

−∞

∫
∞

−∞

(x− y) (W (x) −W (y))w (x)w (y)dxdy. (1.10)

With the above assumptions, we have the bounds [5]:

1

2
MD (w) ≤ RG (w) ≤ 2 sup

x∈R

|W (x) − γ|MD (w) ≤ MD (w) , (1.11)
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for any γ ∈ [0, 1] , where W (·) is the cumulative distribution of w and MD (w) is the mean

deviation.

Consider the n-tuple of real numbers a = (a1, ..., an) and p = (p1, ..., pn) a probability

distribution, i.e. pi ≥ 0 for each i ∈ {1, ..., n} with
∑n

i=1 pi = 1, then by taking Ω = {1, ..., n} and

the discrete measure, we can consider from (1.1) and (1.2) that (see [7])

RG (a;p) :=
1

2

n∑

i=1

n∑

j=1

pipj |Φ (ai) −Φ (aj)| , (1.12)

and

MD (a;p) :=
1

2

n∑

i=1

pi

∣

∣

∣

∣

∣

∣

Φ (ai) −

n∑

j=1

pjΦ (aj)

∣

∣

∣

∣

∣

∣

(1.13)

where a ∈ In := I× ...× I and Φ : I → R.

The quantity RG (a;p) has been defined in [7] and some results were obtained.

In the case when Φ = e, then we get the special case of Gini mean difference and mean

deviation of an empirical distribution that is particularly important for applications,

RG (a;p) :=
1

2

n∑

i=1

n∑

j=1

pipj |ai − aj| , (1.14)

and

MD (a;p) :=
1

2

n∑

i=1

pi

∣

∣

∣

∣

∣

∣

ai −

n∑

j=1

pjaj

∣

∣

∣

∣

∣

∣

. (1.15)

The following result incorporates an upper bound for the weighted Gini mean difference [7]:

For any a ∈ R
n and any p a probability distribution, we have the inequality:

1

2
MD (a;p) ≤ RG (a;p) ≤ ı́nf

γ∈R

[

n∑

i=1

pi |ai − γ|

]

≤ MD (a;p) . (1.16)

The constant 1
2
in the first inequality in (1.16) is sharp.

For some recent results for discrete Gini mean difference and mean deviation, see [7], [11], [14]

and [15].
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2. General Bounds

We have:

Theorem 1. Let I be an interval of real numbers and Φ : I → R a Lebesgue measurable function

on I. If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν-a.e. (almost every) x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and if f : Ω → I is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

1

2
MD (Φ, f;w) ≤ RG (Φ, f;w) ≤ I (Φ, f;w) ≤ MD (Φ, f;w) , (2.1)

where

I (Φ, f;w) := ı́nf
γ∈R

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) . (2.2)

Demostración. Using the properties of the integral, we have

RG (Φ, f;w)

=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≥
1

2

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x)

∫

Ω

w (y)dν (y) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

=
1

2

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

=
1

2
MD (Φ, f;w)

and the first inequality in (2.1) is proved.

By the triangle inequality for modulus we have

|(Φ ◦ f) (x) − (Φ ◦ f) (y)| = |(Φ ◦ f) (x) − γ+ γ− (Φ ◦ f) (y)| (2.3)

≤ |(Φ ◦ f) (x) − γ|+ |(Φ ◦ f) (y) − γ|

for any x, y ∈ Ω and γ ∈ R.
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Now, if we multiply (2.3) by 1
2
w (x)w (y) and integrate, we get

RG (Φ, f;w)

=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≤
1

2

∫

Ω

∫

Ω

w (x)w (y) [|(Φ ◦ f) (x) − γ|+ |(Φ ◦ f) (y) − γ|]dν (x)dν (y)

=
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − γ|dν (x)dν (y)

+
1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (y) − γ|dν (x)dν (y)

=
1

2

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) +
1

2

∫

Ω

w (y) |(Φ ◦ f) (y) − γ|dν (y)

=

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) (2.4)

for any γ ∈ R.

Taking the infimum over γ ∈ R in (2.4) we get the second part of (2.1).

Since, obviously

I (Φ, f;w) = ı́nf
γ∈R

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x)

≤

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

= MD (Φ, f;w) ,

the last part of (2.1) is thus proved.

By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if (Φ ◦ f)
2
∈ Lw (Ω,ν) , then we have

[∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∣

∣

∣

∣

dν (x)

]2

≤

∫

Ω

w (x)

[

(Φ ◦ f) (x) −

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

]2

dν (x)

=

∫

Ω

w (x) (Φ ◦ f)
2
(x)dν (x)

− 2

∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

∫

Ω

w (x) (Φ ◦ f) (x)dν (x)

+

[∫

Ω

w (y) (Φ ◦ f) (y)dν (y)

]2 ∫

Ω

w (x)dν (x)

=

∫

Ω

w (x) (Φ ◦ f)
2
(x)dν (x) −

[∫

Ω

w (x) (Φ ◦ f) (x)dν (x)

]2

.
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By considering the generalized (Φ, f)-dispersion

σ (Φ, f;w) :=

(∫

Ω

w (x) (Φ ◦ f)
2
(x)dν (x) −

[∫

Ω

w (x) (Φ ◦ f) (x)dν (x)

]2
)1/2

,

then we have

MD (Φ, f;w) ≤ σ (Φ, f;w) (2.5)

provided (Φ ◦ f)
2
∈ Lw (Ω,ν).

If there exists the constants m, M so that

−∞ < m ≤ Φ (t) ≤ M < ∞ for almost any t ∈ I (2.6)

then by the reverse CBS inequality

σ (Φ, f;w) ≤
1

2
(M−m) , (2.7)

by (2.1) and by (2.5) we can state the following result:

Corollary 1. Let I be an interval of real numbers and Φ : I → R a Lebesgue measurable function on

I satisfying the condition (2.6) for some constants m, M. If w : Ω → R is a ν-measurable function

with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and if f : Ω → I is a ν-measurable

function with (Φ ◦ f)
2
∈ Lw (Ω,ν) , then we have the chain of inequalities

1

2
MD (Φ, f;w) ≤ RG (Φ, f;w) ≤ I (Φ, f;w) ≤ MD (Φ, f;w)

≤ σ (Φ, f;w) ≤
1

2
(M−m) . (2.8)

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16) while for the

univariate case with
∫
∞

−∞
w (t)dt = 1 we have

1

2
MD (w) ≤ RG (w) ≤ I (w) ≤ MD (w) ≤ σ (Φ, f;w) (2.9)

where

I (w) := ı́nf
γ∈R

∫
∞

−∞

w (x) |x− γ|dx. (2.10)

If w is supported on the finite interval [a, b] , namely
∫b

a
w (x)dx = 1, then we have the chain

of inequalities

1

2
MD (w) ≤ RG (w) ≤ I (w) ≤ MD (w) ≤ σ (Φ, f;w) ≤

1

2
(M−m) . (2.11)
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3. Bounds for Various Classes of Functions

In the case of functions of bounded variation we have:

Theorem 2. Let Φ : [a, b] → R be a function of bounded variation on the closed interval [a, b] .

If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1

and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w) ≤
1

2

b
∨

a

(Φ) , (3.1)

where
∨b

a (Φ) is the total variation of Φ on [a, b] .

Demostración. Using the inequality (2.4) we have

RG (Φ, f;w) ≤

∫

Ω

w (x) |(Φ ◦ f) (x) − γ|dν (x) (3.2)

for any γ ∈ R.

By the triangle inequality, we have
∣

∣

∣

∣

(Φ ◦ f) (x) −
1

2
[Φ (a) +Φ (b)]

∣

∣

∣

∣

≤
1

2
|Φ (a) −Φ (f (x))|+

1

2
|Φ (b) −Φ (f (x))| (3.3)

for any x ∈ Ω.

Since Φ : [a, b] → R is of bounded variation and d is a division of [a, b] , namely

d ∈ D ([a, b]) := {d := {a = t0 < t1 < ... < tn = b}} ,

then
b
∨

a

(Φ) = sup
d∈D([a,b])

n−1∑

i=0

|Φ (ti+1) −Φ (ti)| < ∞.

Taking the division d0 := {a = t0 < t < t2 = b} we then have

|Φ (t) −Φ (a)|+ |Φ (b) −Φ (t)| ≤

b
∨

a

(Φ)

for any t ∈ [a, b] and then

|Φ (f (x)) −Φ (a)|+ |Φ (b) −Φ (f (x))| ≤

b
∨

a

(Φ) (3.4)

for any x ∈ Ω.
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On making use of (3.3) and (3.4) we get

∣

∣

∣

∣

(Φ ◦ f) (x) −
1

2
[Φ (a) +Φ (b)]

∣

∣

∣

∣

≤
1

2

b
∨

a

(Φ) (3.5)

for any x ∈ Ω.

If we multiply (3.5) by w (x) and integrate, then we obtain

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −
1

2
[Φ (a) +Φ (b)]

∣

∣

∣

∣

≤
1

2

b
∨

a

(Φ) . (3.6)

Finally, by choosing γ = 1
2
[Φ (a) +Φ (b)] in (3.2) and making use of (3.6) we deduce the

desired result (3.1).

In the case of absolutely continuous functions we have:

Theorem 3. Let Φ : [a, b] → R be an absolutely continuous function on the closed interval [a, b] .

If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1

and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w) ≤






‖Φ′‖[a,b],∞ RG (f;w) if Φ′ ∈ L∞ ([α,β]) ,

1
21/p ‖Φ′‖[a,b],p R

1/q
G (f;w) if Φ′ ∈ Lp ([α,β]) ,

p > 1, 1
p
+ 1

q
= 1,

(3.7)

where the Lebesgue norms are defined by

‖g‖[α,β],p :=






essupt∈[α,β] |g (t)| if p = ∞,

(∫β
α
|g (t)|

p
dt
)1/p

if p ≥ 1

and Lp ([α,β]) :=
{
g| g measurable and ‖g‖[α,β],p < ∞

}
, p ∈ [1,∞] .

Demostración. Since f is absolutely continuous, then we have

Φ (t) −Φ (s) =

∫t

s

Φ′ (u)du

for any t, s ∈ [a, b] .

Using the Hölder integral inequality we have

|Φ (t) −Φ (s)| =

∣

∣

∣

∣

∫t

s

Φ′ (u)du

∣

∣

∣

∣

≤






‖Φ′‖[a,b],∞ |t− s| if p = ∞,

‖Φ′‖[a,b],p |t− s|
1/q if p > 1, 1

p
+ 1

q
= 1

(3.8)
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for any t, s ∈ [a, b] .

Using (3.8) we then have

|(Φ ◦ f) (x) − (Φ ◦ f) (y)|

≤






‖Φ′‖[a,b],∞ |f (x) − f (y)| if p = ∞,

‖Φ′‖[a,b],p |f (x) − f (y)|
1/q

if p > 1, 1
p
+ 1

q
= 1

(3.9)

for any x, y ∈ Ω.

If we multiply (3.9) by 1
2
w (x)w (y) and integrate, then we get

1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≤






1
2
‖Φ′‖[a,b],∞

∫
Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|dν (x)dν (y) if p = ∞,

1
2
‖Φ′‖[a,b],p

∫
Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|

1/q
dν (x)dν (y)

if p > 1, 1
p
+ 1

q
= 1.

(3.10)

This proves the first branch of (3.7).

Using Jensen’s integral inequality for concave function Ψ (t) = ts, s ∈ (0, 1) we have for

s = 1
q
< 1 that

∫
Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|

1/q
dν (x)dν (y)

≤
(∫

Ω

∫
Ω
w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q
,

which implies that

1

2
‖Φ′‖[a,b],p

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|
1/q

dν (x)dν (y)

≤
1

2
‖Φ′‖[a,b],p

(∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q

= ‖Φ′‖[a,b],p

(

1

2q

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q

= ‖Φ′‖[a,b],p

(

1

2q−1

1

2

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)1/q

=
1

2
q−1
q

‖Φ′‖[a,b],p (RG (f;w))
1/q

=
1

21/p
‖Φ′‖[a,b],p R

1/q
G (f;w)

and the second part of (3.7) is proved.

The function Φ : [a, b] → R is called of r-H-Hölder type with the given constants r ∈ (0, 1]

and H > 0 if

|Φ (t) −Φ (s)| ≤ H |t− s|
r
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for any t, s ∈ [a, b] .

In the case when r = 1, namely, there is the constant L > 0 such that

|Φ (t) −Φ (s)| ≤ L |t− s|

for any t, s ∈ [a, b] , the function Φ is called L-Lipschitzian on [a, b] .

We have:

Theorem 4. Let Φ : [a, b] → R be a function of r-H-Hölder type on the closed interval [a, b] . If

w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν-a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1

and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w) ≤
1

21−r
HRr

G (f;w) . (3.11)

In particular, if Φ is L-Lipschitzian on [a, b] , then

RG (Φ, f;w) ≤ LRG (f;w) . (3.12)

Demostración. We have

|(Φ ◦ f) (x) − (Φ ◦ f) (y)| ≤ H |f (x) − f (y)|
r (3.13)

for any x, y ∈ Ω.

If we multiply (3.13) by 1
2
w (x)w (y) and integrate, then we get

1

2

∫

Ω

∫

Ω

w (x)w (y) |(Φ ◦ f) (x) − (Φ ◦ f) (y)|dν (x)dν (y)

≤
1

2
H

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|
r
dν (x)dν (y) . (3.14)

By Jensen’s integral inequality for concave functions we also have
∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|
r
dν (x)dν (y)

≤

(∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)r

.
(3.15)

Therefore, by (3.14) and (3.15) we get

RG (Φ, f;w) ≤
1

2
H

(∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)r

=
1

21−r
H

(

1

2

∫

Ω

∫

Ω

w (x)w (y) |f (x) − f (y)|dν (x)dν (y)

)r

=
1

21−r
HRr

G (f;w)

and the inequality (3.11) is proved.
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We have:

Theorem 5. Let Φ, Ψ : [a, b] → R be continuos functions on [a, b] and differentiable on (a, b) with

Ψ′ (t) 6= 0 for t ∈ (a, b) . If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω

and
∫
Ω
w (x)dν (x) = 1 and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) ,

then

ı́nf
t∈(a,b)

∣

∣

∣

∣

Φ′ (t)

Ψ′ (t)

∣

∣

∣

∣

RG (Ψ, f;w) ≤ RG (Φ, f;w) ≤ sup
t∈(a,b)

∣

∣

∣

∣

Φ′ (t)

Ψ′ (t)

∣

∣

∣

∣

RG (Ψ, f;w) . (3.16)

Demostración. By the Cauchy’s mean value theorem, for any t, s ∈ [a, b] with t 6= s there exists

a ξ between t and s such that

Φ (t) −Φ (s)

Ψ (t) − Ψ (s)
=

Φ′ (ξ)

Ψ′ (ξ)
.

This implies that

ı́nf
τ∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (t) − Ψ (s)| ≤ |Φ (t) −Φ (s)|

≤ sup
τ∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (t) − Ψ (s)| (3.17)

for any t, s ∈ [a, b] .

Therefore, we have

ı́nfτ∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (f (x)) − Ψ (f (y))| ≤ |Φ (f (x)) −Φ (f (y))|

≤ supt∈(a,b)

∣

∣

∣

∣

Φ′ (τ)

Ψ′ (τ)

∣

∣

∣

∣

|Ψ (f (x)) − Ψ (f (y))|

(3.18)

for any x, y ∈ Ω.

If we multiply (3.18) by 1
2
w (x)w (y) and integrate, we get the desired result (3.16).

Corollary 2. Let Φ : [a, b] → R be a continuos function on [a, b] and differentiable on (a, b) . If

w is as in Theorem 5, then we have

ı́nf
t∈(a,b)

|Φ′ (t)|RG (f;w) ≤ RG (Φ, f;w) ≤ sup
t∈(a,b)

|Φ′ (t)|RG (f;w) . (3.19)

We also have:

Theorem 6. Let Φ : [a, b] → R be an absolutely continuous function on the closed interval [a, b] .

If w : Ω → R is a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1
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and if f : Ω → [a, b] is a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) , then

RG (Φ, f;w)

≤






‖Φ′‖[a,b],∞ M (f;w) if p = ∞,

‖Φ′‖[a,b],p M1/q (f;w) if p > 1, 1
p
+ 1

q
= 1

≤






1
2
(b− a) ‖Φ′‖[a,b],∞ if p = ∞,

1
21/q (b− a)

1/q ‖Φ′‖[a,b],p if p > 1, 1
p
+ 1

q
= 1,

(3.20)

where M (f;w) is defined by

M (f;w) :=

∫

Ω

w (x)

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

dν (x) . (3.21)

Demostración. From the inequality (3.8) we have

∣

∣(Φ ◦ f) (x) −Φ
(

a+b
2

)∣

∣

≤






‖Φ′‖[a,b],∞

∣

∣f (x) − a+b
2

∣

∣ if p = ∞,

‖Φ′‖[a,b],p

∣

∣f (x) − a+b
2

∣

∣

1/q
if p > 1, 1

p
+ 1

q
= 1

(3.22)

for any x ∈ Ω.

Now, if we multiply (3.22) by w (x) and integrate, then we get

∫

Ω

w (x)

∣

∣

∣

∣

(Φ ◦ f) (x) −Φ

(

a+ b

2

)∣

∣

∣

∣

dν (x)

≤






‖Φ′‖[a,b],∞

∫
Ω
w (x)

∣

∣f (x) − a+b
2

∣

∣dν (x) if p = ∞,

‖Φ′‖[a,b],p

∫
Ω
w (x)

∣

∣f (x) − a+b
2

∣

∣

1/q
dν (x) if p > 1, 1

p
+ 1

q
= 1.

(3.23)

By Jensen’s integral inequality for concave functions we have

∫

Ω

w (x)

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

1/q

dν (x) ≤

(∫

Ω

w (x)

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

dν (x)

)1/q

. (3.24)

On making use of (3.2), (3.23) and (3.24) we get the first inequality in (3.20).

The last part of (3.20) follows by the fact that

∣

∣

∣

∣

f (x) −
a+ b

2

∣

∣

∣

∣

≤
1

2
(b− a)

for any x ∈ Ω.
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4. Bounds for Special Convexity

When some convexity properties for the function Φ are assumed, then other bounds can be

derived as follows.

Theorem 7. Let w : Ω → R be a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and f : Ω → [a, b] be a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) . Assume

also that Φ : [a, b] → R is a continuous function on [a, b] .

(i) If |Φ| is concave on [a, b] , then

RG (Φ, f;w) ≤ |Φ (E (f;w))| , (4.1)

(ii) If |Φ| is convex on [a, b] , then

RG (Φ, f;w) ≤
1

b− a
[(b− E (f;w)) |Φ (a)|+ (E (f;w) − a)Φ |(b)|] . (4.2)

Demostración. (i) If |Φ| is concave on [a, b] , then by Jensen’s inequality we have
∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) ≤

∣

∣

∣

∣

Φ

(∫

Ω

w (x) f (x)dν (x)

)
∣

∣

∣

∣

. (4.3)

From (3.2) for γ = 0 we also have

RG (Φ, f;w) ≤

∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) . (4.4)

This is an inequality of interest in itself.

On utilizing (4.3) and (4.4) we get (4.1).

(ii) Since |Φ| is convex on [a, b] , then for any t ∈ [a, b] we have

|Φ (t)| =

∣

∣

∣

∣

Φ

(

(b − t)a+ b (t− a)

b − a

)∣

∣

∣

∣

≤
(b− t) |Φ (a)|+ (t− a)Φ |(b)|

b− a
.

This implies that

|(Φ ◦ f) (x)| ≤
(b− f (x)) |Φ (a)|+ (f (x) − a)Φ |(b)|

b− a
(4.5)

for any x ∈ Ω.

If we multiply (4.5) by w (x) and integrate, then we get
∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x)

≤
1

b − a

[(

b

∫

Ω

w (x)dν (x) −

∫

Ω

w (x) f (x)dν (x)

)

|Φ (a)|

+

(∫

Ω

w (x) f (x)dν (x) − a

∫

Ω

w (x)dν (x)

)

Φ |(b)|

]

,

which, together with (4.4), produces the desired result (4.2).
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In order to state other results we need the following definitions:

Definition 1 ([19]). We say that a function f : I → R belongs to the class P (I) if it is nonnegative

and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t)y) ≤ f (x) + f (y) .

It is important to note that P (I) contains all nonnegative monotone, convex and quasi convex

functions, i.e. functions satisfying

f (tx+ (1− t)y) ≤ máx {f (x) , f (y)}

for all x, y ∈ I and t ∈ [0, 1] .

For some results on P-functions see [19] and [28] while for quasi convex functions, the reader

can consult [18].

Definition 2 ([3]). Let s be a real number, s ∈ (0, 1]. A function f : [0,∞) → [0,∞) is said to be

s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t)y) ≤ tsf (x) + (1− t)
s
f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25], [27] and [29].

Theorem 8. Let w : Ω → R be a ν-measurable function with w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1 and f : Ω → [a, b] be a ν-measurable function with Φ ◦ f ∈ Lw (Ω,ν) . Assume

also that Φ : [a, b] → R is a continuous function on [a, b] .

(i) If |Φ| belongs to the class P on [a, b] , then

RG (Φ, f;w) ≤ |Φ (a)|+Φ |(b)| ; (4.6)

(ii) If |Φ| is quasi convex on [a, b] , then

RG (Φ, f;w) ≤ máx {|Φ (a)| , Φ |(b)|} ; (4.7)

(iii) If |Φ| is Breckner s-convex on [a, b] , then

RG (Φ, f;w) ≤
1

(b− a)
s

[

|Φ (a)|

∫

Ω

w (x) (b − f (x))
s
dν (x)

+Φ |(b)|

∫

Ω

w (x) (f (x) − a)
s
dν (x)

]

≤
1

(b− a)
s

[

|Φ (a)| (b− E (f;w))
s
dν (x)

+Φ |(b)| (E (f;w) − a)
s
dν (x)

]

. (4.8)
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Demostración. (i) Since |Φ| belongs to the class P on [a, b] , then for any t ∈ [a, b] we have

|Φ (t)| =

∣

∣

∣

∣

Φ

(

(b− t)a+ b (t− a)

b− a

)
∣

∣

∣

∣

≤ |Φ (a)|+Φ |(b)| .

This implies that

|(Φ ◦ f) (x)| ≤ |Φ (a)|+Φ |(b)| (4.9)

for any x ∈ Ω.

If we multiply (4.9) by w (x) and integrate, then we get

∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) ≤ |Φ (a)|+Φ |(b)| , (4.10)

which, together with (4.4), produces the desired result (4.6).

(ii) Goes in a similar way.

(iii) By Breckner s-convexity we have

|Φ (t)| =

∣

∣

∣

∣

Φ

(

(b − t)a+ b (t− a)

b− a

)
∣

∣

∣

∣

≤

(

b− t

b− a

)s

|Φ (a)|+

(

t− a

b − a

)s

Φ |(b)|

for any t ∈ [a, b] .

This implies that

|(Φ ◦ f) (x)| ≤
1

(b− a)
s

[

(b − f (x))
s
|Φ (a)| + (f (x) − a)

s
Φ |(b)|

]

(4.11)

for any x ∈ Ω.

If we multiply (4.11) by w (x) and integrate, then we get

∫

Ω

w (x) |(Φ ◦ f) (x)|dν (x) ≤
1

(b− a)
s

[

|Φ (a)|

∫

Ω

w (x) (b − f (x))
s
dν (x)

+Φ |(b)|

∫

Ω

w (x) (f (x) − a)
s
dν (x)

]

, (4.12)

which, together with (4.4), produces the first part of (4.8).

The last part follows by Jensen’s integral inequality for concave functions, namely

∫

Ω

w (x) (b− f (x))
s
dν (x) ≤

(

b−

∫

Ω

w (x) f (x)dν (x)

)s

and ∫

Ω

w (x) (f (x) − a)
s
dν (x) ≤

(∫

Ω

w (x) f (x)dν (x) − a

)s

,

where s ∈ (0, 1) .
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5. Some Examples

Let f : Ω → [0,∞) be a ν-measurable function and w : Ω → R a ν-measurable function with

w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1. We define, for the function Φ (t) = tp, p > 0,

the generalized (p, f)-mean difference RG (p, f;w) by

RG (p, f;w) :=
1

2

∫

Ω

∫

Ω

w (x)w (y) |fp (x) − fp (y)|dν (x)dν (y) (5.1)

and the generalized (p, f)-mean deviation MD (p, f;w) by

MD (p, f;w) :=

∫

Ω

w (x) |fp (x) − E (p, f;w)|dν (x) , (5.2)

where

E (p, f;w) :=

∫

Ω

fp (y)w (y)dν (y) (5.3)

is the generalized (p, f)-expectation.

If f : Ω → [a, b] ⊂ [0,∞) is a ν-measurable function, then by (3.1) we have

RG (p, f;w) ≤
1

2
(bp − ap) . (5.4)

By (3.7) we have

RG (p, f;w) ≤ pδp (a, b)RG (f;w) , (5.5)

where

δp (a, b) :=






bp−1 if p ≥ 1,

ap−1 if p ∈ (0, 1)

and

RG (p, f;w) ≤
p

21/α

[

bα(p−1)+1 − aα(p−1)+1

α (p − 1) + 1

]1/α

R
1/β
G (f;w) , (5.6)

where α > 1, 1
α
+ 1

β
= 1.

From (3.20) we also have

RG (p, f;w)

≤






δp (a, b)M (f;w) ,

p
(

bα(p−1)+1−aα(p−1)+1

α(p−1)+1

)1/α

M1/β (f;w) if α > 1, 1
α
+ 1

β
= 1

≤






1
2
(b− a) δp (a, b) ,

1
21/β (b− a)

1/β
p
(

bα(p−1)+1−aα(p−1)+1

α(p−1)+1

)1/α

if α > 1, 1
α
+ 1

β
= 1,

(5.7)
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where M (f;w) is defined by (3.21).

If p ∈ (0, 1) , then the function |Φ (t)| = tp is concave on [a, b] ⊂ [0,∞) and by (4.1) we have

RG (p, f;w) ≤ Ep (f;w) . (5.8)

For p ≥ 1 the function |Φ (t)| = tp is convex on [a, b] ⊂ [0,∞) and by (4.2) we have

RG (p, f;w) ≤
1

b − a
[(b− E (f;w))ap + (E (f;w) − a)bp] . (5.9)

Let f : Ω → [0,∞) be a ν-measurable function and w : Ω → R a ν-measurable function with

w (x) ≥ 0 for ν -a.e. x ∈ Ω and
∫
Ω
w (x)dν (x) = 1. We define, for the function Φ (t) = ln t, the

generalized (ln, f)-mean difference RG (ln, f;w) by

RG (ln, f;w) :=
1

2

∫

Ω

∫

Ω

w (x)w (y) |ln f (x) − ln f (y)|dν (x)dν (y) (5.10)

and the generalized (p, f)-mean deviation MD (ln, f;w) by

MD (ln, f;w) :=

∫

Ω

w (x) |ln f (x) − E (ln, f;w)|dν (x) , (5.11)

where

E (ln, f;w) :=

∫

Ω

w (y) ln f (y)dν (y) (5.12)

is the generalized (ln, f)-expectation.

If f : Ω → [a, b] ⊂ [0,∞) is a ν-measurable function, then by (3.1) we have

RG (ln, f;w) ≤
1

2
(lnb − lna) . (5.13)

By (3.7) we have

RG (ln, f;w)

≤






1
a
RG (f;w) ,

1
21/p

(

bp−1−ap−1

(p−1)bp−1ap−1

)1/p

R
1/q
G (f;w) if p > 1, 1

p
+ 1

q
= 1.

(5.14)

By (3.20) we have

RG (ln, f;w)

≤






1
a
M (f;w) ,

(

bp−1−ap−1

(p−1)bp−1ap−1

)1/p

M1/q (f;w) if p > 1, 1
p
+ 1

q
= 1

≤






1
2

(

b
a
− 1
)

,

1
21/q (b− a)

1/q
(

bp−1−ap−1

(p−1)bp−1ap−1

)1/p

if p > 1, 1
p
+ 1

q
= 1.

(5.15)
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Now, observe that the function |Φ (t)| = |ln t| is convex on (0, 1) and concave on [1,∞). If

f : Ω → [a, b] ⊂ (0, 1) is a ν-measurable function, then by (4.2) we have

RG (ln, f;w) ≤
1

b− a
[(b− E (f;w)) |lna|+ (E (f;w) − a) |lnb|] (5.16)

and if f : Ω → [a, b] ⊂ [1,∞), then by (4.1) we have

RG (ln, f;w) ≤ ln (E (f;w)) . (5.17)

The interested reader may state similar bounds for functions Φ such as Φ (t) = exp t, t ∈ R

or Φ (t) = t ln t, t > 0. We omit the details.

Acknowledgement. The author would like to thank the anonymous referee for valuable

suggestions that have been implemented in the final version of the paper.
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ABSTRACT

In this paper, we study η-Ricci solitons on 3-dimensional trans-Sasakian manifolds.

Firstly we give conditions for the existence of these geometric structures and then

observe that they provide examples of η-Einstein manifolds. In the case of φ-Ricci

symmetric trans-Sasakian manifolds, the η-Ricci soliton condition turns them to Ein-

stein manifolds. Afterward, we study the implications in this geometric context of the

important tensorial conditions R · S = 0, S · R = 0, W2 · S = 0 and S ·W2 = 0.

RESUMEN

En este art́ıculo estudiamos solitones η-Ricci en variedades trans-Sasakianas tridimen-

sionales. En primer lugar damos condiciones para la existencia de estas estructuras

geométricas y luego observamos que ellas dan ejemplos de variedades η-Einstein. En el

caso de variedades trans-Sasakianas φ-Ricci simétricas, la condición de solitón η-Ricci

las convierte en variedades Einstein. A continuación estudiamos las implicancias en

este contexto geométrico de las importantes condiciones tensoriales R · S = 0, S ·R = 0,

W2 · S = 0 y S ·W2 = 0.
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1 Introduction

In 1982, the notion of the Ricci flow was introduced by Hamilton [10] to find a canonical metric

on a smooth manifold.The Ricci flow is an evolution equation for Riemannian metric g(t) on a

smooth manifold M given by
∂

∂t
g(t) = −2S.

A solution to this equation (or a Ricci flow) is a one-parameter family of metrics g(t), parameter-

ized by t in a non-degenerate interval I, on a smooth manifold M satisfying the Ricci flow equation.

If I has an initial point t0, then (M,g(t0)) is called the initial condition of or the initial metric for

the Ricci flow (or of the solution) [14].

Ricci solitons and η-Ricci solitons are natural generalizations of Einstein metrics. A Ricci soli-

ton on a Riemannian manifold (M,g) is defined by

S+
1

2
LXg = λg

where LXg is the Lie derivative along the vector field X, S is the Ricci tensor of the metric and λ

is a real constant. If X = ∇f for some function f on M, the Ricci soliton becomes gradient Ricci

soliton. Ricci solitons appear as self-similar solutions to Hamiltons’s Ricci flow and often arise as

limits of dilations of singularities in the Ricci flow [11]. A soliton is called shrinking, steady and

expanding according as λ > 0, λ = 0 and λ < 0 respectively.

In 2009, the notion of η-Ricci soliton was introduced by J.C. Cho and M. Kimura [6]. J.C. Cho

and M. Kimura proved that a real hypersurface admitting an η-Ricci soliton in a non-flat complex

space form is a Hopf-hypersurface [6]. An η-Ricci soliton on a Riemannian manifold (M,g) is

defined by the following equation

2S+ Lξg+ 2λg+ 2µη ⊗ η = 0, (1.1)

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci tensor of the metric

and λ, µ are real constants. If µ = 0, then η-Ricci soliton becomes Ricci soliton.

In the last few years, many authors have worked on Ricci solitons and their generalizations in

different Contact metric manfolds in [1], [7], [8], [9], [12] etc. In 2014, B. Y. Chen and S. Desh-

mukh have established the characterizations of compact shrinking trivial Ricci solitons in [5]. Also,

in [2], A. Bhattacharyya, T. Dutta, and S. Pahan studied the torqued vector field and established

some applications of torqued vector field on Ricci soliton and conformal Ricci soliton. A.M. Blaga

[3], D. G. Prakasha and B. S. Hadimani [17] observed η-Ricci solitons on different contact metric

manifolds satisfying some certain curvature conditions.
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In this paper we study the existence of η-Ricci soliton on 3-dimensional trans-Sasakian manifold.

Next we show that η-Ricci soliton on 3-dimensional trans-Sasakian manifolds becomes η-Einstein

Manifold under some conditions. Next we prove that φ-Ricci symmetric trans-Sasakian manifold

(M,g) manifold satisfying an η-Ricci soliton becomes an Einstein manifold. Next we give an ex-

ample of an η-Ricci soliton on 3-dimensional trans-Sasaian manifold with λ = −2 and µ = 6. Later

we obtain some different types of curvature tensors and their properties under certain conditions.

2 Preliminaries

The product M̄ = M×R has a natural almost complex structure J with the product metric G being

Hermitian metric. The geometry of the almost Hermitian manifold (M̄, J, G) gives the geometry of

the almost contact metric manifold (M,φ, ξ, η, g). Sixteen different types of structures on M like

Sasakian manifold, Kenmotsu manifold etc are given by the almost Hermitian manifold (M̄, J, G) .

The notion of trans-Sasakian manifolds was introduced by Oubina [15] in 1985. Then J. C. Mar-

rero [13] have studied the local structure of trans-Sasakian manifolds. In general a trans-Sasakian

manifold (M,φ, ξ, η, g, α, β) is called a trans-Sasakian manifold of type (α,β). An n (= 2m + 1)

dimensional Riemannian manifold (M,g) is called an almost contact manifold if there exists a (1,1)

tensor field φ, a vector field ξ and a 1-form η on M such that

φ2(X) = −X+ η(X)ξ, (2.1)

η(ξ) = 1, η(φX) = 0, (2.2)

φξ = 0, (2.3)

η(X) = g(X, ξ), (2.4)

g(φX,φY) = g(X, Y) − η(X)η(Y), (2.5)

g(X,φY) + g(Y,φX) = 0, (2.6)

for any vector fields X, Y on M. A 3-dimensional almost contact metric manifold M is called a

trans-Sasakian manifold if it satisfies the following condition

(∇Xφ)(Y) = α{g(X, Y)ξ− η(Y)X}+ β{g(φX, Y)ξ − η(Y)φX}, (2.7)

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of type

(α,β). For 3-dimensional trans-Sasakian manifold, from (2.7) we have,

∇Xξ = −αφX+ β(X− η(X)ξ), (2.8)
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(∇Xη)(Y) = −αg(φX, Y) + βg(φX,φY). (2.9)

In a 3-dimensional trans-Sasakian manifold, we have

R(X, Y)Z = [ r
2
− 2(α2 − β2 − ξβ)][g(Y, Z)X − g(X,Z)Y]

− [ r
2
− 3(α2 − β2) + ξβ][g(Y, Z)η(X) − g(X,Z)η(Y)]ξ

+ [g(Y, Z)η(X) − g(X,Z)η(Y)][φ grad α− grad β]

− [ r
2
− 3(α2 − β2) + ξβ]η(Z)[η(Y)X− η(X)Y]

− [Zβ + (φZ)α]η(Z)[η(Y)X − η(X)Y]

− [Xβ + (φX)α][g(Y, Z)ξ − η(Z)Y]

− [Yβ + (φY)α][g(X,Z)ξ − η(Z)X],

S(X, Y) = [ r
2
− (α2 − β2 − ξβ)]g(X, Y)

− [ r
2
− 3(α2 − β2) + ξβ]η(X)η(Y)

− [Yβ+ (φY)α]η(X) − [Xβ + (φX)α]η(Y).

When α and β are constants the above equations reduce to,

R(ξ, X)ξ = (α2 − β2)(η(X)ξ − X), (2.10)

S(X, ξ) = 2(α2 − β2)η(X), (2.11)

R(ξ, X)Y = (α2 − β2)(g(X, Y)ξ − η(Y)X). (2.12)

R(X, Y)ξ = (α2 − β2)(η(Y)X− η(X)Y). (2.13)

Definition 2.1. A trans-Sasakian manifold M3 is said to be η-Einstein manifold if its Ricci tensor

S is of the form

S(X, Y) = ag(X, Y) + bη(X)η(Y),

where a, b are smooth functions.
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3 η-Ricci solitons on trans-Sasakian manifolds

To study the existence conditions of η-Ricci solitons on 3-dimensional trans-Sasakian manifolds,

we prove the following theorem.

Theorem 3.1: Let (M,g,φ, η, ξ, α, β) be a 3-dimensional trans-Sasakian manifold with α, β

constants (β 6= 0). If the symmetric (0, 2) tensor field h satisfying the condition βh(X, Y) −
α
2
[h(φX, Y) + h(X,φY)] = Lξg(X, Y) + 2S(X, Y) + 2µη(X)η(Y) is parallel with respect to the Levi-

Civita connection associated to g. Then (g, ξ, µ) becomes an η-Ricci soliton.

Proof: We consider a symmetric (0, 2)-tensor field h which is parallel with respect to the Levi-

Civita connection (∇h = 0). Then it follows that

h(R(X, Y)Z,W) + h(R(X, Y)Z,W) = 0, (3.1)

for an arbitary vector field W, X, Y, Z on M. Put X = Z = W = ξ we get

h(R(X, Y)ξ, ξ) = 0, (3.2)

for any X, Y ∈ χ(M) By using the equation (2.13)

h(Y, ξ) = g(Y, ξ)h(ξ, ξ), (3.3)

for any Y ∈ χ(M). Differentiating the equation (3.3) covariantly with respect to the vector field

X ∈ χ(M) we have

h(∇XY, ξ) + h(Y,∇Xξ) = g(∇XY, ξ)h(ξ, ξ) + g(Y,∇Xξ)h(ξ, ξ), (3.4)

Using the equation (2.8) we have

βh(X, Y) − αh(φX, Y) = −αg(φX, Y)h(ξ, ξ) + βh(ξ, ξ)g(X, Y). (3.5)

Interchanging X by Y we have

βh(X, Y) − αh(X,φY) = −αg(X,φY)h(ξ, ξ) + βh(ξ, ξ)g(X, Y). (3.6)

Then adding the above two equations we get

βh(X, Y) −
α

2
[h(φX, Y) + h(X,φY)] = βh(ξ, ξ)g(X, Y). (3.7)

We see that βh(X, Y)−α
2
[h(φX, Y)+h(X,φY)] is a symmetric tensor of type (0, 2). Since Lξg(X, Y),

S(X, Y), η(X) = g(X, ξ) and η(Y) = g(Y, ξ) are symmetric tensors of type (0, 2) and λ, µ are

real constants, the sum Lξg(X, Y) + 2S(X, Y) + 2µη(X)η(Y) is a symmetric tensor of type (0, 2).
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Therefore, we can take the sum as an another symmetric tensor field of type (0, 2). Hence for we

can assume that βh(X, Y) − α
2
[h(φX, Y) + h(X,φY)] = Lξg(X, Y) + 2S(X, Y) + 2µη(X)η(Y).

Then we compute

βh(ξ, ξ)g(X, Y) = Lξg(X, Y) + 2λg(X, Y) + 2µη(X)η(Y).

As h is parallel so, h(ξ, ξ) is constant. Hence, we can write h(ξ, ξ) = − 2
β
λ where β is constant

and β 6= 0.

So, from the equation (3.7) we have

βh(X, Y) −
α

2
[h(φX, Y) + h(X,φY)] = −2λg(X, Y), (3.8)

for any X, Y ∈ χ(M). Therefore Lξg(X, Y) + 2S(X, Y) + 2µη(X)η(Y) = −2λg(X, Y) and so (g, ξ, µ)

becomes an η-Ricci soliton.

Corollary 3.2: Let (M,g,φ, η, ξ, α, β) be a 3-dimensional trans-Sasakian manifold with α, β

constants (β 6= 0). If the symmetric (0, 2) tensor field h admitting the condition βh(X, Y) −
α
2
[h(φX, Y) + h(X,φY)] = Lξg(X, Y) + 2S(X, Y) is parallel with respect to the Levi-Civita connec-

tion associated to g with λ = 2n. Then (g, ξ) becomes a Ricci soliton.

Next theorem shows the necessary condition for the existence of η-Ricci soliton on 3-dimensional

trans-Sasakian manifolds.

Theorem 3.3: If 3-dimensional trans-Sasakian manifold satisfies an η-Ricci soliton then the man-

ifold becomes η-Einstein manifold with α and β constants.

Proof: From the equation (1.1) we get

2S(X, Y) = −g(∇Xξ, Y) − g(X,∇Yξ) − 2λg(X, Y) − 2µη(X)η(Y). (3.9)

By using the equation (2.8) we get

S(X, Y) = −(β + λ)g(X, Y) + (β− µ)η(X)η(Y) (3.10)

and

S(X, ξ) = −(λ+ µ)η(X). (3.11)

Also from (2.11) we have

λ+ µ = 2(β2 − α2). (3.12)

The Ricci operator Q is defined by g(QX, Y) = S(X, Y). Then we get

QX = (µ− β+ 2(α2 − β2))X+ (β − µ)η(X)ξ. (3.13)
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Then we can easily see that the manifold is an η-Einstein manifold.

We know a manifold is φ-Ricci symmetric if φ2 ◦ ∇Q = 0. Now we prove the next theorem.

Theorem 3.4: If a φ-Ricci symmetric trans-Sasakian manifold (M,g) satisfies an η-Ricci soliton

then µ = β, λ = 2(β2 − α2) − β and (M,g) is an Einstein manifold.

Proof: From the equation (3.13) we have

(∇XQ)Y = ∇XQY −Q(∇XY)

= −α(β− µ)η(Y)φX + β(β − µ)η(Y)X− (β − µ)η(Y)η(X)ξ

+(β− µ)[−αg(φX, Y) + βg(φX,φY)]ξ.

Now applying φ2 both sides we have µ = β, λ = 2(β2−α2)−β and (M,g) is an Einstein manifold.

We construct an example of η-Ricci soliton on 3-dimensional trans-Sasakian manifolds in the The

next section.

4 Example of η-Ricci solitons on 3-dimensional trans-Sasakian

manifolds

We consider the three dimensional manifold M = {(x, y, z) ∈ R3 : y 6= 0} where (x, y, z) are the

standard coordinates in R3. The vector fields

e1 = e2z
∂

∂x
, e2 = e2z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric defined by

gij =

{

1 for i = j,

0 for i 6= j.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M3). Let φ be the (1, 1) tensor field

defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then using the linearity property of φ and g we

have

η(e2) = 1, φ2(Z) = −Z+ η(Z)e2, g(φZ,φW) = g(Z,W) − η(Z)η(W),

for any Z,W ∈ χ(M3). Thus for e2 = ξ, (φ, ξ, η, g) defines an almost contact metric structure on

M. Now, after some calculation we have,



30 Sampa Pahan CUBO
22, 1 (2020)

[e1, e3] = −2e1, [e2, e3] = −2e2, [e1, e2] = 0.

The Riemannian connection ∇ of the metric is given by the Koszul’s formula which is

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z,X) − Zg(X, Y) − g(X, [Y, Z]) − g(Y, [X,Z]) + g(Z, [X, Y]).

By Koszul’s formula we get,

∇e1
e1 = 2e3,∇e2

e1 = 0,∇e3
e1 = 0,∇e1

e2 = 0,∇e2
e2 = 2e3,

∇e3
e2 = 0,∇e1

e3 = −2e1,∇e2
e3 = −2e2,∇e3

e3 = 0.

From the above it can be easily shown that M3(φ, ξ, η, g) is a trans-Sasakian manifold of type

(0,−2).

Here

R(e1, e2)e2 = −4e1, R(e3, e2)e2 = 4e2, R(e1, e3)e3 = −4e1, R(e2, e3)e3 = −4e2,

R(e3, e1)e1 = −4e2, R(e2, e1)e1 = 4e3.

So, we have

S(e1, e1) = 0, S(e2, e2) = 0, , S(e3, e3) = −8. (4.1)

From the equation (1.1) we get λ = −2 and µ = 6. Therefore, (g, ξ, λ, µ) is an η-Ricci soliton on

M3(φ, ξ, η, g).

In the next sections we consider η-Ricci Solitons on 3-dimensional trans-Sasakian manifolds satis-

fying some curvature conditions.

5 η-Ricci solitons on 3-dimensional trans-Sasakian mani-

folds satisfying R(ξ, X) · S = 0

First we suppose that 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfy the con-

dition

R(ξ, X) · S = 0.

Then we have

S(R(ξ, X)Y, Z) + S(Y, R(ξ, X)Z) = 0
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for any X, Y, Z ∈ χ(M).

Using the equations (2.12), (3.10), (3.11) we get

(β − µ)g(X, Y)η(Z) + (β − µ)g(X,Z)η(Y) − 2(β − µ)η(X)η(Y)η(Z) = 0.

Put Z = ξ we have

(β− µ)g(X, Y) − (β − µ)η(X)η(Y) = 0.

Setting X = φX and Y = φY in the above equation we get

(β − µ)g(φX,φY) = 0.

Again using the equation (3.12) we have

µ = β, λ = 2(β2 − α2) − β.

Also we can easily see that M is an Einstein manifold. So we have the following theorem.

Theorem 5.1: If a 3-dimensional trans-Sasakian manifold (M,g,φ, η, ξ, α, β) with α, β constants

admitting an η-Ricci soliton satisfies the condition R(ξ, X) ·S = 0 then µ = β, λ = 2(β2−α2)−β

and M is an Einstein manifold.

Corollary 5.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condi-

tion R(ξ, X) · S = 0, there is no Ricci soliton with the potential vector field ξ.

6 η-Ricci solitons on 3-dimensional trans-Sasakian mani-

folds satisfying S(ξ, X) · R = 0

We consider 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition

S(ξ, X) · R = 0.
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So we have

S(X, R(Y, Z)W)ξ − S(ξ, R(Y, Z)W)X+ S(X, Y)R(ξ, Z)W − S(ξ, Y)R(X,Z)W

+S(X,Z)R(Y, ξ)W − S(ξ, Z)R(Y, X)W + S(X,W)R(Y, Z)ξ − S(ξ,W)R(Y, Z)X = 0.

Taking inner product with ξ then the above equation becomes

S(X, R(Y, Z)W) − S(ξ, R(Y, Z)W)η(X) + S(X, Y)η(R(ξ, Z)W)

−S(ξ, Y)η(R(X,Z)W) + S(X,Z)η(R(Y, ξ)W) − S(ξ, Z)η(R(Y, X)W)

+ S(X,W)η(R(Y, Z)ξ) − S(ξ,W)η(R(Y, Z)X) = 0. (6.1)

Put W = ξ and using the equations (2.10), (2.12), (3.10), (3.11) we get

− (β + λ)g(X, R(Y, Z)ξ) + (λ+ µ)η(R(Y, Z)X) = 0. (6.2)

Also we have

η(R(Y, Z)X) = −g(X, R(Y, Z)ξ).

So from the equation (6.2) we get

(β+ 2λ + µ)g(X, R(Y, Z)ξ) = 0.

Again using the equation (3.12) we have

µ = β+ 4(β2 − α2), λ = −[2(β2 − α2) + β].

So we have the following theorem.

Theorem 6.1: If a 3-dimensional trans-Sasakian manifold (M,g,φ, η, ξ, α, β) with α, β constants

admitting an η-Ricci soliton satisfies the condition S(ξ, X) · R = 0 then µ = β + 4(β2 − α2), λ =

−[2(β2 − α2) + β].
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Corollary 6.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condi-

tion S(ξ, X) · R = 0, there is no Ricci soliton with the potential vector field ξ.

7 η-Ricci solitons on 3-dimensional trans-Sasakian mani-

folds satisfying W2(ξ, X) · S = 0

Definition 7.1. Let M be 3-dimensional trans-Sasakian manifold with respect to semi-Symmetric

metric connection. The W2-curvature tensor of M is defined by [16]

W2(X, Y)Z = R(X, Y)Z+
1

2
(g(X,Z)QY − g(Y, Z)QX). (7.1)

We assume 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfying the condition

W2(ξ, X) · S = 0.

Then we have

S(W2(ξ, X)Y, Z) + S(Y,W2(ξ, X)Z) = 0

for any X, Y, Z ∈ χ(M).

Using the equations (2.12), (3.10), (3.11), (7.1) we get

[−
(β+ λ)

2
(λ+ µ) +

(β + λ)2

2
+ (β − µ)(α2 − β2) + (λ + µ)

(β − µ)

2
]g(X, Y)η(Z)

+[
(β+ λ)2

2
−

(β + λ)

2
(λ + µ) + (β − µ)(α2 − β2) + (λ + µ)

(β − µ)

2
]g(X,Z)η(Y)

+[−(β + λ)(β − µ) − 2(β − µ)(α2 − β2) − (β − µ)(λ + µ)]η(X)η(Y)η(Z) = 0.

Put Z = ξ in the above equation we get

[−
(β + λ)

2
(λ + µ) +

(β + λ)2

2
+ (β − µ)(α2 − β2) + (λ+ µ)

(β − µ)

2
]g(X, Y)

+[
(β+ λ)2

2
−

(β + λ)

2
(λ + µ) + (β − µ)(α2 − β2) + (λ + µ)

(β − µ)

2
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−(β + λ)(β − µ) − 2(β − µ)(α2 − β2) − (β − µ)(λ + µ)]η(X)η(Y) = 0.

Setting X = φX and Y = φY in the above equation we get

(β− µ)(
(β + 2λ + µ+ 2(α2 − β2))

2
)g(φX,φY) = 0.

Again using the equation (3.12) we have

µ = β, λ = 2(β2 − α2) − β

or

µ = 2(β2 − α2) + β, λ = −β.

So we have the following theorem.

Theorem 7.1: If a 3-dimensional trans-Sasakian manifold (M,g,φ, η, ξ, α, β) with α, β constants

admitting an η-Ricci soliton satisfies the condition W2(ξ, X)·S = 0 then µ = β, λ = 2(β2−α2)−β

or µ = 2(β2 − α2) + β, λ = −β.

Corollary 7.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condi-

tion W2(ξ, X) · S = 0, there is no Ricci soliton with the potential vector field ξ.

8 η-Ricci solitons on 3-dimensional trans-Sasakian mani-

folds satisfying S(ξ, X) ·W2 = 0

Suppose that 3-dimensional trans-Sasakian manifolds with η-Ricci solitons satisfy the condition

S(ξ, X) ·W2 = 0.

So we have

S(X,W2(Y, Z)V)ξ − S(ξ,W2(Y, Z)V)X+ S(X, Y)W2(ξ, Z)V − S(ξ, Y)W2(X,Z)V

+S(X,Z)W2(Y, ξ)V − S(ξ, Z)W2(Y, X)V + S(X,V)W2(Y, Z)ξ − S(ξ, V)W2(Y, Z)X = 0.
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Taking inner product with ξ then the above equation becomes

S(X,W2(Y, Z)V) − S(ξ,W2(Y, Z)V)η(X) + S(X, Y)η(W2(ξ, Z)V)

−S(ξ, Y)η(W2(X,Z)V) + S(X,Z)η(W2(Y, ξ)V) − S(ξ, Z)η(W2(Y, X)V)

+ S(X,V)η(W2(Y, Z)ξ) − S(ξ, V)η(W2(Y, Z)X) = 0. (8.1)

Put V = ξ and using the equations (2.10), (2.12), (3.10), (3.11), (7.1) we get

− (β+ λ)g(X,W2(Y, Z)ξ) + (λ+ µ)η(W2(Y, Z)X) = 0. (8.2)

Using the equations (3.10), (3.11), (7.1) then the equation (8.2) becomes

[(β + λ)2 + (λ+ µ)2 + 2(α2 − β2)(β + 2λ + µ)]g(X, R(Y, Z)ξ) = 0.

Using the equation (3.12) we have

µ = β, λ = 2(β2 − α2) − β

or

µ = 2(β2 − α2) + β, λ = −β.

So we have the following theorem.

Theorem 8.1: If Let a 3-dimensional trans-Sasakian manifold (M,g,φ, η, ξ, α, β) with α, β

constants admitting an η-Ricci soliton satisfies the condition S(ξ, X) · W2 = 0 then µ = β, λ =

2(β2 − α2) − β or µ = 2(β2 − α2) + β, λ = −β.

Corollary 8.2: A 3-dimensional trans-Sasakian manifold with α, β constants satisfies the condi-

tion S(ξ, X) ·W2 = 0, there is no Ricci soliton with the potential vector field ξ.
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ABSTRACT

In 1974, Marden proved the existence of non-classical Schottky groups by a theoretical

and non-constructive argument. Explicit examples are only known in rank two; the

first one by Yamamoto in 1991 and later by Williams in 2009. In 2006, Maskit and

the author provided a theoretical method to construct non-classical Schottky groups in

any rank. The method assumes the knowledge of certain algebraic limits of Schottky

groups, called sufficiently complicated noded Schottky groups. The aim of this paper

is to provide explicitly a sufficiently complicated noded Schottky group of rank three

and explain how to use it to construct explicit non-classical Schottky groups.

RESUMEN

En 1974, Marden demostró la existencia de grupos de Schottky no-clásicos con un ar-

gumento teórico y no-constructivo. Se conocen ejemplos expĺıcitos solo en rango dos;

el primero por Yamamoto en 1991 y después por Williams en 2009. En 2006, Maskit

y el autor entregaron un método teórico para construir grupos de Schottky no-clásicos

en cualquier rango. El método asume el conocimiento de ciertos ĺımites algebraicos de

grupos de Schottky, llamados grupos de Schottky anodados suficientemente complica-

dos. El objetivo de este paper es dar un grupo de Schottky anodado suficientemente

complicado expĺıcitamente de rango tres y explicar cómo usarlo para construir grupos

de Schottky no-clásicos expĺıcitos.
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1 Introduction

A Kleinian group G is called a Schottky group of rank g ≥ 2 if it is generated by loxodromic

transformations A1, . . . , Ag ∈ PSL2(C) such that there is a collection of 2g pairwise disjoint simple

loops α1, α
′
1, α2, α

′
2, . . . , αg, α

′
g on the Riemann sphere Ĉ, all of them bounding a common domain

D of connectivity 2g, with Aj(αj) = α
′
j and Aj(D) ∩ D = ∅. The above set of generators is called

geometrical and the above loops a fundamental set of loops for G. It is well known that G is a free

group of rank g and that D is a fundamental domain for it. In [3] Chukrow proved that every set

of g generators of G is geometrical. We say that G is a classical Schottky group if it has a set of

geometrical generators, called a classical set of generators, for which we may find a fundamental

set of loops being circles. Classical Schottky groups were firstly considered by Schottky around

1882. In general, a classical Schottky group may have non-classical set of generators.

Examples of classical Schottky groups are given by the finitely generated purely hyperbolic

Fuchsian groups representing a closed surface with holes [2]. Moreover, if such a Fuchsian group

is a two generator group representing a torus with one hole, then every pair of generators is a

classical set of generators [21].

In 1974, Marden [14] provided the existence of non-classical Schottky groups (his proof is

non-constructive). In 1975, Zarrow [27] claimed to have constructed an explicit example of a non-

classical Schottky group of rank two, but it was lately noted by Sato in [22] to be incorrect. The

first explicit (correct) construction was provided by Yamamoto [26] in 1991 and in 2009 another

example was provided by Williams in his Ph.D. Thesis [24], both for rank two. It seems that, for

rank at least three, there is not explicit example in the literature.

In [7], Maskit and the author described a theoretical method to construct non-classical Schot-

tky groups in any rank g ≥ 2. The idea is to consider certain Kleinian groups, obtained as

geometrically finite algebraic limits of Schottky groups of rank g, called sufficiently complicated

noded Schottky groups of rank g (see Section 2). In this paper (see Section 3) we provide an explicit

construction of a sufficiently complicated noded Schottky group of rank three and we used it to

describe how to obtain a infinite family (one-dimensional) non-classical Schottky group of rank

three.

To finish this introduction, and as a matter of completeness, let us mention another conjecture

related to classical Schottky groups. If Ω is the region of discontinuity of a Schottky group G of

rank g, then it is a connected set and Ω/G is a closed Riemann surface of genus g. Conversely, if S

is a closed Riemann surface, then there is a Schottky group G such that S and Ω/G are isomorphic

(Koebe’s uniformization theorem). As we have the existence of non-classical Schottky group, it

might be that G is non-classical. A conjecture (due to Bers) asserts that we may chose G to be

classical. Some positive answers were obtained by Bobenko [1], Koebe [11], Maskit [17], Seppälä

[23] (for the case in which the surface admits antiholomorphic involutions with fixed points) and
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McMullen [13] (for the case in which the surface has sufficiently many shorts geodesics). Recently,

Hou [8, 9] have announced a proof of this conjecture (by using Haussdorf dimension of the limit

set of Kleinian groups) and another approach in [6] (by using Belyi curves).

2 Sufficiently complicated Noded Schottky groups

2.1 Noded Schottky groups

A noded Schottky group of rank g ≥ 2 is geometrically defined as follows. Consider a collection of

pairwise disjoint open topological discs D1, D
′
1, . . . , Dg and D ′

g on the Riemann sphere Ĉ so that

the corresponding boundaries α̂1 = ∂D1, α̂
′
1 = ∂D ′

1, . . . , α̂g = ∂Dg, α̂
′
g = ∂D ′

g are simple loops

and they only intersect in at most finitely many points. Let Â1, . . . , Âg be Möbius transformations

such that Âj(α̂j) = α̂
′
j and Âj(Dj)∩D ′

j = ∅, for each j = 1, . . . , g. Observe that the transformation

Âj may only be loxodromic or parabolic. The group Ĝ, generated by these transformations, is

a Kleinian group isomorphic to a free group of rank g. If p is a point of intersection of two of

the above loops, then either it is a fixed point of a parabolic transformation of Ĝ or it has trivial

Ĝ-stabilizer. In the second situation, one may deform in a suitable manner these loops in order

to avoid the intersection at p and not adding extra intersections. In this way, two possibilities

appear (up to performing the above deformation), either: (i) G is a Schottky group of rank g or

(ii) there are intersection points, each of them being a fixed point of a parabolic transformation of

Ĝ. In case (ii) we say that Ĝ is a noded Schottky group of rank g; we call the above set of loops a

fundamental set of loops and the generators a set of geometrical generators.

Remark 1. In [18], as an application of the Klein-Maskit’s combination theorems, it was noted that

a noded Schottky group Ĝ is geometrically finite, that each of its parabolic elements is a conjugate

of a power of one of the transformations fixing a common point of two of the fundamental loops,

and that the complement D̂ of the union of the closures of D1, D
′
1, . . . , Dg, D

′
g is a fundamental

domain for Ĝ. Different as for the case of Schottky groups, not every set of free generators of a

noded Schottky group is necessarily geometrical.

2.2 The extended region of discontinuity

If Ω is the region of discontinuity of a noded Schottky group Ĝ of rank g, then by adding to it the

parabolic fixed points of Ĝ, and with the appropriate cusped topology (see [5, 12]), we obtain its

extended region of discontinuity Ω+; it happens that S+ = Ω+/Ĝ is a stable Riemann surface of

genus g. In the case that the number of nodes of S+ is 3g− 3, we say that Ĝ is a maximal noded

Schottky group (in this case, there are exactly 2g − 2 connected components of the complement

of the nodes of S+, each one being a triple-punctured sphere). In [4] it was observed that every

stable Riemann surface of genus g is obtained as above; so every point of the Deligne-Mumford
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Figure 1—A stable Riemann surface of genus 3

with 3 nodes

Figure 2—A stable Riemann surface of genus 3

with 6 nodes

compactification of the moduli space of genus g can be realized by a suitable noded Schottky group

of rank g.

2.3 Neoclassical noded Schottky groups

A noded Schottky group for which there is a set of geometrical generators admitting a fundamen-

tal set of loops all of which are Euclidean circles is called neoclassical; the corresponding set of

generators is called a neoclassical set of generators.

In [7] it was proved that if G is a noded Schottky group such that Ω+/G is a stable Riemann

surface as in Figure 1, then it cannot be neoclassical (this should be still true for every noded

Schottky group of rank g ≥ 4 whose corresponding stable Riemann surface has g+ 1 components,

one being of genus zero and the others being of genus one).

2.4 Sufficiently complicated noded Schottky groups

The space of deformations of a Schottky group of rank g, denoted by Salg, is a subset of the

representation space of the free group of rank g in PSL2(C), modulo conjugation. Regard H3 as

being the set {(z, t) : z ∈ C, t > 0 ∈ R}. We likewise identify C with the boundary of H3, except

for the point at infinity; that is, we identify C with {(z, t) : t = 0}.

2.4.1 The relative conical neighbourhood of a noded Schottky group

Let Ĝ be a noded Schottky group of rank g ≥ 2, with a set of geometrical generators Â1, . . . , Âg,

and corresponding fundamental set of loops α̂1, . . . , α̂
′
g, these being the corresponding boundary

loops of a collection of pairwise disjoint open discs D1, . . . , D
′
g. The complement of the closures of

these discs is a fundamental domain D̂ for Ĝ. Let P̂1, . . . , P̂q be a maximal set of primitive parabolic

elements of Ĝ generating non-conjugate cyclic subgroups, where q ≥ 1 (we may assume the fix point

of these parabolic transformations to be contained in the intersection of two fundamental loops).

We denote by Ω(Ĝ) its region of discontinuity and by Ω+(Ĝ) its extended region of discontinuity.
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Next, we proceed to recall a construction done in [7] of a one-real family of Schottky groups Gτ

whose geometric limit is Ĝ.

(I) The infinite shoebox construction

For each i = 1, . . . , q, choose a particular Möbius transformation Hi conjugating P̂i to the trans-

formation P(z) = z + 1 and consider the renormalized group HiĜH
−1
i . For this group, there is a

number τ0 > 1 so that the set {| Im(z)| ≥ τ0} is precisely invariant under the stabilizer Stab(∞)

of ∞ in the group HiĜH
−1
i . In this normalization, for each parameter τ, with τ > τ0, we define

the infinite shoebox to be the set B0,τ = {(z, t) : | Im(z)| ≤ τ, t ≤ τ}. Since τ0 > 1, we easily

observe that for every τ > τ0, the complement of B0,τ in H3 ∪ C is precisely invariant under

Stab(∞) ⊂ HiĜH
−1
i , where we are now regarding Möbius transformations as hyperbolic isome-

tries, which act on the closure of H3. Then for Ĝ, the infinite shoebox with parameter τ at zi, the

fixed point of P̂i, is Bi,τ = H−1
i (B0,τ). If P̂ is any parabolic element of Ĝ, conjugate to some power

of P̂i, then the corresponding infinite shoebox at the fixed point of P̂, is given by T(Bi,τ), where

P̂ = TP̂iT
−1. It was observed in [19] that, for each fixed τ > τ0, Ĝ acts as a group of conformal

homeomorphisms on the expanded regular set Bτ =
⋂
Â(Bi,τ), where the intersection is taken over

all Â ∈ Ĝ and all i = 1, . . . , q. Further, Ĝ acts as a (topological) Schottky group (in the sense

of our geometrical definition) on the boundary of Bτ. Each parabolic P̂ ∈ Ĝ appears to have two

fixed points on the boundary of Bτ; that is, P̂, as it acts on the boundary of Bτ, appears to be

loxodromic. The flat part of Bτ is the intersection of Bτ with the extended complex plane Ĉ. The

complement of the flat part (on the boundary of Bτ) is the disjoint union of 3-sided boxes, where

each box has two vertical sides (translates of the sets {Im(z) = ±τ, 0 < t < τ}) and one horoball

side (a translate of the set {| Im(z)| ≤ τ, t = τ}). For each i = 1 . . . , q and for each integer n ≥ 1,

we set Bi,τ,n = H−1
i (B0,τ ∩ {|Re(z)| ≤ n}) and Bτ,n =

⋂
Â∈Ĝ

Â(Bi,τ,n). The truncated flat part

of Bτ,n is the intersection Bτ,n ∩ Ĉ. The boundary of the truncated flat part near a parabolic

fixed point, renormalized so as to lie at ∞, is a Euclidean rectangle. Let us renormalize Ĝ so that

∞ ∈ Ω(Ĝ). Then, for each τ > τ0, there is a conformal map fτ, mapping the boundary of Bτ

to Ĉ, and conjugating Ĝ onto a Schottky group Gτ, where fτ is defined by the requirement that,

near ∞, fτ(z) = z+O(|z|−1). The group Gτ depends on the choice of the Möbius transformations

H1, . . . , Hq as well as on the choice of τ. The elements Aτ
1 = fτÂ1(f

τ)−1, . . . , Aτ
g = fτÂg(f

τ)−1

provide a set of free generators for the Schottky group Gτ.

(II) Vertical projection loops

Next, we proceed to construct a fundamental set of loops for Gτ for the above generators in terms

of the fundamental set of loops for Ĝ. In [19] it was shown that, with the above normalization,

fτ converges to the identity I, uniformly on compact subsets of Ω(Ĝ), and, for each j ∈ {1, . . . , g},

Aτ
j converges to Âj, as τ → ∞. In particular, if we fix τ0, and fix n, then fτ → I uniformly on
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compact subsets of the truncated flat part of Bτ0,n. The boundary of Bτ0,n consists of a disjoint

union of quadrilaterals with circular sides. After renormalization, the part of the boundary of

Bτ0,n corresponding to {| Im(z)| = τ0} is the horizontal part of the boundary, while the part of

the boundary corresponding to {|Re(z)| = n} is the vertical part of the boundary. We make a

fixed choice of the conjugating maps, Hi, i = 1, . . . , q, and we fix a choice of the parameter

τ > τ0 in the above construction. We may deform all the loops α̂i and α̂ ′
i, within Ω

+(Ĝ) to an

equivalent fundamental set of loops, with the same geometric generators Â1, . . . , Âg, so that, after

appropriate renormalization, each connected component of each of the deformed loops appears,

in each component of the complement of the flat part of Bτ, as a pair of half-infinite Euclidean

vertical lines, one in {Im(z) ≥ τ}, the other in {Im(z) ≤ −τ}, both with the same real part (the

technical details of such a deformation can be found in [7]). We call such a deformed loops the

vertical projection loops. These vertical projection loops, which we still denoting as α̂1, . . . , α̂
′
g,

yields a fundamental set of loops, ατ
1, . . . , α

′
g
τ
for the generators Aτ

1, . . . , A
τ
g of the Schottky group

Gτ.

(III) The relative conical neighborhood

The relative conical neighborhood of Ĝ is to be defined as the set of all marked Schottky groups

Gτ = 〈Aτ
1, . . . , A

τ
g〉, with the fundamental set of loops ατ

1, . . . , α
′
g
τ
, as constructed above.

Remark 2. Recall that we are assuming that ∞ is an interior point of the flat part corresponding

to τ0, and f
τ(z) = z+O(|z|−1) near∞. As, with these normalizations, fτ → I uniformly on compact

subsets of Ω(Ĝ), we obtain that Gτ → Ĝ algebraically. It now follows, from the Jørgensen-Marden

criterion [10], that Gτ → Ĝ geometrically and that each relative conical neighborhood contains

infinitely many distinct marked Schottky groups. It is also easy to see, as in [19], that, for each

primitive parabolic element P̂ ∈ Ĝ, as τ→ ∞, there is a corresponding geodesic on Sτ = Ω(Gτ)/Gτ

whose length tends to zero. It follows that each relative conical neighborhood of a noded Schottky

group contains Schottky groups representing infinitely many distinct Riemann surfaces.

2.4.2 Pinchable loops of Schottky groups

Let G be a Schottky group of rank g ≥ 2, with generators A1, . . . , Ag, and let π : Ω(G) → S be a

regular covering with deck group G.

(IV) Pinchable loops

Let γ1, . . . , γq be a set of simple disjoint geodesics loops on S. Each γj corresponds to a conjugacy

class of a cyclic subgroup of G (including the trivial subgroup) by the lifting under π; let 〈Wj〉

be a representative of such a class. If these q cyclic subgroups are non-trivial, they are pairwise

non-conjugated in G and the generatorsWj are non-trivial powers in G (i.e., there is no Tj ∈ G so
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that Wj = T
mj

j for some mj ≥ 2), then we say that this set of geodesics is pinchable in G.

Remark 3. (1) It was shown in [20] (see also Yamamoto [25]) that if γ1, . . . , γq is a set of pinchable

simple disjoint geodesics loops on S in G, defined by the wordsW1, . . . ,Wq, as above, then there is

a noded Schottky group Ĝ, and there is an isomorphism ψ : G→ Ĝ, where ψ(W1), . . . , ψ(Wq), and

their powers and conjugates, are exactly the parabolic elements of Ĝ. More precisely, it was shown

in [20] that there is a path in Schottky space, Salg, which converges to a set of generators for Ĝ,

along which the lengths of the geodesics, γ1, . . . , γq, all tend to zero. (2) On the other direction,

let us consider a noded Schottky group Ĝ of rank g ≥ 2, with a set of geometrical generators

Â1, . . . , Âg and corresponding fundamental set of loops α̂1, . . . , α̂
′
g. Let Gτ be a Schottky group

of rank g with fundamental set of loops ατ
1, . . . , α

′
g
τ
and generators Aτ

1, . . . , A
τ
g, in a relative

conical neighborhoodof Ĝ as previously described in Section 2.4.1. Let S = Ω(Gτ)/Gτ be the

closed Riemann surface of genus g represented by Gτ, and let Vi ⊂ S be the projection of ατ
i ,

i = 1, . . . , g. Then V1, . . . , Vg is a set of g homologically independent simple disjoint loops on S.

Let ψ : Gτ → Ĝ be the isomorphism defined by Aτ
i 7→ Âi, i = 1, . . . , g. The elements of Gτ which

are sent to parabolic elements of Ĝ are called the pinched elements of Gτ. There are simple disjoint

geodesics γ1, . . . , γq on S, defined by pinched elements of Gτ, given by the words W1, . . . ,Wq in

the generators Aτ
1, . . . , A

τ
g, so that every parabolic element of Ĝ is a power of a conjugate of one

of their ψ-image. It happens that this collection of loops γ1, . . . , γq is a set of pinchable geodesics

of Gτ. The construction in [19] shows that we can choose the above parameter τ so that the γi

are all arbitrarily short.

Proposition 1 ([7]). Every non-empty set of k < 3g − 3 pinchable geodesics is contained in a

maximal set of 3g− 3 pinchable geodesics.

(V) Valid sets of fundamental loops and their complexity

Let γ1, . . . , γq ⊂ S be a pinchable set of geodesics in G. Set Ŝ+ the stable Riemann surface

obtained from S by pinching these q geodesics; it consists of a finite number of compact Riemann

surfaces, called parts, which are joined together at a finite number of nodes. Also, let Ĝ be the

noded Schottky group obtained from G by pinching these q geodesics.

Let V1, . . . , Vg, be a fundamental set of loops for G on S (that is, the components of the lifting

of these loops under π are simple loops and such a lifting set of loops contains a fundamental set of

loops for G) and let V̂1, . . . , V̂g be the corresponding loops on Ŝ+ obtained by pinching γ1, . . . , γq.

We observe that the lifts of the V̂i to Ω
+(Ĝ) are all loops, but they are generally not disjoint and

they need not to be simple. There are certainly some number of these lifts passing through each

parabolic fixed point, and some of them might pass more than once through the same parabolic

fixed point. The set of loops, V1, . . . , Vg, is called a valid set of fundamental loops for γ1, . . . , γq,

if every lift of every V̂i to Ω+(Ĝ) is a simple loop; that is, it passes at most once through each

parabolic fixed point (i.e., the set of loops, V̂1, . . . , V̂g, forms a fundamental set of loops for Ĝ on
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Ŝ+). We note that there are exactly q equivalence classes of parabolic fixed points in Ĝ, one for

each of the loops γi.

Proposition 2 ([4, 7]). There is at least one valid set of fundamental loops V1, . . . , Vg, for every

set of pinchable geodesics, γ1, . . . , γq.

(VI) The complexity

Let us now consider a valid set of fundamental loops, V1, . . . , Vg, for a set of pinchable geodesics

γ1, . . . , γq. We can deform the Vi on S so that they are all geodesics. Then the geometric

intersection number, Vi •γj, of Vi with γj is well defined; it is the number of points of intersection

of these two geodesics. Looking on the corresponding noded surface Ŝ+, Vi • γj is the number

of times the curve V̂i obtained from Vi by contracting γj to a point, passes through that point

(node). The complexity of V1, . . . , Vg, with respect to γ1, . . . , γq, is given by

Ξ(γ1, . . . , γq;V1, . . . , Vg) = max
1≤j≤q

g∑

i=1

Vi • γj,

and the complexity Ξ(γ1, . . . , γq) is the minimum of Ξ(γ1, . . . , γq;V1, . . . , Vg), where the minimum

is taken over all valid sets of fundamental loops. If Ξ(γ1, . . . , γq) ≥ n, then, for every valid

fundamental set V1, . . . , Vg, there is a node P on S+ so that the total number of crossings of P by

V̂1, . . . , V̂g is at least n.

Proposition 3 ([7]). Let g ≥ 2 and G be a Schottky group of rank g. For each positive integers

n there are only finitely many topologically distinct maximal (i.e. q = 3g − 3) pinchable set of

geodesics in G and complexity n. In particular, there are infinitely many topologically distinct

maximal noded Schottky groups of rank g and there are only finitely many topologically distinct

maximal neoclassical noded Schottky groups in each rank g.

(VII) Sufficiently complicated pinchable sets of geodesics

Now, we consider a maximal set of pinchable geodesics in G, say γ1, . . . , γ3g−3; so Ĝ is a maximal

noded Schottky group. Observe that Ĝ is rigid, and that every part of S+ is a sphere with

three distinct nodes. Also, every connected component ∆ ⊂ Ω(Ĝ) is a Euclidean disc ∆, where

∆/ Stab(∆) is a sphere with three punctures; the three punctures correspond to the three nodes of

the corresponding part of Ŝ+.

Let V1, . . . , Vg be a valid set of fundamental loops on S for the given set of pinchable geodesics

(the existence is given by Proposition 2), and let V̂1, . . . , V̂g be the corresponding loops on Ŝ+.

For each i = 1, . . . , g, the intersection of a lifting of V̂i with a component of Ĝ (i.e., a connected

component of Ω(Ĝ)) is called a strand of that lifting V̂i. Similarly, the loops V̂1, . . . , V̂g appear

on the corresponding parts of Ŝ+ as collections of strands connecting the nodes on the boundary
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of each part. There are two possibilities for these strands; either a strand connects two distinct

nodes on some part, or it starts and ends at the same node. Since the loops V1, . . . , Vg are simple

and disjoint, there are at most three sets of parallel strands of the V̂i in each part; that is, there

are at most three sets of strands, where any two strands in the same set are homotopic arcs with

fixed endpoints at the nodes. We regard each of these sets of strands on a single part as being

a superstrand, so that there are at most 3 superstrands on any one part. We next look in some

component ∆ of Ω(Ĝ), and look at a parabolic fixed point x on its boundary, where x corresponds

to the node N on the part Si of Ŝ
+. In general, there will be infinitely many liftings of superstrands

emanating from x in ∆, but, modulo Stab(∆) there are only finitely many. In fact, there are at most

4 such liftings of superstrands emanating from x. If there is exactly one superstrand on Si with

one endpoint at N, and the other endpoint at a different node, then modulo Stab(∆) there will be

exactly the one lifting of this superstrand emanating from x. If there is only one superstrand on Si

with both endpoints at the same node N, then this superstrand has two liftings starting at x, one in

each direction; so, in this case, we see two lifts of superstrands modulo Stab(∆) emanating from x.

It follows that, modulo Stab(∆), we can have 0, 1, 2, 3 or 4 liftings of superstrands starting at x. We

note that these liftings of superstrands all end at distinct parabolic fixed points on the boundary

of ∆. We say that the fundamental set of loops, V̂1, . . . , V̂p is sufficiently complicated if there are

two (different) lifts α̂i and α̂j, of some V̂i and some not necessarily distinct V̂j, respectively, so

that α̂i and α̂j both pass through the parabolic fixed point z1, into a component ∆1 of Ĝ, then

both travel through ∆1 to the same parabolic fixed point on its boundary, z2, and into another

component ∆2, which they again traverse together to the same boundary point, z3, necessarily a

parabolic fixed point, where they enter ∆3, and they leave ∆3 at different parabolic fixed points.

2.4.3 Sufficiently complicated noded Schottky groups

A maximal noded Schottky group Ĝ is sufficiently complicated if every set of valid fundamental

loops on Ŝ+ is sufficiently complicated. We note that (keeping the notation of last section), inside

∆1, α̂i and α̂j are disjoint; they both enter ∆1 at the same point, and they both leave ∆1 at the same

point; hence they cannot both be circles. In [7] the following result, stating a sufficient condition

in terms of the complexity for a maximal noded Schottky group to be sufficiently complicated, was

obtained.

Theorem 1 ([7]). If a maximal noded Schottky group Ĝ has complexity at least 11, then it is

sufficiently complicated.

The previous theorem, together Proposition 3, asserts the existence of infinitely many topo-

logically different sufficiently complicated maximal noded Schottky groups in every rank g ≥ 2.

The following result states sufficient conditions for a Schottky group to be non-classical.

Theorem 2 ([7]). Let Ĝ be a maximal noded Schottky group.
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(1) If Ĝ is sufficiently complicated, then, for τ sufficiently large, the Schottky group Gτ in the

relative conical neighborhood of Ĝ is non-classical.

(2) If S+ = Ω+(Ĝ)/Ĝ is the stable Riemann surface as shown in figure 2, then Ĝ is sufficiently

complicated.

3 Explicit construction of a sufficiently complicated noded

Schottky group

In this section we construct explicitly a noded Schottky group as in part (2) of Theorem 2, so

part (1) of the same theorem asserts that any Schottky group sufficiently near to Ĝ is necessarily

non-classical.

3.1 A family Schottky groups of rank three

Let L0 be the unit circle, L1 be the real line, L2 be the line through the points 0 and w0 = eπi/3,
and set (see Figure 7)

F =

{

(p, r) : 1/2 < p < 1, 0 < r < r
∗

(p) :=

√

1 + p2 + p4 + p2 − 1√
3p

}

.

For each (p, r) ∈ F we set L3 to be the circle with center at 0 and radius r and L4 to be

the circle orthogonal to L0, intersecting L1 at the points p and 1/p with angle π/3 (see Figure 3).

The circle L4 has its center at c =
(

1+p2

2p

)
+ i√

3

(
1−p2

2p

)
and it has radius R = 2√

3

(
1−p2

2p

)
. The

condition p > 1/2 asserts that L2 and L4 are disjoint (tangency occurs when p = 1/2) and the

condition r < r∗(p) asserts that L3 and L4 are disjoint (tangency occurs when r = r∗(p)). Let τj

be the reflection on Lj, for j = 0, 1, 2, 3, 4, so

τ0(z) = 1/z, τ1(z) = z, τ2(z) = w
2z, τ3(z) = r

2/z, τ4(z) =
cz − 1

z− c
,

and let Kr,p = 〈τ0, τ1, τ2, τ3, τ4〉. It turns out that Kr,p is an extended Kleinian group with

connected region of discontinuity Ωr,p and so that Ωr,p/Kr,p is a closed disc with 5 branch values,

of orders 2, 2, 2, 2 and 3, on its border. As a consequence of the Klein-Maskit combination

theorems [18], the group Kr,p has no parabolic transformations, its limit set is a Cantor set and it

is geometrically finite. If we set W = τ2τ1, J = τ0τ1 and L = τ1τ4, then W
3 = L3 = J2 = (WJ)2 =

(LJ)2 = 1.

Now, if A1 = L−1W−1 = τ4τ2, A2 = τ1A1τ1, and A3 = τ0τ3, so

A1(z) =
cw0z − 1

w0z − c
, A2(z) =

cw2
0z− 1

w2
0z− c

, A3(z) = r
2z,
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Figure 3—A set of lines and circles
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Figure 4—The Schottky group Gr,p of rank 3:

the six darkest loops are a fundamental set of

loops

then we set Gr,p = 〈A1, A2, A3〉. In Figure 4 we show the situation for values of p near to 1 and

r near to 0; in which case Gr,p turns out to be a classical Schottky group of rank three.

Lemma 1. If (p, r) ∈ F , then Gr,p is a Schottky group of rank three.

Proof. It can be seen that Gr,p is a finite index normal subgroup of Kr,p and

Kr,p/Gr,p = 〈τ0 : τ20 = 1〉 × 〈τ1, τ2 : τ21 = τ22 = (τ2τ1)
3 = 1〉 ∼= Z2 ⊕D3.

In particular, Gr,p has the same region of discontinuity as for Kr,p (so a function group),

it is geometrically finite and does not have parabolic transformations. As any of the elliptic

transformations of Kr,p goes into an element of the same order in the quotient Kr,p/Gr,p, we

also have that Gr,p is torsion free. Now, as a consequence of the classification of function groups

[15, 16], the group Gr,p is a Schottky group of rank three (in Figure 4 there is shown a fundamental

set of loops).

The closed Riemann surface Sr,p = Ωr,p/Gr,p of genus 3 admits the group Z2 ⊕ D3 as a

group of conformal/anticonformal automorphisms. On Sr,p we have simple closed curves γ1,..., γ6

which are pinchable (see Figures 5 and 6) with respect to the Schottky group Gr,p; these pinchable

curves correspond to the conjugacy classes of cyclic groups of Gr,p as follows:

γ1 corresponds to A−1
2 ; γ2 corresponds to A1; γ3 corresponds to A−1

1 A2;

γ4 corresponds to A−1
1 A2A

−1
3 A−1

2 A1A3; γ5 corresponds to A−1
2 A−1

3 A2A3;

γ6 corresponds to A1A
−1
3 A−1

1 A3.
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Figure 5—A set of pinchable curves seen at

the Schottky uniformization
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Figure 6—A set of pinchable curves seen on

the Riemann surface Sr,p

3.2 A sufficiently complicated noded Schottky groups of rank three

To obtain the desired noded Schottky group, we need to move the pair (p, r) ∈ F to some

point in the boundary in order to have that the loxodromic transformations A−1
2 , A1, A

−1
1 A2,

A−1
1 A2A

−1
3 A−1

2 A1A3, A
−1
2 A−1

3 A2A3 and A1A
−1
3 A−1

1 A3 are transformed into parabolic transfor-

mations. As the order three automorphism W permutes cyclically γ1, γ2, γ3 and also γ4, γ5, γ6,

we only need to take care of A1 and A1A
−1
3 A−1

1 A3. First, in order to transform A1 into a parabolic

transformation we only need to have τ4(w0) = w0, equivalently, that the circle L4 is tangent to

the line L2 at w0. This happens exactly when p = 1/2. Now, assuming p = 1/2, in order for

A1A
−1
3 A−1

1 A3 to be a parabolic transformation we only need to have tangency of the circle L3

with L4, that is, r = r
∗(1/2) =

√
7−

√
3

2
. The group Gr∗(1/2),1/2 turns out to be a noded Schottky

group that uniformizes a stable Riemann surface as shown in Figure 2 and, by (2) in Theorem 2,

it is a sufficiently complicated noded Schottky group.

Non−classical Schottky groups

r=r *(p)

p

r

p=1/2 p=1p
0

(1/2)*r

r
0

Figure 7—The region F and the filled part for the non-classical Schottky groups

3.3 Non-classical Schottky groups of rank three

By (1) in Theorem 2, there exist (p0, r0) ∈ F with the property that if (p, r) ∈ F , 1/2 < p < p0

and r0 < r < r∗(1/2), then Gr,p is a non-classical Schottky group of rank three (see filled part

region in Figure 7). Moreover, each of these Schottky groups is contained in a Kleinian group Kr,p
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as a finite index normal subgroup with Kr,p/Gr,p
∼= Z2 ⊕D3, in other words, the closed Riemann

surfaces Sr,p = Ω(Gr,p)/Gr,p admit a group of conformal automorphisms isomorphic to Z2 ⊕D3.

The family of these Riemann surfaces degenerates to a stable Riemann surface Sr∗(1/2),1/2 as

Figure 2 keeping the above group of automorphisms invariant.
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ABSTRACT

In this paper, we have studied local convergence of Super-Halley method in Banach

spaces under the assumption of second order majorant conditions. This approach allows

us to obtain generalization of earlier convergence analysis under majorizing sequences.

Two important special cases of the convergence analysis based on the premises of Kan-

torovich and Smale type conditions have also been concluded. To show efficacy of our

approach we have given three numerical examples.

RESUMEN

En este art́ıculo, hemos estudiado la convergencia local del método Super-Halley en

espacios de Banach, asumiendo condiciones mayorantes de segundo orden. Este punto

de vista nos permite obtener generalizaciones de análisis de convergencia bajo sucesiones

mayorantes obtenidos anteriormente. También se han concluido dos casos especiales

del análisis de convergencia basados en las premisas de condiciones tipo Kantorovich y

Smale. Para mostrar la eficacia de nuestro enfoque, damos tres ejemplos numéricos.
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1 Introduction

Let f be a given operator that maps from some nonempty open convex subset Ω of a Banach space

X to another Banach space Y. Approximating a locally unique solution x̄ of a nonlinear equation

f(x) = 0 (1.1)

is widely studied in both theoretical and applied areas of mathematics. Generally, this is done by

using some iterative processes. An iterative process is a mathematical procedure that, from one or

several initial approximations of a solution of (1.1), a sequence of iterates {xn}n∈N is constructed

so that each subsequent iterate of the sequence is a better approximation to the previous approxi-

mation to the solution of (1.1); that is, the sequence {‖xn − x̄‖}n∈N is convergent to zero. Usually,

in order to study convergence analysis of the method, we could consider the study of local and

semilocal convergence analysis. If the convergence analysis seeks assumptions around a solution

x̄, then it is called local convergence and this type of analysis estimates the radii of convergence

balls, where as we could also consider assumptions around an initial point x0 to study convergence

analysis of the method. In that case the convergence analysis is called semilocal one and it gives

criteria ensuring the convergence. It is also very important to give convergence ball of an iterative

method, because that shows the extent to which we can choose an initial guesses for that method.

One of the most important iterative methods to solve this problem is Newton’s method given

by

xn+1 = xn − f ′(xn)
−1f(xn), k = 0, 1, 2, . . . (1.2)

where x0 ∈ Ω is an initial point. As anybody can recall that one of the most famous results to

study convergence of Newton’s method (1.2) is the well known Kantorovich method[16], which

guarantees convergence of the method to a solution, using semilocal conditions. It does not require

a priori existence of a solution, proving instead the existence of the solution and its uniqueness

on some region. Many researches have also done works related to Kantorovich-like method (for

details see [4, 8, 10, 26, 27, 29] and references there in). Also, Smale’s point theory [21] assumes

that the nonlinear operator is analytic at the initial point, which is an important result concerning

Newton’s method. Wan and Han[25, 22] has discussed the generalization and the particular cases

of Smale’s point estimate theory.

For a positive number α and x ∈ X, we consider B(x, α) to stand for the open ball with radius

α and center x and B̄(x, α) is the corresponding close ball. In [7, 6], Ferreira and Svaiter had

studied the local convergence of Newton’s method (1.2) under the following majorant conditions:

‖f ′(x̄)−1[f ′(y) − f ′(x)]‖ ≤ h ′(‖y− x‖+ ‖x− x̄‖) − h ′(‖x− x̄‖), (1.3)

for x, y ∈ B(x̄, R), R > 0, where ‖y−x‖+‖x− x̄‖ < R and h : (0, R) → R is a continuously differen-

tiable, convex and strictly increasing function that satisfies h(0) > 0, h ′(0) = −1 and has a zero in
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(0, R). Note that by this study the assumptions for guaranteeing Q-quadratic convergence of the

respective iterative methods has been relaxed and a new estimate of the Q-quadratic convergence

has been obtained.

Recently, inspired by these ideas, Ling and Xu[17] have presented a new convergence analysis of

Halley’s method which makes a relationship of the majorizing function h and the nonlinear operator

f under majorant conditions similar to given in (1.3). Argyros and Ren[1] also presented a local

convergence of Halley’s method which gives a ball convergence of the method under assumptions

similar to (1.3).

On the other hand, one of the famous third order iterative method to solve nonlinear equation

(1.1) in Banach space is the Super-Halley method denoted by

xn+1 = xn −
[

I+
1

2
Lf(xn)[I− Lf(xn)]

−1
]

f ′(xn)
−1f(xn), (1.4)

where for x ∈ X, Lf(x) is the linear operator defined as

Lf(x) = f ′(x)−1f ′′(x)f ′(x)−1f(x).

The results concerning the convergence of this method have been studied in [2, 9, 20] under

different types of assumptions by using recurrence relations. On the other hand Ezquerro and

Hernández[5] and Gutiérrez and Hernández[11] have studied semilocal convergence of this method

by using majorizing sequences. Now, if the nonlinear operator f is analytic at the initial point

then motivated by the ideas of Argyros and Ren[1] and Ling and Xu[17], we have studied local

convergence of Super-Halley method (1.4) using second order majorant condition. This majorant

condition generalizes the earlier results on Super-Halley method[5, 11] using majorizing sequences.

Two particular cases namely results based of affine invariant Lipschitz-type condition and Smale-

type condition have also been derived. Numerical efficacy of the method has also been derived by

way of a number of numerical examples.

Rest of the paper is organized as follows. Some preliminaries results are contained in section

2. In section 2.1, we studied local convergence analysis of Super-Halley method. Two special cases

of main result are presented in section 3. In section 4, we have shown a number of numerical

examples to show efficacy of our study. Section 5 forms the conclusion part of the paper.

2 Preliminaries

In this section we provide some basic results which is required for our convergence analysis of the

method.

Assume a > 0 and φ : (0, a) → R be a twice continuously differentiable function. Let

x, y ∈ B(x̄, a) ⊂ Ω, with ‖y− x‖+ ‖x− x̄‖ < a. We say that the operator f satisfy a second order
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majorizing function φ at x̄ if the following conditions hold on f:

‖f ′(x̄)−1[f ′′(y) − f ′′(x)]‖ ≤ φ ′′(‖y− x‖+ ‖x− x̄‖) − φ ′′(‖x− x̄‖), (2.1)

with the assumptions:

(M1) φ(0) > 0,φ ′′(0) > 0,φ ′(0) = −1,

(M2) φ ′′ is convex and strictly increasing in (0, a),

(M3) φ has atleast one zero in (0, a) with t∗ as the smallest zero and φ ′(t∗) < 0.





(2.2)

and

‖f ′(x̄)−1f(x̄)‖ ≤ φ(0), ‖f ′(x̄)−1f ′′(x̄)‖ ≤ φ ′′(0). (2.3)

In this paper we assume that φ is the majorizing function of f. Note that if we define

Θf(x) := x−
[

I+
1

2
Lf(x)[I− Lf(x)]

−1
]

f ′(x)−1f(x) (2.4)

where Lf(x) = f ′(x)−1f ′′(x)f ′(x)−1f(x), then Θf(x) can be taken as the iterative function of Super-

Halley method as it can be written as xn+1 = Θf(xn). Also the scalar sequence {tn} can be

generated by applying the method to φ(t). In this case we can write tn+1 = Θφ(tn) with

Θφ(t) := t−
[

1+
Lφ(t)

2(1− Lφ(t))

] φ(t)

φ ′(t)
, Lφ(t) =

φ(t)φ ′′(t)

φ ′(t)2
, t ∈ (0, a). (2.5)

Now we can easily establish some basic properties of the majorizing function φ, the iterative

functions Θf(x) and Θφ(t) which are described in the following lemmas.

Lemma 2.1. Let φ satisfies assumptions (M1) − (M3). Then

(i) φ ′ is strictly convex and strictly increasing on (0, a).

(ii) φ is strictly convex on (0, a), φ(t) > 0 for t ∈ (0, t∗) and equation φ(t) = 0 has at most one

root in (t∗, a).

(iii) −1 < φ ′(t) < 0 for t ∈ (0, t∗).

(iv) 0 ≤ Lφ(t) ≤
1

2
for t ∈ [0, t∗].

Proof. The proof is similar to one given in [17], so omitted.

Lemma 2.2. Let φ satisfies assumptions (M1)−(M3). Then for all t ∈ (0, t∗), t < Θφ(t) < t∗.

Moreover, φ ′(t∗) < 0 if and only if there exist t ∈ (t∗, a) such that φ(t) < 0.
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Proof. It is not to be mentioned that by using Lemma 2.1, one can have φ(t) > 0, −1 <

φ ′(t) < 0 and 0 ≤ Lφ(t) ≤ 1
2
for t ∈ (0, t∗). This gives

[

1 +
Lφ(t)

2(1 − Lφ(t))

] φ(t)

φ ′(t)
< 0 and hence

t < Θφ(t).

Also, for any t ∈ (0, t∗), from the definition of directional derivative and assumption (M2)

it follows that since φ ′′(t) is increasing in (0, a) and t < t∗ < a, we have φ ′′(t) < φ ′′(t∗) and

φ ′′(t) > 0 which implies that left directional derivative D−φ ′′(t) > 0.

As φ ′′(t)φ(t)−2φ ′(t)2 ≤ −4φ ′′(t)φ(t), we obtainD−Θφ(t) = 1+
2φ ′(t)φ(t)D−φ ′′(t)

(φ ′′(t)φ(t) − 2φ ′(t)2)φ ′′(t)
>

0 for t ∈ (0, t∗).

And this implies that Θφ(t) < Θφ(t
∗) = t∗ for any t ∈ (0, t∗). So the first part of this lemma

is complete. Now, if φ ′(t∗) < 0, then it is obvious that there exists t ∈ (t∗, a) such that φ(t) < 0.

Conversely, noting that φ ′(t∗) = 0, then we have φ(t) > φ(t∗)+φ ′(t)(t∗− t) for t ∈ (t∗, a), which

implies that φ ′(t∗) < 0. This completes the proof.

Remark Following properties are implied by the condition φ ′(t∗) < 0 in (M3):

• φ(t∗∗) = 0 for some t∗∗ ∈ (t∗, a).

• φ(t) < 0 for some t ∈ (t∗, a).

Lemma 2.3. Let φ satisfies assumptions (M1) − (M3). Then

t∗ −Θφ(t) ≤
[1

2

φ ′′(t∗)2

φ ′(t∗)2
+

1

3

D−φ ′′(t∗)

−φ ′(t∗)

]

(t∗ − t)3, t ∈ (0, t∗). (2.6)

Proof. We can derive the following relation, by using the definition of Θφ in (2.5)

t∗ − Θφ(t) =
1

1− Lφ(t)

[

(1− Lφ(t))(t
∗ − t) +

φ(t)

2φ ′(t)
(1− Lφ(t)) +

φ(t)

2φ ′(t)

]

= −
1

φ ′(t)(1− Lφ(t)

∫1

0

[φ ′′(t+ σ(t∗ − t)) − φ ′′(t)](t∗ − t)2(1 − σ)dσ

+
(t∗ − t)φ ′′(t)

2(1− Lφ(t))φ ′(t)2

∫1

0

φ ′′(t+ σ(t∗ − t))(t∗ − t)2(1− σ)dσ

−
(t∗ − t)φ ′′(t)

2(1− Lφ(t))φ ′(t)

(

φ(t) +
φ(t)2

φ ′(t)(t∗ − t)

)

Since φ ′′ is convex and t < t∗, it follows from Lemma 2.1 that

φ ′′(t+ σ(t∗ − t)) − φ ′′(t) ≤ [φ ′′(t∗) − φ ′′(t)]
σ(t∗ − t)

(t∗ − t)
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So by noting that φ ′′ is strictly increasing, we have

t∗ −Θφ(t) ≤ −
φ ′′(t∗) − φ ′′(t)

6φ ′(t)(1− Lφ(t))
(t∗ − t)2 +

φ ′′(t∗)φ ′′(t)

4φ ′(t)2(1− Lφ(t))
(t∗ − t)3

−
φ(t)φ ′′(t)

2(1 − Lφ(t))φ ′(t)
(t∗ − t) −

φ(t)2φ ′′(t)

2(1− Lφ(t))φ ′(t)2

Since φ ′(t) < 0, φ ′′(0) > 0 and φ ′, φ ′′ are strictly increasing on (0, t∗) and 0 ≤ Lφ(t) ≤ 1
2
for

t ∈ [0, t∗] by Lemma 2.1, so we have

t∗ −Θφ(t) ≤
[1

2

φ ′′(t∗)2

φ ′(t∗)2
+

1

3

D−φ ′′(t∗)

−φ ′(t∗)

]

(t∗ − t)3. (2.7)

As φ ′ is increasing, φ ′(t∗) < 0 and φ ′(t) < 0 t in (0, t∗), we have

φ ′′(t∗)) − φ ′′(t)

−φ ′(t)
≤ φ ′′(t∗) − φ ′′(t)

−φ ′(t∗)
=

1

−φ ′(t∗)

φ ′′(t∗)) − φ ′′(t)

t∗ − t
(t∗ − t) ≤ D−φ ′′(t∗)

−φ ′(t∗)
(t∗ − t)

where the last inequality follows from definitions of directional derivative. Combining the above

inequality with (2.7), we conclude that (2.6) holds. This completes the proof. �

Let {tk} denote the majorizing sequence generated by

t0 = 0, tk+1 = Θφ(tk) = tk −
[

I+
Lφ(tk)

2(1 − Lφ(tk))

] φ(tk)

φ ′(tk)
, k = 0, 1, 2, . . . (2.8)

We arrive at the following theorem using Lemma 2.3 that

Theorem 2.4. Let the sequence {tk} be defined by (2.8). Then {tk} is well defined, strictly

increasing and is contained in (0, t∗). Moreover, {tk} satisfies (2.6) and converges to t∗ with

Q − cubic, i.e.:

t∗ − tk+1 ≤
[1

2

φ ′′(t∗)2

φ ′(t∗)2
+

1

3

D−φ ′′(t∗)

−φ ′(t∗)

]

(t∗ − tk)
3, tk ∈ (0, t∗).

2.1 Local convergence results for Super-Halley method

This section is devoted to giving the local convergence analysis of (1.4). For that the following

lemmas will play important role.

Lemma 2.5. Assume ‖x− x̄‖ ≤ t < t∗. If φ : (0, t∗) → R is a twice continuously differentiable

function which majorizes f at x̄, then

(i) f ′(x) is nonsingular and

‖f ′(x)−1f ′(x̄)‖ ≤ −
1

φ ′(‖x− x̄‖) ≤ −
1

φ ′(t)
. (2.9)
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(ii) ‖f ′(x̄)−1f ′′(x)‖ ≤ φ ′′(‖x− x̄‖) ≤ φ ′′(t).

Proof. Let us take x ∈ B(x̄, t), 0 ≤ t < t∗. Since

f ′(x) = f ′(x̄) +

∫1

0

[f ′′(x̄ + σ(x− x̄)) − f ′′(x̄)](x − x̄)dσ+ f ′′(x̄)(x − x̄),

we get

‖I− f ′(x̄)−1f ′(x)‖ ≤
∫1

0

‖f ′(x̄)−1[f ′′(x̄ + σ(x− x̄)) − f ′′(x̄)]‖‖x− x̄‖dσ

+‖f ′(x̄)−1f ′′(x̄)‖‖x− x̄‖

≤
∫1

0

[φ ′′(σ(‖(x − x̄)‖)) − φ ′′(0)]‖x − x̄‖dσ+ φ ′′(0)‖x− x̄‖

= φ ′(‖(x− x̄)‖) − φ ′(0).

So, we conclude that

‖I− f ′(x̄)−1f ′(x)‖ ≤ φ ′(t) − φ ′(0) < 1

as φ ′(0) = −1 and −1 < φ ′(t) < 0 for (0, t∗) using Lemma 2.1. Therefore, it follows from Banach

lemma that f ′(x̄)−1f ′(x) is nonsingular and (2.9) holds as

‖f ′(x)−1f ′(x̄)‖ ≤ 1

1− φ ′(‖x− x̄‖) + φ ′(0)
= −

1

φ ′(‖x− x̄‖) ≤ −
1

φ ′(t)
.

Thus we conclude that, f ′ is nonsingular in B(x̄, t∗). By using majorant conditions, we have

‖f ′(x̄)−1f ′′(x)‖ ≤ ‖f ′(x̄)−1[f ′′(x) − f ′′(x̄)]‖ + ‖f ′(x̄)−1f ′′(x̄)‖
≤ φ ′′(‖x− x̄‖) − φ ′′(0) + φ ′′(0) = φ ′′(‖x− x̄‖) ≤ φ ′′(t).

The last inequality holds true because of φ ′′ is strictly increasing. This completes the proof. ✷

Now the main local convergence result for the Super-Halley method (1.4) is presented as

follows.

Theorem 2.6. Let f satisfies the second order majorant conditions (2.1)-(2.3). Then, the

sequence of iterates {xn} generated by Super-Halley method (1.4) is well defined, contained in

B(x̄, t∗) and converges to the unique solution x̄ of (1.1). Moreover, the following error estimate

hold

‖x̄− xk+1‖ ≤ (t∗ − tk+1)

(

‖x̄− xk‖
t∗ − tk

)3

, k = 0, 1, 2, . . . (2.10)

Thus the sequence {xn} generated by Super-Halley method (1.4) converges Q−cubic as follows

‖x̄− xk+1‖ ≤
[1

2

h ′′(t∗)2

h ′(t∗)2
+

1

3

D−h ′′(t∗)

−h ′(t∗)

]

‖x̄− xk‖3, k = 0, 1, 2, . . . (2.11)
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Proof. By using f(x̄) = 0 and some standard analytic techniques, one can have

x̄− xk+1 = −Γf(xk)f
′(xk)

−1[−f ′(xk)(x̄− xk) − f(xk)] − Γf(xk)Lf(xk)(x̄ − xk)

+
[1

2
f ′(xk)

−1f(xk) −
1

2
Γf(xk)f

′(xk)
−1f(xk)

]

= −Γf(xk)f
′(xk)

−1

∫1

0

(1 − σ)[f ′′(xk + σ(x̄ − xk)) − f ′′(xk)](x̄ − xk)
2dσ

+f ′′(xk)Γf(xk)f
′(xk)

−1
[

f ′(xk)
−1

∫1

0

(1 − σ)f ′′(xk + σ(x̄ − xk))

×(x̄− xk)
2dσ

]

(x̄− xk)

−
1

2
f ′′(xk)Γf(xk)f

′(xk)
−1
[

f ′(xk)
−1

∫1

0

(1− σ)f ′′(xk + σ(x̄ − xk))

×(x̄− xk)
2dσ

]2

,

where Γf(x) = (I − Lf(x))
−1. Using majorant condition, we can get

∫1

0

‖f ′(x̄)−1[f ′′(xk + σ(x̄ − xk)) − f ′′(xk)]‖(1− σ)dσ ≤
∫1

0

‖[φ ′′(σ‖x̄− xk‖+ ‖xk − x̄‖)

−φ ′′(‖xk − x̄‖)]‖(1− σ)dσ.

Also, we know that, if u, v,w ∈ (0, a) and u < v < w, then because of convexity[7] of φ(x) in

(0, a), we have

φ(v) − φ(u) ≤ [φ(w) − φ(u)]
v− u

w − u
.

Therefore,

φ ′′(σ‖x̄− xk‖+ ‖xk − x̄‖) − φ ′′(‖xk − x̄‖) ≤ φ ′′(σ‖x̄− xk‖+ tk) − φ ′′(tk)

≤ [φ ′′(σ(t∗ − tk) + tk) − φ ′′(tk)]
‖x̄− xk‖
t∗ − tk

.

Thus Lemma 2.5 and above inequality implies

‖x̄− xk+1‖ ≤ −
1

(1− Lφ(tk))φ ′(tk)

[

∫1

0

[φ ′′(σ(t∗ − tk) + tk) − φ ′′(tk)](1 − σ)dσ
]‖x̄− xk‖3

t∗ − tk

+
φ ′′(tk)

(1− Lφ(tk))φ ′(tk)2

[

∫1

0

[φ ′′(σ(t∗ − tk) + tk)(1 − σ)dσ
]

‖x̄− xk‖3

+
1

2

φ ′′(tk)

(1− Lφ(tk))φ ′(tk)2

[

∫1

0

[φ ′′(σ(t∗ − tk) + tk)(1− σ)dσ
]2

‖x̄− xk‖4

≤ φ(tk)

(1 − Lφ(tk))φ ′(tk)

(‖x̄− xk‖
t∗ − tk

)3

= (t∗ − tk+1)
(‖x̄− xk‖

t∗ − tk

)3

.

Finally, we want to show that the solution x̄ of (1.1) is unique in B̄(x̄, t∗). For that assume ȳ be

another solution in B̄(x̄, t∗). Then proceeding similarly as above we get

‖ȳ− xk+1‖ ≤ (t∗ − tk+1)
(‖ȳ− xk‖

t∗ − tk

)3

.
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Since the sequence {xk} converges to x̄ and {tk} converges to t∗, we conclude that ȳ = x̄. Therefore,

x̄ is the unique zero of (1.1) in B̄(x̄, t∗). ✷

Remark 2.7. It is to be noted that if we replace x̄ with the initial approximation x0 in (2.1),

then after some manipulations we can obtain a semilocal convergence analysis of our iteration

method. This analysis approach enables us to drop out the assumption of existence of a second

root for the majorizing function, still guarantee Q−cubic convergence rate. Thus the semilocal

convergence theorem for the iteration method (1.4) is as follows:

Theorem 2.8. Suppose f : Ω ⊆ X → Y be a twice continuously differentiable nonlinear operator,

and Ω is open and convex. Consider that for a given initial guess x0 ∈ Ω, f ′(x0) is nonsingular that

is f ′(x0)
−1 exists and that φ is the majorizing function to f at x0 and φ satisfies the assumptions

(M1) −−(M3). Then sequence {xk} generated by the method (1.4) for solving equation (1.1) with

a starting point x0 is well defined, contained in B(x0, t
∗) and converges to a solution x̄ ∈ B̄(x0, t

∗)

of the Eq.(1.1). The solution is unique in B(x0, σ), where σ is defined as σ := sup{t ∈ (t∗, R) :

φ(t) ≤ 0}. For k = 0, 1, 2, . . . , a priori error estimate and a posteriori error estimate are given

respectively as

‖x̄− xk+1‖ ≤ (t∗ − tk+1)
(‖x̄− xk‖

t∗ − tk

)3

,

and

‖x̄− xk+1‖ ≤ (t∗ − tk+1)
(‖xk+1 − xk‖

tk+1 − tk

)3

.

Also the method converges Q−cubically as

‖x̄− xk+1‖ ≤
[1

2

φ ′′(t∗)2

φ ′(t∗)2
+

1

3

D−φ ′′(t∗)

−φ ′(t∗)

]

(‖x̄− xk‖)3.

3 Special cases and applications

This section consists of two special cases of the local convergence results obtained in previous

section. Namely, convergence results under affine covariant Kantorovich-type condition and the

Smale-type γ-condition.

3.1 Kantorovich-type

Suppose that f satisfies the affine covariant Lipschitz condition (see Han and Wang[12]) as given

by:

‖f ′(x̄)−1[f ′′(y) − f ′′(x)]‖ ≤ λ1‖y− x‖, x, y ∈ Ω. (3.1)

and the following initial conditions

‖f ′(x̄)−1f(x̄)‖ ≤ β, (3.2)
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‖f ′(x̄)−1f ′′(x̄)‖ ≤ λ2. (3.3)

Consider the scalar valued function

φ(t) =
λ1

6
t3 +

λ2

2
t2 − t+ β. (3.4)

This function was considered as majorizing function in [28, 5, 11] for establishing convergence of

super-Halley method. If we choose the above cubic polynomial as the majorizing function φ in

(2.1), then the majorant condition (2.1) reduced to the Lipschitz condition (3.1) and in this way

the results based on Lipschitz condition have been generalized by our assumptions of majorant

conditions. The assumptions (M1) and (M2) are satisfied for f if the following criterion holds

β ≤ 2(λ2 + 2(λ22 + 2λ1)
1/2)

3(λ2 + 2(λ22 + 2λ1)1/2)2
. (3.5)

Therefore, Theorem 2.6 reduces to the following form:

Theorem 3.1. Suppose that f satisfies the conditions (3.1)-(3.3) with the assumptions given

in (3.5). Then, the sequence {xk} generated by Super-Halley method (1.4) for solving equation

(1.1) with a starting point x0 is well defined, contained in B(x̄, t∗) and converges to a solution

x̄ ∈ B̄(x̄, t∗) of the Eq.(1.1). Note that t∗ is the smallest positive root of φ defined by (3.4) in

[0, r1] where r1 = (−λ2 + (λ22 + 2λ1)
1/2)/λ1 is the positive root of φ ′. The limit x̄ of the sequence

{xk} is the unique zero of Eq.(1.1) in B(x̄, t∗∗), where t∗∗ is the root of φ in the interval (r1,+∞).

Moreover, the following error estimates holds

‖x̄− xk+1‖ ≤ (t∗ − tk+1)
(‖x̄− xk‖

t∗ − tk

)3

, k = 0, 1, 2, . . .

and the sequence generated by Super-Halley method (1.4) converges Q-cubic as follows

‖x̄− xk+1‖ ≤
[3(λ1 + λ2t

∗)2 + 2λ2(1 − λ1t
∗ − λ2t

∗2/2)

6(1 − λ1t∗ − λ2t∗2/2)2

]

(‖x̄− xk‖)3, k = 0, 1, 2, . . .

3.2 Smale-type

This subsection contains the local convergence results for the Super-Halley method (1.4) under the

γ-Condition.

In [21], Smale has studied the convergence and error estimation of Newton’s method under

the hypotheses that f is analytic and satisfies

‖f ′(x̄)−1f(n)(x̄)‖ ≤ n!γn−1, n > 2
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where

γ := sup
k>1

‖ f
′(x̄)−1f(n)(x̄)

k!
‖ 1

k−1

Smale’s result is completely improved by Wang and Han[24, 25] by introducing a majorizing func-

tion

φ(t) = β − t+
γt2

1− γt
, t ∈

[

0,
1

γ

)

(3.6)

where

‖f ′(x̄)−1f(x̄)‖ ≤ β (3.7)

and

‖f ′(x̄)−1f ′′(x̄)‖ ≤ 2γ (3.8)

If we choose this function as the majorizing function φ in (2.1), then it reduces to the following

condition:

‖f ′(x̄)−1[f ′′(y) − f ′′(x)]‖ ≤ 2γ

(1− γ‖y− x‖− γ‖x− x̄‖)3

−
2γ

(1− γ‖x− x̄‖)3 , γ > 0 (3.9)

where ‖y − x‖ + ‖x − x̄‖ < 1
γ
, and the assumptions (M1) and (M2) are satisfied for φ. Also, if

α := βγ < 3 − 2
√
2, then assumption (M3) is satisfied for φ. Therefore, the concrete form of

Theorem 2.6 is given as follows.

Theorem 3.2. Suppose f satisfies (3.7)-(3.9). If α := βγ < 3 − 2
√
2, then the sequence {xk}

generated by the super-Halley method (1.4) for solving the equation (1.1) with a starting point x0

is well defined, is contained in B(x̄, t∗) and converges to a solution x̄ ∈ B̄(x̄, t∗) of the Eq.(1.1).

The limit x̄ of the sequence {xk} is unique in B(x̄, t∗∗), where t∗ and t∗∗ are given as

t∗ =
α+ 1−

√

(α + 1)2 − 8α

4γ
and t∗∗ =

α+ 1+
√

(α + 1)2 − 8α

4γ

respectively. Moreover, the following error bound holds: for all k ≥ 0, we have

‖x̄− xk+1‖ ≤ (t∗ − tk+1)
(‖x̄− xk‖

t∗ − tk

)3

, k = 0, 1, 2, . . .

and the sequence {xk} converges Q-cubic as follows

‖x̄− xk+1‖ ≤ 2γ2

[2(1 − γt∗)2 − 1]2
(‖x̄− xk‖)3, k = 0, 1, 2, . . .
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4 Numerical Examples

This section is devoted to illustrate the above theoretical results by a number of numerical examples.

Example 4.1. Let X = Y = R with Ω = B(0, 1) and the function f on Ω is

f(x) = ex − 1 (4.1)

and for x̄ = 0,

f ′(x̄) = 1, f ′′(x̄) = 1.

Also, we obtain that

λ1 = e, λ2 = 1, β = 0

Therefore, the convergence criterion (3.5) holds and the Theorem 3.1 is applicable to conclude that

the sequence generated by super-Halley method (1.4) with initial point x0 = 0.25 converges to a root

of (4.1). In this case, we have t∗ = 0 and t∗∗ = 1.03304078, that is the existence and uniqueness

ball are B(0.25, 0) and B̄(0.25, 1.03304078) respectively and the error bound is 1.525807581.

Example 4.2. Let X = C[0, 1] the space of continuous functions defined on interval [0, 1]

equipped with max norm and let Ω = U[0, 1] and the function f on Ω is .

f(x)(s) = x(s) − 2λ

∫1

0

G(s, t)x(t)3dt (4.2)

Therefore we have

f ′(x)u(s) = u(s) − 6λ

∫1

0

G(s, t)x(t)2u(t)dt, u ∈ Ω,

and

f ′′(x)[uv](s) = −λ

∫1

0

G(s, t)x(t)(uv)(t)dt, u, v ∈ Ω,

Now, let M = max
s∈[0,1]

∫1
0
|G(s, t)|dt. Then M = 1

8
.. Also, for any x, y ∈ Ω, we have

‖f ′(x̄)−1[f ′′(x) − f ′′(x̄)]‖ ≤ 3|λ|

2
‖x− x̄‖.

So, we obtain the values of β, λ2 and λ1 in as follows

β = 0, λ2 = 0, λ1 =
3|λ|

2
.

Therefore, the convergence criterion (3.5) holds and the Theorem 3.1 is applicable to conclude that

the sequence generated by Super-Halley method (1.4) with initial point x0 converges to a zero of f

defined by (4.2).
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For the different values of λ i.e. for λ = 0.0625, 0.125, 0.25, 0.5, 1 and the initial point x0 = 0.25

the corresponding domain of existence and uniqueness of solution, are given in Table-4.2.

Table-4.2: Domains of existence and uniqueness of solution for Super-Halley’s method

λ convergence ball in our work

existence uniqueness

0.0625 B̄(0.25, 0) B(0.25, 8)

0.125 B̄(0.25, 0) B(0.25, 5.656854249)

0.25 B̄(0.25, 0) B(0.25, 4)

0.5 B̄(0.25, 0) B(0.25, 2.828427125)

1 B̄(0.25, 0) B(0.25, 2)

Now, we present a numerical example to illustrate the Smale-type conditions.

Example 4.3. Let X = Y = R with Ω = U[0, 1] and the function f on Ω is

f(x) = ex + 2x2 − 1 (4.3)

For x̄ = 0,

f ′(x̄) = 1, f ′′(x̄) = 5

and we obtain that

β = 0, γ = 2.5

Therefore, the convergence criterion (3.9) holds (which can be seen from the above graph in

case y > x) and the Theorem 3.2 is applicable to conclude that the sequence generated by Super-

Halley method (1.4 ) converges to a zero of f defined by (4.3) with t∗ = 0 and t∗∗ = 0.2.
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5 Conclusions

In this paper, the local convergence of Super-Halley method has been studied under majorant

conditions on second derivative of f. Convergence ball of the method has been included. Two

special cases: one Kantorovich-type conditions and another Smale-type conditions have also been

studied. A number of numerical examples also given to illustrate our study.
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1 Introduction

In 1995, Blair et al.[3] introduced the idea of a class of contact metric manifolds for which the

characteristic vector field ξ belongs to the (κ, µ)-nullity distribution for some real numbers κ and

µ and such type of manifolds are called (κ, µ)-contact metric manifold. The non-Sasakian (κ, µ)-

contact metric manifolds have two classes, namely, the class consists of the unit tangent sphere

bundles of spaces of constant curvature, equipped with the natural contact metric structure and

the class contains all the three-dimensional unimodular Lie groups, except the commutative one

admitting the structure of a left invariant (κ, µ)-contact metric manifold [3, 4, 9]. Boeckx [4] given

a full classification of (κ, µ)-contact metric manifolds. (κ, µ)-contact metric manifolds have been

studied by several authors in [5, 6, 13, 11] and others.

A rank-four tensor N that remains invariant under conharmonic transformation for a (2n+1)-

dimensional Riemannian manifold M is given by

N(X, Y)Z = R(X, Y)Z−
1

2n − 1
[S(Y, Z)X − S(X,Z)Y (1.1)

+g(Y, Z)QX − g(X,Z)QY],

which is also of the form

N(X, Y, Z, T) = R(X, Y, Z, T) −
1

2n − 1
[S(Y, Z)g(X, T) − S(X,Z)g(Y, T) (1.2)

+g(Y, Z)g(QX, T) − g(X,Z)g(QY, T)],

where R, S and Q represents the Riemannian curvature tensor, Ricci tensor and Ricci operator

respectively.

A manifold whose conharmonic curvature vanishes at every point of the manifold is called

conharmonically flat manifold. Such a curvature tensor have been extensively studied by Siddiqui

and Ahsan [12], Ozgur [8], Avijit Sarkar et al. [10], Asghari and Taleshian [7] and many others.

Our present work is organised in the following way: After introduction, section 2 includes

basics related to (κ, µ)-contact metric manifold which will be used later. Section 3 deals with

conharmonically flat (κ, µ)-contact metric manifolds. We proved that conharmonically locally φ-

symmetric (κ, µ)-contact metric manifold is locally isometric to the Riemannian product En+1(0)×

Sn(4) in section 4. Section 5 and 6 are devoted to the study of h-Conharmonically semisymmetric

and φ-Conharmonically semisymmetric non-Sasakian (κ, µ)-contact metric manifolds respectively.

Finally, we have shown that if the conharmonic curvature tensor on a (κ, µ)-contact metric manifold

is divergent free then the Ricci tensor S is a Codazzi tensor.
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2 Preliminaries

A (2n+1)-dimensional differentiable manifold M2n+1 is called a contact manifold [1] if it carries a

global 1-form η such that η∧ (dη)2n+1 6= 0 everywhere on M2n+1. It is well known that a contact

metric manifold admits an almost contact metric structure (φ, ξ, η, g), where φ is a (1, 1)-tensor

field, ξ is the characteristic vector field, and a Riemannian metric g such that

φ2 = −I+ η⊗ ξ, g(X, ξ) = η(X), (2.1)

η(ξ) = 1, g(X, Y) = g(φX,φY) + η(X)η(Y). (2.2)

dη(X, Y) = g(X,φY), g(X,φY) = −g(Y,φX), (2.3)

for all vector fields X, Y ∈ TM2n+1 and then we call a structure as contact metric structure. A

manifold M2n+1 with such a structure is said to be contact metric manifold and it is denoted by

(φ, ξ, η, g).

φξ = 0, η ◦ φ = 0, dη(ξ, X) = 0. (2.4)

We define a (1, 1)-tensor field h by h = 1
2
£ξφ, where £ξ is the Lie differentiation in the direction

of ξ. Since the tensor field h is self-adjoint and anticommutes with φ, we have

hξ = 0, φh+ hφ = 0, trh = trφh = 0, (2.5)

∇Xξ = −φX− φhX, (2.6)

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (2.7)

where ∇ is the Levi-Civita connection and if X 6= 0 is an eigenvector of h corresponding to the

eigenvalue λ, then φX is an eigenvector of h corresponding to the eigenvalue −λ. Blair et al. [3]

studied the (κ, µ)-nullity condition and the (κ, µ)-nullity distribution N(κ, µ) of a contact metric

manifold M is defined by [3]

N(κ, µ) : p −→ Np(κ, µ) (2.8)

= [Z ∈ TpM : R(X, Y)Z = (κI + µh){g(Y, Z)X − g(X,Z)Y}],

for all X, Y ∈ TM2n+1. A contact metric manifold M2n+1 with ξ ∈ N(κ, µ) is called a (κ, µ)-contact

metric manifold. In a (κ, µ)-contact metric manifold, we have

R(X, Y)ξ = κ{η(Y)X− η(X)Y}+ µ{η(Y)hX− η(X)hY}, (2.9)

for all X, Y ∈ TM2n+1.

In a (κ, µ)-contact metric manifold, the following relations hold [3, 11]:
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h2 = (κ− 1)φ2, (2.10)

(∇Xφ)Y = g(X+ hX, Y)ξ− η(Y)(X+ hX), (2.11)

R(ξ, X)Y = κ[g(X, Y)ξ − η(Y)X] + µ[g(hX, Y)ξ − η(Y)hX], (2.12)

S(X, ξ) = 2nκη(X), (2.13)

S(X, Y) = [2(n − 1) − nµ]g(X, Y) + [2(n − 1) + µ]g(hX, Y) (2.14)

+[2(1− n) + n(2κ + µ)]η(X)η(Y),

QX = [2(n − 1) − nµ]X+ [2(n − 1) + µ]hX (2.15)

+[2(n − 1) + n(2κ + µ)],

S(φX,φY) = S(X, Y) − 2nkη(X)η(Y) − 2(2n − 2+ µ)g(hX, Y), (2.16)

g(QX, Y) = S(X, Y). (2.17)

From (2.6), we have

(∇Xη)Y = g(X + hX,φY), (2.18)

(∇Xh)Y = {(1− κ)g(X,φY) + g(X, hφY)}ξ + η(Y){h(φX+ φhX)} (2.19)

−µη(X)φhY,

where S is the Ricci tensor of type (0, 2), Q is the Ricci operator and r is the scalar curvature

of the manifold. It is well known that in a Sasakian manifold, the Ricci operator Q commutes

with φ. But in a (κ, µ)-contact metric manifold Q does not commute with φ. In general, in a

(κ, µ)-contact metric manifold Blair et al.[3] proved the following:

Proposition 1. Let Mn be a (κ, µ)-contact metric manifold, then the relation

Qφ− φQ = 2[2(n − 1) + µ]hφ,

holds.

From the definition of η-Einstein manifold, it follows easily that Qφ = φQ. Hence from

Proposition 2.1 we obtain either µ = −2(n−1), or the manifold is Sasakian. Using µ = −2(n−1),

from (2.14) we obtain that the manifold is an η-Einstein manifold. Therefore Yildiz and De [13]

proved the following:

Proposition 2. In a non-Sasakian (κ, µ)-contact metric manifold, the following conditions are

equivalent:

(i) η-Einstein manifold,

(ii) Qφ = φQ.
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For n = 1, from Proposition 2.1 and Proposition 2.2, Yildiz and De [13] obtained the following:

Corolary 1. A 3-dimensional non-Sasakian (κ, µ)-contact η-Einstein manifold is an N(k)-contact

metric manifold.

Lemma 2.1. [2]:Let M2n+1 (φ, ξ, η, g) be a contact metric manifold with R(X, Y)ξ = 0 for all

vector fields X, Y tangent to M2n+1. Then M2n+1 is locally isometric to the Riemannian product

En+1(0) × Sn(4).

3 Conharmonically flat (κ, µ)-contact metric manifolds

From (1.2), for a (2n+1)-dimensional conharmonically flat (κ, µ)-contact metric manifold, we have

R(X, Y, Z, T) =
1

2n − 1
[S(Y, Z)g(X, T) − S(X,Z)g(Y, T) + g(Y, Z)g(QX, T) (3.1)

−g(X,Z)g(QY, T)].

Substituting Z = ξ in (3.1) and using (2.1), (2.9) and (2.13), we obtain

κ[η(Y)g(X, T) − η(X)g(Y, T)] + µ[η(Y)g(hX, T) − η(X)g(hY, T)] (3.2)

=
1

2n − 1
[2nκη(Y)g(X, T) − 2nκη(X)g(Y, T) + η(Y)g(QX, T) −

η(X)g(QY, T)].

Again, by taking Y = ξ and using (2.1), (2.2), (2.5) and (2.13), (3.2) becomes

S(X, T) = −κg(X, T) + (2n + 1)κη(X)η(T) + (2n − 1)µg(hX, T). (3.3)

From the equation (3.3), it follows that if µ = 0, then the manifold is an η-Einstein manifold.

Conversely, if the manifold is η-Einstein, then we can write

S(X, T) = a1g(X, T) + b1η(X)η(T). (3.4)

On equating (3.3) and (3.4), we find

a1g(X, T) + b1η(X)η(T) = −κg(X, T) + (2n + 1)κη(X)η(T) + (2n − 1)µg(hX, T).(3.5)

Now, in (3.5) replacing T by φX and using (2.3), we get

(2n − 1)µg(hX,φX) = 0, (3.6)

for all X. Consequently, µ = 0.

Hence, an n-dimensional conharmonically flat (κ, µ)-contact metric manifold is an η-Einstein man-

ifold if and only if µ = 0. But from (2.14), it follows that a (κ, µ)-contact metric manifold is
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η-Einstein if and only if {2(n − 1) + µ} = 0. If we consider a (2n + 1)-dimensional (n > 1) con-

harmonically flat η-Einstein (κ, µ)-contact metric manifold, then n = 1, which contradicts the fact

that n > 1.

Hence, the theorem can be stated as follows:

Theorem 3.1. An (2n+ 1)-dimensional (n > 1) conharmonically flat (κ, µ)-contact metric man-

ifold cannot be an η-Einstein manifold.

4 Conharmonically locally φ-symmetric (κ, µ)-contact met-

ric manifolds

Definition 4.1. An (2n + 1)-dimensional (n > 1) (κ, µ)-contact metric manifold M2n+1 is said

to be conharmonically locally φ-symmetric if it satisfies

φ2((∇WN)(X, Y)Z) = 0, (4.1)

for all X, Y, Z,W orthogonal to ξ.

Taking covariant differentiation of (1.1), we have

(∇WN)(X, Y)Z = (∇WR)(X, Y)Z−
1

2n − 1
[(∇WS)(Y, Z)X − (∇WS)(X,Z)Y (4.2)

+g(Y, Z)(∇WQ)(X) − g(X,Z)(∇WQ)(Y)],

where ∇ denotes the Levi-Civita connection on the manifold.

Differentiating equations (2.8), (2.14) and (2.15) covariantly with respect to W, we obtain

(∇WR)(X, Y)Z = Wκ{g(Y, Z)X− g(X,Z)Y} +Wµ{g(Y, Z)hX− g(X,Z)hY} (4.3)

+µ[g(Y, Z)({(1 − κ)g(W,φX) + g(W,hφX)}ξ

+η(X){h(φW + φhW)}− µη(W)φhX)

−g(X,Z)({(1 − κ)g(W,φY) + g(W,hφY)}ξ

+η(Y){h(φW + φhW)}− µη(W)φhY)],

(∇WS)(Y, Z)X = {2(1− n) + n(2κ + µ)}[g(W,φY)η(Z)X (4.4)

+g(hW,φY)η(Z)X+ g(W,φZ)η(Y)X + g(hW,φZ)η(Y)X]

+(2(n − 1) + µ)[{(1− κ)g(W,φY)η(Z)X + g(W,hφY)η(Z)X

+g(h(φW + φhW), Z)η(Y)X}− µg(φhY, Z)η(W)X]
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and

(∇WQ)(X) = {2(n− 1) + µ}[{(1− κ)g(W,φX) + g(W,hφX)}ξ (4.5)

+η(X){h(φW + φhX)}− µη(W)φhX]

+{2(n− 1) + n(2κ + µ)}g(W,φX)ξ

+{2(n− 1) + n(2κ + µ)}g(hW,φX)ξ

−{2(n− 1) + n(2κ + µ)}η(X)φW

−{2(n− 1) + n(2κ + µ)}η(X)φhW.

Now, considering equations (4.3), (4.4) and (4.5) in (4.2) and also taking X, Y, Z,W orthogonal to

ξ, we get

(∇WN)(X, Y)Z = Wκ[g(Y, Z)X − g(X,Z)Y] +Wκ[g(Y, Z)hX − g(X,Z)hY] (4.6)

+µ[(1 − κ)g(Y, Z)g(W,φX)ξ + (1− κ)g(Y, Z)g(W,hφX)ξ

−(1− κ)g(X,Z)g(W,φY)ξ − (1 − κ)g(X,Z)g(W,hφY)ξ]

−
1

2n − 1
[{2(n − 1) + µ}{(1− κ)[g(Y, Z)g(W,φX)ξ

−g(X,Z)g(W,φY)ξ] + g(Y, Z)g(W,hφX)ξ

−g(X,Z)g(W,hφY)ξ}

+{2(n − 1) + n(2κ + µ)}[g(Y, Z)g(W,φX)ξ

+g(Y, Z)g(hW,φX)ξ − g(X,Z)g(W,φY)ξ

−g(X,Z)g(hW,φY)ξ]].

Applying φ2 on both sides of (4.6), one can obtain

φ2((∇WN)(X, Y)Z) = φ2{Wκ[g(Y, Z)X− g(X,Z)Y] +Wκ[g(Y, Z)hX (4.7)

−g(X,Z)hY] + µ[(1− κ)g(Y, Z)g(W,φX)ξ

+(1− κ)g(Y, Z)g(W,hφX)ξ − (1− κ)g(X,Z)g(W,φY)ξ

−(1− κ)g(X,Z)g(W,hφY)ξ]

−
1

2n − 1
[{2(n − 1) + µ}{(1− κ)[g(Y, Z)g(W,φX)ξ

−g(X,Z)g(W,φY)ξ] + g(Y, Z)g(W,hφX)ξ

−g(X,Z)g(W,hφY)ξ}

+{2(n− 1) + n(2κ + µ)}{g(Y, Z)g(W,φX)ξ

+g(Y, Z)g(hW,φX)ξ − g(X,Z)g(W,φY)ξ

−g(X,Z)g(hW,φY)ξ}]}.
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From (4.1) and using (2.1), (4.7) becomes

(Wκ)[g(X,Z)Y − g(Y, Z)X] + (Wκ)[g(Y, Z)η(X) − g(X,Z)η(Y)]ξ (4.8)

+(Wµ)[g(X,Z)hY − g(Y, Z)hX] = 0.

Again, considering X, Y orthogonal to ξ, one can get

(Wκ)[g(X,Z)Y − g(Y, Z)X] + (Wµ)[g(X,Z)hY − g(Y, Z)hX] = 0. (4.9)

By taking inner product of (4.9) with V , we have

(Wκ)[g(X,Z)g(Y, V) − g(Y, Z)g(X,V)] + (Wµ)[g(X,Z)g(hY, V) (4.10)

−g(Y, Z)g(hX, V)] = 0.

On contraction, the above equation yields

−2n(Wκ)g(Y, Z) + (Wµ)g(Z, hY) = 0. (4.11)

Setting Y = ξ in (4.11) and using (2.5), we get

2n(Wκ)η(Z) = 0. (4.12)

If we assume that κ = 0 in (4.11) then either µ = 0 or g(Z, hY) = 0. Further, if κ = 0 = µ in

(2.9), then we get R(X, Y)ξ = 0 for all X, Y and in the light of Lemma 2.1, the manifold under

consideration is locally isometric to the Riemannian product En+1 × Sn(4).

So from Lemma 2.1, we can state the theorem as follows:

Theorem 4.2. Let M2n+1 (φ, ξ, η, g) be a conharmonically locally φ-symmetric (κ, µ)-contact

metric manifold. Then the manifold is locally isometric to the Riemannian product En+1(0)×Sn(4).

5 h-Conharmonically semisymmetric non-Sasakian (κ, µ)-contact

metric manifolds

Definition 5.1. A Riemannian manifold (M2n+1, g) is said to be h-conharmonically semisym-

metric if it satisfies

N(X, Y) · h = 0. (5.1)

The following lemma which was proved in [3] is helpful to state our theorem.
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Lemma 5.1. [3]: Let M2n+1(φ, ξ, η, g) be a contact metric manifold with ξ belonging to the

(κ, µ)-nullity distribution. Then for any vector fields X, Y, Z,

R(X, Y)hZ− hR(X, Y)Z = {κ[g(hY, Z)η(X) − g(hX,Z)η(Y)] (5.2)

+µ(κ − 1)[g(X,Z)η(Y) − g(Y, Z)η(X)]}ξ

+κ{g(Y,φZ)φhX − g(X,φZ)φhY + g(Z,φhY)φX

−g(Z,φhX)φY + η(Z)[η(X)hY − η(Y)hX]}

−µ{η(Y)[(1− κ)η(Z)X+ µη(X)hZ]

−η(X)[(1− κ)η(Z)Y + µη(Y)hZ] + 2g(X,φY)φhZ}.

LetM2n+1 be h-conharmonically semisymmetric non-Sasakian (κ, µ)-contact metric manifold.

The condition N(X, Y) · h = 0 can be expressed as follows,

(N(X, Y) · h)Z = N(X, Y)hZ− hN(X, Y)Z = 0, (5.3)

for any vector fields X, Y, Z.

With the help of (1.1) and (5.2), (5.3) can be written as

[κ{g(hY, Z)η(X) − g(hX,Z)η(Y)} + µ(κ − 1){g(X,Z)η(Y) − g(Y, Z)η(X)}]ξ (5.4)

+κ{g(Y,φZ)φhX − g(X,φZ)φhY + g(Z,φhY)φX − g(Z,φhX)φY + η(Z)[η(X)hY

−η(Y)hX]}− µ{η(Y)[(1− κ)η(Z)X+ µη(X)hZ] − η(X)[(1− κ)η(Z)Y + µη(Y)hZ]

+2g(X,φY)φhZ} −
1

2n − 1
[S(Y, hZ)X− S(X, hZ)Y + g(Y, hZ)QX− g(X, hZ)QY

−S(Y, Z)hX+ S(X,Z)hY − g(Y, Z)QhX+ g(X,Z)QhY] = 0.

By taking inner product of (5.4) with T , we get

[κ{g(hY, Z)η(X) − g(hX,Z)η(Y)} + µ(κ − 1){g(X,Z)η(Y) − g(Y, Z)η(X)}]η(T) (5.5)

+κ{g(Y,φZ)g(φhX, T) − g(X,φZ)g(φhY,W) + g(Z,φhY)g(φX, T)

−g(Z,φhX)g(φY,W) + η(Z)[η(X)g(hY,W) − η(Y)g(hX, T)]}

−µ{η(Y)[(1− κ)η(Z)g(X, T) + µη(X)g(hZ, T)] − η(X)[(1 − κ)η(Z)g(Y, T)

+µη(Y)g(hZ, T)] + 2g(X,φY)g(φhZ, T)} −
1

2n − 1
[S(Y, hZ)g(X, T)

−S(X, hZ)g(Y, T) + g(Y, hZ)S(X, T) − g(X, hZ)S(Y, T) − S(Y, Z)g(hX, T)

+S(X,Z)g(hY, T) − g(Y, Z)S(hX, T) + g(X,Z)S(hY, T)] = 0.

Setting Y = T = ξ in (5.5) and using (2.2) and (2.5), we get

1

2n − 1
S(X, hZ) = −µ(1− κ)g(X,Z) + [2(1 − µ) + (1− κ)]η(X)η(Z) (5.6)

+[κ−
2(2n + 1)κ

2(n − 1)
g(X, hZ)].
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Replacing X by hX in the above equation and using (2.10), we have

S(X,Z) = −κg(X,Z) + κη(X)η(Z) − 2µ(n − 1)g(hX,Z). (5.7)

If we consider µ = 0 in (5.7) then it is an η-Einstein manifold.

Using (2.14) in (5.7) and simplifying, we finally obtain

S(X,Z) = n1g(X,Z) + n2η(X)η(Z), (5.8)

where n1 =
−κ[2(n−1)+µ]+µ(2n−1)[2(n−1)+nµ]

[2(n−1)+µ]+µ(2n−1)

and

n2 =
κ[2(n−1)+µ]+µ(2n−1)[2(1−n)+n(2κ+µ)]

[2(n−1)+µ]+µ(2n−1)
.

Thus from (5.8), we can conclude the following theorem:

Theorem 5.2. Let M2n+1(φ, ξ, η, g) be a non-Sasakian (κ, µ)-contact metric manifold. If M

is h-conharmonically semisymmetric, then the manifold is an η-Einstein manifold with constant

coefficients.

From Proposition 2.2 and Theorem 5.5 we can state the following:

Corolary 2. If M2n+1 is a h-conharmonically semisymmetric (κ, µ)-contact metric manifold then

the Ricci operator Q commutes with φ i.e., Qφ = φQ.

6 φ-Conharmonically semisymmetric non-Sasakian (κ, µ)-contact

metric manifolds

Definition 6.1. A Riemannian manifold (M2n+1, g) is said to be φ-conharmonically semisym-

metric if

N(X, Y) ·φ = 0. (6.1)

Now we need the following lemma:

Lemma 6.1. [3]: Let M2n+1(φ, ξ, η, g) be a contact metric manifold with ξ belonging to the

(κ, µ)-nullity distribution. Then for any vector fields X, Y, Z,

R(X, Y)φZ− φR(X, Y)Z = {(1− κ)[g(φY,Z)η(X) − g(φX,Z)η(Y)] (6.2)

+(1− µ)[g(φhY, Z)η(X) − g(φhX,Z)η(Y)]}ξ

−g(Y + hY, Z)(φX+ φhX) + g(X+ hX,Z)(φY

+φhY) − g(φY + φhY, Z)(X+ hX) + g(φX

+φhX,Z)(Y + hY) − η(Z){(1 − κ)[η(X)φY

−η(Y)φX] + (1− µ)[η(X)φhY − η(Y)φhX)]}.
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Let M2n+1 be a (2n+1)-dimensional φ-conharmonically semisymmetric non-Sasakian (κ, µ)-

contact metric manifold. The condition N(X, Y) · φ = 0 turns into,

(N(X, Y) ·φ)Z = N(X, Y)φZ − φN(X, Y)Z = 0, (6.3)

for any vector fields X, Y, Z.

In view of (1.1) and (6.2), (6.3) becomes

{(1− κ)[g(φY,Z)η(X) − g(φX,Z)η(Y)] + (1− µ)[g(φhY, Z)η(X) − g(φhX,Z)η(Y)]}ξ (6.4)

−g(Y + hY, Z)(φX + φhX) + g(X + hX,Z)(φY + φhY) − g(φY + φhY, Z)(X + hX)

+g(φX+ φhX,Z)(Y + hY) − η(Z){(1− κ)[η(X)φY − η(Y)φX] + (1− µ)[η(X)φhY

−η(Y)φhX)]}−
1

2n − 1
[S(Y,φZ)X − S(X,φZ)Y + g(Y,φZ)QX − g(X,φZ)QY

−S(Y, Z)φX + S(X,Z)φY − g(Y, Z)QφX + g(X,Z)QφY] = 0.

Taking inner product of (6.4) with T , we get

{(1− κ)[g(φY,Z)η(X) − g(φX,Z)η(Y)] + (1 − µ)[g(φhY, Z)η(X) (6.5)

−g(φhX,Z)η(Y)]}η(T) − g(Y, Z)g(φX, T) − g(hY, Z)g(φX, T) − g(Y, Z)g(φhX, T)

−g(hY, Z)g(φhX, T) + g(X,Z)g(φY, T) + g(hX,Z)g(φY, T) + g(X,Z)g(φhY, T)

+g(hX,Z)g(φhY, T) − g(φY,Z)g(X, T) − g(φY,Z)g(hX, T) − g(φhY, Z)g(X, T)

−g(φhY, Z)g(hX, T) + g(φX,Z)g(Y, T) + g(φhX,Z)g(Y, T) + g(φX,Z)g(hY, T)

+g(φhX,Z)g(hY, T) − η(Z){(1− κ)[η(X)g(φY, T) − η(Y)g(φX, T)]

+(1− µ)[η(X)g(φhY, T) − η(Y)g(φhX, T)]} −
1

2n − 1
[S(Y,φZ)g(X, T)

−S(X,φZ)g(Y, T) + g(Y,φZ)g(QX, T) − g(X,φZ)g(QY, T) − S(Y, Z)g(φX, T)

+S(X,Z)g(φY, T) − g(Y, Z)g(QφX, T) + g(X,Z)g(QφY, T)] = 0.

Treating Y = T = ξ in (6.5) and using (2.1), (2.2), (2.4), (2.5) and (2.13), we have

1

2n − 1
S(X,φZ) = {(κ− 2) +

2(2n + 1)κ

2n − 1
}g(X,φZ) − µg(φX, hZ). (6.6)

Substituting X by φX in (6.6) and using (2.1), (2.2) and (2.16), one can get

S(X,Z) = [(κ − 2)(2n − 1) + 2nκ]g(X,Z) − [(κ − 2)(2n − 1)]η(X)η(Z) (6.7)

+[µ(κ − 1)(2n − 1) + 2{2(n − 1) + µ}]g(hX,Z).

Making use of (2.14), (6.7) yields

S(X,Z) = n3g(X,Z) + n4η(X)η(Z), (6.8)
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where n3 =
{(κ−2)(2n−1)+2nκ}{2(n−1)+µ}−{µ(κ−1)(2n−1)+2[2(n−1)+µ]}{2(n−1)−nµ}

[2(n−1)+µ]−[µ(κ−1)(2n−1)+2{2(n−1)+µ}]
and

n4 =
[(2−κ)(2n−1)][2(n−1)+µ]−{µ(κ−1)(2n−1)+2[2(n−1)+µ]}[2(1−n)+2n(2κ+µ)]

[2(n−1)+µ]−[µ(κ−1)(2n−1)+2{2(n−1)+µ}]
.

Hence from (6.8), the theorem can be stated as follows:

Theorem 6.2. If a (2n + 1)-dimensional non-Sasakian (κ, µ)-contact metric manifold M2n+1

is φ-conharmonically semisymmetric then the manifold is an η-Einstein manifold with constant

coefficients.

Similarly, from Proposition 2.2 and Theorem 6.6, we get the following statement:

Corolary 3. If M2n+1 is a φ-conharmonically semisymmetric (κ, µ)-contact metric manifold then

the Ricci operator Q commutes with φ i.e., Qφ = φQ.

7 (κ, µ)-contact metric manifold with divergent free conhar-

monic curvature tensor

In this section, we study divergent free conharmonic curvature tensor on (κ, µ)-contact metric

manifold.

Let M2n+1(φ, ξ, η, g) (n > 1) be a (κ, µ)-contact metric manifold satisfying the following condition

(DivN)(X, Y)Z = 0. (7.1)

In view of (7.1), (1.1) leads to

(DivR)(X, Y)Z =
1

2n − 1
[(∇XS)(Y, Z) − (∇YS)(X,Z) + g(Y, Z)dr(X) (7.2)

−g(X,Z)dr(Y)].

The above equation simplifies to,

2(n − 1)

(2n − 1)
[(∇XS)(Y, Z) − (∇YS)(X,Z)] −

1

(2n − 1)
[g(Y, Z)dr(X) (7.3)

−g(X,Z)dr(Y)] = 0.

On contracting and taking summation over i, 1 ≤ i ≤ n in (7.3), we get

2(3n − 1)dr(Y) = 0, (7.4)

which implies

dr(Y) = 0, (7.5)
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since 2(3n − 1) 6= 0.

Further, considering (7.5) in (7.3), we obtain

(∇XS)(Y, Z) − (∇YS)(X,Z) = 0, (7.6)

which gives

(∇XQ)Y = (∇YQ)X. (7.7)

Thus, we can state:

Theorem 7.1. Let M2n+1(φ, ξ, η, g) (n > 1) be a (κ, µ)-contact metric manifold. If the manifold

has divergent free conharmonic curvature tensor then the Ricci tensor S is a Codazzi tensor.
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1 Introduction

In this paper, we consider the following nonlinear Fourier boundary value problem
{

b(u)− diva(x, u,∇u) = f in Ω

a(x, u,∇u).η + λu = g on ∂Ω,
(1.1)

where Ω ⊆ R
N (N ≥ 3) is a bounded open domain with Lipschitz boundary ∂Ω, η is the outer

unit normal vector on ∂Ω and λ > 0.

The operator diva(x, u,∇u) is called p(u)-Laplacian. It is more complicated than p(x)-Laplacian

in the term of nonlinearity. A prototype of this operator is div
(
|∇u|p(u)−2.∇u

)
. The variable

exponent p depend both on the space variable x and on the unknown solution u. The problem

(1.1) is a generalization of the following nonlinear problem
{

b(u)− diva(x,∇u) = f in Ω

a(x,∇u).η + λu = g on ∂Ω,

studied in [15] by Nyanquini and Ouaro. The authors used an auxiliary result due to Le (see [16],

Theorem 3.1) to prove the existence of the weak solution when f ∈ L∞(Ω), g ∈ L∞(∂Ω) and by

approximation methods they obtained the entropy solution when f ∈ L1(Ω), g ∈ L1(∂Ω).

In the present paper, as the function (x, z, η) 7→ a(x, z, η) is more general than (x, η) 7→ a(x, η),

it is difficult to use the sub-supersolution method, as in [16], to get the existence of the weak

solution. Therefore, we use the technic of pseudo-monotone operators in Banach spaces, some a

priori estimates and the convergence in term of Young measure to obtain the existence of entropy

solutions of problem (1.1). Indeed, we define an approximation problem, and we prove that this

problem has a solution un which converges to u, an entropy solution of problem (1.1).

In this paper, we consider the following basic assumptions on the data for the study of the problem

(1.1).

(A1) f and g are some functions such as f ∈ L1(Ω), g ∈ L1(∂Ω) and g 6≡ 0.

(A2) b is nondecreasing surjective and continuous function defined on R such that b(0) = 0.

Problem (1.1) is adapted into a generalized Leray-Lions framework under the assumption

that a : Ω× (R× R
N ) → R

N is a Carathéodory function with:

(A3) a(x, z, 0) = 0 for all z ∈ R, and a.e. x ∈ Ω;

(A4)
(
a(x, z, ξ) − a(x, z, η)

)
.(ξ − η) > 0 for all ξ, η ∈ R

N , ξ 6= η, as well as the growth and the

coercivity assumptions with variable exponent

(A5)
∣
∣a(x, z, ξ)

∣
∣
p′(x,z)

≤ C1

(
|ξ|p(x,z) +M(x)

)

and
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(A6) a(x, z, ξ).ξ ≥
1

C2
|ξ|p(x,z).

Here, C1 and C2 are positive constants and M is a positive function such that M ∈ L1(Ω).

p : Ω×R → [p−, p+] is a Carathéodory function, 1 < p− ≤ p+ < +∞ and p′(x, z) =
p(x, z)

p(x, z)− 1
is the conjugate exponent of p(x, z), with

p− := ess inf
(x,z)∈Ω×R

p(x, z) and p+ := ess sup
(x,z)∈Ω×R

p(x, z).

The study of p(u)-Laplacian problem was recently developped by Andreianov et al. (see [2]).

These authors established the partial existence and uniqueness result to the weak solution in the

cases of homogeneous Dirichlet boundary condition.

The interest of the study of this kind of problem is due to the fact that they can model various

phenomena which arise in the study of elastic mechanic (see [6]), electrorheological fluids (see [20])

or image restoration (see [9]).

In this paper, we study the existence of the weak solution for approximation problem and we also

establish the existence and uniqueness results of the entropy solution when the data are in L1.

In this work, we use the Sobolev embedding results and the convergence in term of Young measure

(see [10, 12]).

Here, we consider a Fourier boundary condition which bring some difficulties to treat the term at

the boundary.

We were inspired by the work of Ouaro and Tchousso (see [15]), where the authors defined for the

first time a new space by taking into account the boundary.

For the next part of the paper (section 2), we introduce some preliminary results. In section 3, we

study the existence and uniqueness of entropy solution when the data are in L1.

2 Preliminary

• We will use the so-called truncation function

Tk(s) :=

{

s if |s| ≤ k

ksign0(s) if |s| > k
, where sign0(s) :=







1 if s > 0

0 if s = 0

−1 if s < 0.

The truncation function possesses the following properties.

Tk(−s) = −Tk(s), |Tk(s)| = min{|s|, k},

lim
k→+∞

Tk(s) = s and lim
k→0

1

k
Tk(s) = sign0(s).
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We also need to truncate vector valued-function with the help of the mapping

hm : RN −→ R
N , hm(λ) =







λ, if |λ| ≤ m

m
λ

|λ|
if |λ| > m,

where m > 0.

For a Lebesgue measurable set A ⊂ Ω, χA denotes its characteristic function and meas(A) denotes

its Lebesgue measure. Let u : Ω → R be a function and k ∈ R, we write {|u| ≤ k} or [|u| ≤ k] for

the set {x ∈ Ω : |u(x)| ≤ k}, (respectively, ≥,=, <,>).

The function a(., ., .) appearing in (1.1) satisfies a generalized Leray-Lions assumptions given in

Introduction. View that, a(., ., .) satisfies (A5) and (A6), we must work in Lebesgue and Sobolev

spaces with variable exponent, that depend on x and on u(x). For the study of problem (1.1), we

need the Sobolev spaces W 1,π(.)(Ω), where π(.) = p(., u(.)).

Definition 1. Let π : Ω −→ [1,+∞) be a measurable function for π(.) = p(., u(.)).

•Lπ(.)(Ω) is the space of all measurable function f : Ω −→ R such that the modular

ρπ(.)(f) :=

∫

Ω

|f |π(x)dx < +∞.

If p+ is finite, this space is equipped with the Luxembourg norm

||f ||Lπ(.)(Ω) := inf

{

λ > 0; ρπ(.)

(
f

λ

)

≤ 1

}

.

In the sequel, we will use the same notation Lπ(.)(Ω) for the space (Lπ(.)(Ω))N of vector-valued

functions.

•W 1,π(.)(Ω) is the space of all functions f ∈ Lπ(.)(Ω) such that the gradient of f (taken in the

sense of distributions) belongs to Lπ(.)(Ω). The space W 1,π(.)(Ω) is equipped with the norm

||u||W 1,π(.)(Ω) := ||u||Lπ(.)(Ω) + ||∇u||Lπ(.)(Ω).

When 1 < p− ≤ π(.) ≤ p+ < +∞, all the above spaces are separable and reflexive Banach spaces.

We denote πn(x) := p(x, un(x)).

Proposition 1. (See [1], Proposition 2.3)

For all measurable function π : Ω → [p−, p+], the following properties hold.

i) Lπ(.)(Ω) and W 1,π(.)(Ω) are separable and reflexive Banach spaces.

ii) Lπ′(.)(Ω) can be identified with the dual space of Lπ(.)(Ω), and the following Hölder type

inequality holds:

∀f ∈ Lπ(.)(Ω), g ∈ Lπ′(.)(Ω),

∣
∣
∣
∣

∫

Ω

fgdx

∣
∣
∣
∣
≤ 2||f ||Lπ(.)(Ω)||g||Lπ′(.)(Ω).
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iii) One has ρπ(.)(f) = 1 if and only if ||f ||Lπ(.)(Ω) = 1; further,

if ρπ(.)(f) ≤ 1, then ||f ||
p+

Lπ(.)(Ω)
≤ ρπ(.)(f) ≤ ||f ||

p−

Lπ(.)(Ω)
;

if ρπ(.)(f) ≥ 1, then ||f ||
p−

Lπ(.)(Ω)
≤ ρπ(.)(f) ≤ ||f ||

p+

Lπ(.)(Ω)
.

In particular, if (fn)n∈N is a sequence in Lπ(.)(Ω), then ||fn||Lπ(.)(Ω) tends to zero (resp., to infinity)

if and only if ρπ(.)(fn) tends to zero (resp., to infinity), as n → +∞.

For a measurable function f ∈ W 1,π(.)(Ω) we introduce the following notation:

ρ1,π(.)(f) =

∫

Ω

|f |π(.)dx+

∫

Ω

|∇f |π(.)dx.

Replacing p(x) by π(x) in [8]-Proposition 2.2, we obtain the following result that is fundamental

in this paper.

Proposition 2. ( See [23, 24] ) If f ∈ W 1,π(.)(Ω), the following properties hold:

i) ||f ||W 1,π(.)(Ω) > 1 ⇒ ||f ||
p−

W 1,π(.)(Ω)
< ρ1,π(.)(f) < ||f ||

p+

W 1,π(.)(Ω)
;

ii) ||f ||W 1,π(.)(Ω) < 1 ⇒ ||f ||
p+

W 1,π(.)(Ω)
< ρ1,π(.)(f) < ||f ||

p−

W 1,π(.)(Ω)
;

iii) ||f ||W 1,π(.)(Ω) < 1 (respectively = 1;> 1) ⇔ ρ1,π(.)(f) < 1 (respectively = 1;> 1).

The following lemma prove that the space W 1,π(.)(Ω) is stable by truncation.

Lemma 2.1. If u ∈ W 1,π(.)(Ω) then Tk(u) ∈ W 1,π(.)(Ω).

Now, we give the embedding results.

Proposition 3. (See [1], Proposition 2.4) Assume that π : Ω → [p−, p+] has a representative which

can be extended into a continuous function up to the boundary ∂Ω and satisfying the log-Hölder

continuity assumption:

∃L > 0, ∀x, y ∈ Ω, x 6= y, −
(
log |x− y|

)
|π(x) − π(y)| ≤ L. (2.1)

i) Then, D(Ω) is dense in W 1,π(.)(Ω).

ii) W 1,π(.)(Ω) is embedded into Lπ∗(.)(Ω), where π∗(.) is the Sobolev embedding exponent defined

as in (2.2) below. If q is a measurable variable exponent such that ess inf
x∈Ω

(π∗(.)− q(.)) > 0,

then the embedding of W 1,π(.)(Ω) into Lq(.)(Ω) is compact.
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For a given π(.), a function taking values in [p−, p+], π
∗(.) denotes the optimal Sobolev embedding

defined for any x ∈ Ω by

π∗(x) =







Nπ(x)

N − π(x)
if π(x) < N

any real value if π(x) = N

+∞ if π(x) > N.

(2.2)

Put

π∂(x) :=
(
π(x)

)∂
:=







(N − 1)π(x)

N − π(x)
if π(x) < N

+∞ if π(x) ≥ N.

(2.3)

Proposition 4. (See [18], Proposition 2.3 )

Let π(.) ∈ C(Ω) and p− > 1. If q(x) ∈ C(∂Ω) satisfies the condition:

1 ≤ q(x) < π∂(x), ∀x ∈ ∂Ω,

then, there is a compact embedding

W 1,π(.)(Ω) →֒ Lq(.)(∂Ω).

In particular there is compact embedding

W 1,π(.)(Ω) →֒ Lπ(.)(∂Ω).

TYoung measures and nonlinear weak-* convergence.

Throughout the paper, we denote by δc the Dirac measure on R
d (d ∈ N), concentrated at the

point c ∈ R
d.

In the following theorem, we gather the results of Ball [7], Pedregal [19] and Hungerbühler [13]

which will be needed for our purposes (we limit the statement to the case of a bounded domain

Ω). Let us underline that the results of (ii),(iii), expressed in terms of the convergence in measure,

are very convenient for the applications that we have in mind.

Theorem 2.1. (i) Let Ω ⊂ R
N , N ∈ N, and a sequence (vn)n∈N of Rd -valued functions, d ∈ N

, such that (vn)n∈N is equi-integrable on Ω. Then, there exists a subsequence (nk)k∈N and

a parametrized family (νx)x∈Ω of probability measures on R
d (d ∈ N) , weakly measurable

in x with respect to the Lebesgue measure in Ω, such that for all Carathéodory function

F : Ω× R
d → R

t, t ∈ N, we have

lim
k→+∞

∫

Ω

F (x, vnk
)dx =

∫

Ω

∫

Rd

F (x, λ)dνx(λ)dx, (2.4)
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whenever the sequence (F (., vn(.)))n∈N is equi-integrable on Ω. In particular,

v(x) :=

∫

Rd

λdνx(λ) (2.5)

is the weak limit of the sequence (vnk
)k∈N in L1(Ω).

The family (νx)x∈Ω is called the Young measure generated by the subsequence (vnk
)k∈N.

(ii) If Ω is of finite measure, and (νx)x∈Ω is the Young measure generated by a sequence (vn)n∈N,

then νx = δv(x) for a.e. x ∈ Ω ⇔ vn converges in measure in Ω to v as n → +∞.

(iii) If Ω is of finite measure, (un)n∈N generates a Dirac Young measure (δu(x))x∈Ω on R
d1 , and

(vn)n∈N generates a Young measure (νx)x∈Ω on R
d2 , then the sequence (un, vn)n∈N generates

the Young measure (δu(x) ⊗ νx)x∈Ω on R
d1+d2 . Whenever a sequence (vn)n∈N generates a

Young measure (νx)x∈Ω, following the terminology of [11] we will say that (vn)n∈N nonlinear

weak-* converges, and (νx)x∈Ω is the nonlinear weak-* limit of the sequence (vn)n∈N. In the

case where (vn)n∈N possesses a nonlinear weak-* convergent subsequence, we will say that it is

nonlinear weak-* compact. ([1], Theorem 2.10(i)) It means that any equi-integrable sequence

of measurable functions is nonlinear weak-* compact on Ω.

Lemma 2.2. (See [1], Theorem 3.11 and [2] Step 2 of proof of Theorem 2.6). Assume that (un)n∈N

converges a.e. on Ω to some function u, then

|p(x, un(x)) − p(x, u(x))| converges in measure to 0 on Ω,

and for all bounded subset K of R
N ,

sup
ξ∈K

|a(x, un(x), ξ)− a(x, u(x), ξ)| converges in measure to 0 on Ω. (2.6)

For the sequel, we assume that p(., .) is log Hölder continuous uniformly on Ω× [−M,M ] and

p− > N . We recall some notations.

For any u ∈ W 1,π(.)(Ω), we denote by τ(u) the trace of u on ∂Ω in the usual sense.

We will identify at boundary u and τ(u).

Set

T 1,π(.)(Ω) =
{
u : Ω → R, measurable such that Tk(u) ∈ W 1,π(.)(Ω), for any k > 0

}
.

3 Entropy solution

In this part, we study the existence and uniqueness of the entropy solution to the problem (1.1).

We give some notations.
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We define T
1,π(.)
tr (Ω) as the set of the functions u ∈ T 1,π(.)(Ω) such that there exists a sequence

(un)n∈N ⊂ W 1,p+(Ω) satisfying the following conditions:

(C1) un → u a.e. in Ω.

(C2) ∇Tk(un) → ∇Tk(u) in L1(Ω).

(C3) There exists a measurable function v on ∂Ω, such that un → v a.e. on ∂Ω.

The function v is the trace of u in the generalized sense as introduced in [4, 5]. In the sequel

the trace of u ∈ T
1,π(.)
tr (Ω) on ∂Ω will be denoted tr(u). If u ∈ W 1,π(.)(Ω), tr(u) coincides with

τ(u) in the usual sense. Moreover, for u ∈ T
1,π(.)
tr (Ω) and for all k > 0, tr(Tk(u)) = Tk(tr(u)) and

if ϕ ∈ W 1,π(.)(Ω) then u− ϕ ∈ T
1,π(.)
tr (Ω) and tr(u − ϕ) = tr(u) − tr(ϕ).

As in [1]-Proposition 3.5, we give the following result.

Proposition 5. Let u ∈ T 1,π(.)(Ω). There exists a unique measurable function w : Ω → R
N such

that ∇Tk(u) = wχ{|u|<k} for k > 0. The function w is denoted by ∇u. Moreover, if u ∈ W 1,π(.)(Ω)

then w ∈ Lπ(.)(Ω) and w = ∇u in the usual sense.

Remark 3.1. The space T
1,π(.)
tr (Ω) in our context will be a subset of T 1,π(.)(Ω) consisting to the

function can be approximated by function of W 1,p+(Ω). Since the weak solution of approximated

problem (3.2) belongs to W 1,p+(Ω).

Now, we introduce the notion of entropy solution due to Ouaro and al. [14, Definition 3.1].

Definition 2. A measurable function u : Ω → R for π(.) = p(., u(.)) is called entropy solution of

the problem (1.1) if

u ∈ T
1,π(.)
tr (Ω), b(u) ∈ L1(Ω), u ∈ L1(∂Ω)

and for all k > 0,
∫

Ω

b(u)Tk(u− ϕ)dx +

∫

Ω

a(x, u,∇u).∇Tk(u− ϕ)dx + λ

∫

∂Ω

uTk(u− ϕ)dσ

≤

∫

Ω

fTk(u − ϕ)dx+

∫

∂Ω

gTk(u− ϕ)dσ,

(3.1)

where ϕ ∈ W 1,π(.)(Ω) ∩ L∞(Ω).

The following theorem gives existence result of entropy solution.

Theorem 3.2. Assume that (A3) − (A6) hold and f ∈ L1(Ω), g ∈ L1(∂Ω). Then, there exists at

least one entropy solution to the problem (1.1).

The proof of Theorem 3.2 is done in two parts.
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Part 1: The approximate problem.

Let fn = Tn(f) and gn = Tn(g). Then, fn ∈ L∞(Ω) and gn ∈ L∞(∂Ω). Moreover, (fn)n∈N strongly

converges to f in L1(Ω) and (gn)n∈N strongly converges to g in L1(∂Ω) such that ||fn||L1(Ω) ≤

||f ||L1(Ω) and ||gn||L1(∂Ω) ≤ ||g||L1(∂Ω).

We consider the following problem







Tn(b(un))− diva(x, un,∇un)− ε△p+un + ε|un|
p+−2un = fn in Ω

(
a(x, un,∇un) + ε|∇un|

p+−2∇un

)
.η + λTn(un) = gn on ∂Ω,

(3.2)

where

−△p+un := −

N∑

i=1

∂

∂xi

(∣
∣
∣
∣

∂un

∂xi

∣
∣
∣
∣

p+−2
∂un

∂xi

)

.

In this part, we show that the problem (3.2) admits at least one weak solution un, for all ε > 0.

We define the following reflexive space

E = W 1,p+(Ω)× Lp+(∂Ω).

Let

X0 = {(u, v) ∈ E : v = τ(u)}.

In the sequel, we will identify an element (u, v) ∈ X0 with its representative u ∈ W 1,p+(Ω) (since

W 1,p+(Ω) →֒→֒ Lp+(∂Ω)).

Theorem 3.3. There exists at least one weak solution un for the problem (3.2) in the sense that

un ∈ X0 and for all v ∈ X0,

∫

Ω

Tn(b(un))vdx +

∫

Ω

a(x, un,∇un)∇vdx +

∫

∂Ω

λTn(un)vdσ

+ ε

∫

Ω

[
|un|

p+−2unv + |∇un|
p+−2∇un∇v

]
dx

=

∫

Ω

fnvdx+

∫

∂Ω

gnvdσ. (3.3)

To prove the Theorem 3.3, we need the following result.

Lemma 3.1. (See [22], Corollary 2.2). If an operator A is of type (M), bounded and coercive on

a separable Banach space to its dual, then A is surjective.

We define the operator An by

Anu = Au+Bnu,
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where

< Au, v >=

∫

Ω

a(x, u,∇u)∇vdx

and

< Bnu, v >=

∫

Ω

Tn(b(u))vdx + λ

∫

∂Ω

Tn(u)vdσ + ε

∫

Ω

[
|u|p+−2uv + |∇u|p+−2∇u∇v

]
dx,

with u, v ∈ X0.

Proof of the Theorem 3.3. The proof is organized in three Steps.

Step 1: An is bounded.

By using Hölder type inequality and (A5) with constant exponent p+, we deduce that A is bounded.

Moreover, Bn is bounded. Indeed, let u ∈ F , where F is a bounded subset of X0.

As b is onto, we have

< Bnu, v > =

∫

Ω

Tn(b(u))vdx + λ

∫

∂Ω

Tn(u)vdσ + ε

∫

Ω

[
|u|p+−2uv + |∇u|p+−2∇u∇v

]
dx

≤

∫

Ω

|b(u)||v|dx + λ

∫

∂Ω

|u||v|dσ + ε

∫

Ω

[
|u|p+−1|v|+ |∇u|p+−1|∇v|

]
dx

≤ C(λ)
(
||v||L1(Ω) + ||v||L1(∂Ω)

)
+ ε

[
||u||

p+
(p+)′

Lp+(Ω)||v||Lp+(Ω) + ||∇u||

p+
(p+)′

Lp+ (Ω)||∇v||Lp+ (Ω)

]

≤ C(λ)
(
||v||L1(Ω) + ||v||L1(∂Ω)

)
+ C(ε)||v||W 1,p+ (Ω).

Therefore, An is bounded.

We recall the following notion:

Definition 3. An operator A : V → V ′ is type of (M) if:

un ⇀ u in V

A(un) ⇀ χ in V ′

lim sup
n→∞

< A(un), un >≤< χ, u >







⇒ χ = A(u).

Step 2: An is pseudo-monotone.

Let (uk)k∈N be a sequence in X0 such that






uk ⇀ u in X0

Anuk ⇀ χ in X ′
0

lim sup
k→∞

< Anuk, uk >=< χ, u > .

We will prove that χ = Anu.

As Tn(b(uk))uk ≥ 0 and λTn(uk)uk ≥ 0, by Fatou’s Lemma, we deduce that

lim inf
k→∞

(∫

Ω

Tn(b(uk))ukdx+ λ

∫

∂Ω

Tn(uk)ukdσ
)
≥

∫

Ω

Tn(b(u))udx+ λ

∫

∂Ω

Tn(u)udσ.
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One the other hand, thanks to the Lebesgue dominated convergence Theorem, we have

lim
k→∞

(∫

Ω

Tn(b(uk))vdx + λ

∫

∂Ω

Tn(uk)vdσ + ε

∫

Ω

[
|uk|

p+−2ukv + |∇uk|
p+−2∇uk∇v

]
dx

)

=

∫

Ω

Tn(b(u))vdx + λ

∫

∂Ω

Tn(u)vdσ + ε

∫

Ω

[
|u|p+−2uv + |∇u|p+−2∇u∇v

]
dx,

for any v ∈ X0. Therefore, for k large enough,

Tn(b(uk))+λTn(uk)+ε
[
|uk|

p+−2uk+|∇uk|
p+−2∇uk

]
⇀ Tn(b(u))+λTn(u)+ε

[
|u|p+−2u+|∇u|p+−2∇u

]
in X ′

0.

Thus,

Auk ⇀ χ−

(

Tn(b(u)) + λTn(u) + ε[|u|p+−2u+ |∇u|p+−2∇u
]
)

in X ′
0, as k → +∞.

Now, we are going to prove that A is of type (M).

Let us set

a1(u, v, w) =

∫

Ω

a(x, u,∇v)∇wdx.

Then, w 7→ a1(u, v, w) is continuous on W 1,p+(Ω), thus

a1(u, v, w) =
〈
A(u, v), w

〉
, A(u, v) ∈ (W 1,p+(Ω))′,

and verify

A(u, u) = Au, where Au := −diva(x, u,∇u).

Let us prove that A is of type of Calculus of variation.

•As A(u, .) is bounded, we prove that v 7→ A(u, v) is hemi-continuous fromW 1,p+(Ω) → (W 1,p+(Ω))′.

Since a(x, u,∇(v1 + tv2)) ⇀ a(x, u,∇v1) in Lp′
+(Ω) as t → 0 and u, v1, v2 ∈ W 1,p+(Ω) then,

a1(u, v1 + tv2, w) → a1(u, v1, w) as t → 0.

In the same manner we prove that u 7→ A(u, v) is hemi-continuous from W 1,p+(Ω) → (W 1,p+(Ω))′.

Moreover, for all u, v ∈ W 1,p+(Ω), we have

< A(u, u)−A(u, v), u − v > = < A(u, u), u− v > − < A(u, v), u− v >

= a1(u, u, u− v)− a1(u, v, u− v)

=

∫

Ω

a(x, u,∇u)∇(u− v)dx −

∫

Ω

a(x, u,∇v)∇(u − v)dx

=

∫

Ω

(
a(x, u,∇u)− a(x, u,∇v)

)
∇(u− v)dx ≥ 0.
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• Let us suppose that uk ⇀ u in W 1,p+(Ω) and < A(uk, uk) − A(uk, u), uk − u >→ 0. We prove

that

∀v ∈ W 1,p+(Ω), A(uk, v) ⇀ A(u, v) in (W 1,p+(Ω))′.

Let’s set ∫

Ω

Fkdx =
〈
A(uk, uk)−A(uk, u), uk − u

〉
, then Fk → 0.

As uk ⇀ u, we have

a(x, uk,∇v) ⇀ a(x, u,∇v) in Lp′
+(Ω)

(see [17], Lemma 2.2 with m = 1). Therefore, A(uk, v) ⇀ A(u, v) in (W 1,p+(Ω))′.

• Now, we suppose that uk ⇀ u in W 1,p+(Ω) and A(uk, v) ⇀ Θ in (W 1,p+(Ω))′. We prove

that
〈
A(uk, v), uk

〉
→

〈
Θ, u

〉
.

Then, by using ([17], Lemma 2.1), we obtain that a(x, uk,∇v) → a(x, u,∇v) in Lp′
+(Ω) and thus,

a1(uk, v, uk) → a1(u, v, u).

Therefore,

< A(uk, v), uk >= a1(uk, v, uk) →< A(u, v), u > and Θ = A(u, v).

Hence, A is of type of Calculus of variation. Finally, by using ([17], Proposition 2.6 and Proposition

2.5), we prove that A is of type (M).

As the operator A is of type (M), so we have immediately

Au = χ−

(

Tn(b(u)) + λTn(u) + ε
[
|u|p+−2u+ |∇u|p+−2∇u

]
)

.

Therefore, we deduce that Anu = χ.

Step 3: An is coercive.

< Anu, u > =

∫

Ω

a(x, u,∇u).∇udx+

∫

Ω

Tn(b(u))udx

+ λ

∫

∂Ω

Tn(u)udx+ ε

∫

Ω

[
|u|p+ + |∇u|p+

]
dx

≥ ε

∫

Ω

[
|u|p+ + |∇u|p+

]
dx

≥ ε||u||
p+

W 1,p+ (Ω)
.

We deduce that
< Anu, u >

||u||W 1,p+ (Ω)

→ +∞ as ||u||W 1,p+ (Ω) → +∞.



CUBO
22, 1 (2020)

Nonlinear elliptic p(u)− Laplacian problem with Fourier . . . 97

Hence, An is coercive.

Then, according to Lemma 3.1, An is surjective.

Thus, for any Fn =< Tn(f), Tn(g) >⊂ E′ ⊂ X ′
0, there exists at least one solution un ∈ X0 of the

problem

< Anun, v >=< Fn, v > for all v ∈ X0.

Therefore, un is a weak solution of the problem (3.2). This ends the proof of Theorem 3.3.

Remark 3.4. If un is a weak solution of the problem (3.2), then un ∈ W 1,πn(.)(Ω), since W 1,p+(Ω) →֒

W 1,πn(.)(Ω) continuously. Moreover, a(x, un,∇un) satisfies (A3) − (A6) with variable exponent

πn(x) := p(x, un(x)).

Part 2: A priori estimates and convergence results.

This part is done in three steps, we make a priori estimates, some convergence results and other

based on the Young measure and nonlinear weak−∗ convergence.

Step 1: A priori estimates

Lemma 3.2. Suppose that (A3) − (A6) hold with variable exponent πn(.) and fn ∈ L∞(Ω), gn ∈

L∞(∂Ω). Let un be a weak solution of (3.2). Then, for all k > 0,
∫

Ω

∣
∣∇Tk(un)

∣
∣
πn(.)

dx ≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
, (3.4)

∫

Ω

∣
∣Tn(b(un))

∣
∣dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω), (3.5)

∫

∂Ω

∣
∣Tn(un)

∣
∣dx ≤

1

λ

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
. (3.6)

Proof of Lemma 3.2. By taking v = Tk(un) in the weak formulation (3.3), we obtain
∫

Ω

Tn(b(un))Tk(un)dx +

∫

Ω

a(x, un,∇un).∇Tk(un)dx+

∫

∂Ω

λTn(un)Tk(un)dσ

+ ε

∫

Ω

[
|un|

p+−2unTk(un) + |∇un|
p+−2∇un∇Tk(un)

]
dx

=

∫

Ω

fnTk(un)dx +

∫

∂Ω

gnTk(un)dσ.

(3.7)

Since all the terms of the left hand side of (3.7) are nonnegative, we deduce that
∫

Ω

a(x, un,∇un).∇Tk(un)dx ≤

∫

Ω

fnTk(un)dx+

∫

∂Ω

gnTk(un)dσ. (3.8)
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By using (A6) and (3.8), we get

∫

Ω

∣
∣∇Tk(un)

∣
∣
πn(.)

dx ≤ C2

(∫

Ω

fnTk(un)dx+

∫

∂Ω

gnTk(un)dσ

)

≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

From (3.7), we deduce that

∫

Ω

Tn(b(un))Tk(un)dx ≤

∫

Ω

fnTk(un)dx +

∫

∂Ω

gnTk(un)dσ

≤ k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)

(3.9)

and

λ

∫

∂Ω

Tn(un)Tk(un)dx ≤

∫

Ω

fnTk(un)dx+

∫

∂Ω

gnTk(un)dσ

≤ k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

(3.10)

Dividing (3.9) and (3.10) by k and letting k goes to 0, we obtain

∫

Ω

Tn(b(un))sign0(un)dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω)

and

λ

∫

∂Ω

Tn(un)sign0(un)dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω).

Hence,
∫

Ω

∣
∣Tn(b(un))

∣
∣dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω)

and ∫

∂Ω

∣
∣Tn(un)

∣
∣dx ≤

1

λ

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Lemma 3.3. Assume that (A3)-(A6) hold. If un is a weak solution of the problem (3.2), fn ∈

L∞(Ω) and gn ∈ L∞(∂Ω), then for all k > 0

∫

Ω

∣
∣∇Tk(un)

∣
∣
p−

dx ≤ C
(
||f ||L1(Ω), ||g||L1(∂Ω),meas(Ω)

)
(k + 1) (3.11)

and ∫

∂Ω

∣
∣Tk(un)

∣
∣dσ ≤

1

λ

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
, (3.12)

for all n ≥ k > 0.
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Proof of Lemma 3.3. Firstly, we prove (3.11). We know that
∫

Ω

∣
∣∇Tk(un)

∣
∣
πn(.)

dx ≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
. (3.13)

Let us note that
∫

Ω

∣
∣∇Tk(un)

∣
∣
p−

dx =

∫

{|∇Tk(un)|>1}

∣
∣∇Tk(un)

∣
∣
p−

dx+

∫

{|∇Tk(un)|≤1}

∣
∣∇Tk(un)

∣
∣
p−

dx

≤

∫

{|∇Tk(un)|>1}

∣
∣∇Tk(un)

∣
∣
p−

dx+meas(Ω)

≤

∫

Ω

∣
∣∇Tk(un)

∣
∣
πn(.)

dx+meas(Ω). (3.14)

By using (3.13) and (3.14), we get
∫

Ω

∣
∣∇Tk(un)

∣
∣
p−

dx ≤ max
(
C2

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
,meas(Ω)

)
(k + 1)

:= C
(
||f ||L1(Ω), ||g||L1(∂Ω),meas(Ω)

)
(k + 1).

(3.15)

Now, from the formula (3.6), we obtain ||Tn(un)||L1(∂Ω) ≤
1

λ

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
and as

|Tk(un)| ≤ |Tn(un)| for all n ≥ k > 0, one deduces that
∫

∂Ω

|Tk(un)|dσ ≤
1

λ

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Lemma 3.4. For any k > 0, we have

||Tk(un)||W 1,πn(.)(Ω) ≤ 1 + C
(
k, f, g, p−, p+,meas(Ω)

)

and for all k ≥ 1,

meas
(
{|un| > k}

)
≤

C

min
(
b(k), |b(−k)|

) .

Proof of Lemma 3.4. By using (3.4), we have
∫

Ω

∣
∣∇Tk(un)

∣
∣
πn(.)

dx ≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
. (3.16)

We also have
∫

Ω

|Tk(un)|
πn(.)dx =

∫

{|un|≤k}

|Tk(un)|
πn(.)dx+

∫

{|un|>k}

|Tk(un)|
πn(.)dx.

Furthermore,
∫

{|un|>k}

|Tk(un)|
πn(.)dx =

∫

{|un|>k}

kπn(.)dx

≤

{

kp+meas(Ω) if k ≥ 1

meas(Ω) if k < 1
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and
∫

{|un|≤k}

|Tk(un)|
πn(.)dx ≤

∫

{|un|≤k}

kπn(.)dx

≤

{

kp+meas(Ω) if k ≥ 1

meas(Ω) if k < 1.

This allow us to write ∫

Ω

|Tk(un)|
πn(.)dx ≤ 2(1 + kp+)meas(Ω). (3.17)

Hence, adding (3.16) and (3.17) one gets

ρ1,πn(.)(Tk(un)) ≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
+ 2(1 + kp+)meas(Ω).

For ||Tk(un)||W 1,πn(.)(Ω) ≥ 1, we have according to Proposition 2 that

||Tk(un)||
p−

W 1,πn(.)(Ω)
≤ ρ1,πn(.)(Tk(un)) ≤

[
C2k

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
+ 2(1 + kp+)meas(Ω)

]
,

which implies that

||Tk(un)||W 1,πn(.)(Ω) ≤
[
C2k

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
+ 2(1 + kp+)meas(Ω)

] 1
p−

:= C(k, f, g, p+, p−,meas(Ω)).

Thus,

||Tk(un)||W 1,πn(.)(Ω) < 1 + C(k, f, g, p+, p−,meas(Ω)).

Moreover, from (3.5), we have
∫

∂Ω

∣
∣Tn(b(un))

∣
∣dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω).

We deduce that the sequence (Tn(b(un)))n∈N∗ is uniformly bounded in L1(Ω). Thus, (b(un))n∈N∗

is uniformly bounded in L1(Ω). So, there exists a positive constant C such that
∫

Ω

|b(un)|dx ≤ C.

Furthermore, for all k ≥ 1, we have
∫

{|un|>k}

|b(un)|dx ≤

∫

Ω

|b(un)|dx ≤ C.

As b is continuous, nondecreasing and surjective, we infer
∫

{|un|>k}

min
(
b(k), |b(−k)|

)
dx ≤

∫

{|un|>k}

|b(un)|dx ≤ C.

Therefore,

meas
(
{|un| > k}

)
≤

C

min
(
b(k), |b(−k)|

) , ∀k ≥ 1.
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Then, the proof of Lemma 3.4 is complete.

From the Lemma 3.4, we deduce that for any k > 0, the sequence
(
Tk(un)

)

n∈N
is uniformly

bounded in W 1,πn(.)(Ω) and also in W 1,p−(Ω).

Then, up to a subsequence still denoted Tk(un), we can assume that for any k > 0, Tk(un) weakly

converges to sk in W 1,p−(Ω) and also Tk(un) strongly converges to sk in Lp−(Ω).

By using the above a priori estimates, we obtain the following convergence results .

Step 2: The convergence results

The proof of the following proposition use the Lemma 3.4.

Proposition 6. Assume that (A3)− (A6) hold and let un be a weak solution of the problem (3.2),

then the sequence (un)n∈N is Cauchy in measure.

In particular, there exists a measurable function u and a subsequence still denoted un such that

un → u in measure, as n → +∞.

As (un)n∈N is a Cauchy sequence in measure, so (up to a subsequence) it converges almost

everywhere to some measurable function u.

As for any k > 0, Tk is continuous; then Tk(un) → Tk(u) a.e. x ∈ Ω, so sk = Tk(u).

Therefore,

Tk(un) ⇀ Tk(u) in W 1,p−(Ω)

and by compact embedding Theorem, we have

Tk(un) → Tk(u) in Lp−(Ω) (respectively in Lp−(∂Ω)) and a.e. in Ω (respectively a.e. on ∂Ω).

Lemma 3.5. un converges a.e. on ∂Ω to some function v.

Proof of Lemma 3.5

Since Tk(un) ⇀ Tk(u) in W 1,p−(Ω) and W 1,p−(Ω) →֒ Lp−(∂Ω) (compact embedding), then

Tk(un) → Tk(u) in Lp−(∂Ω) and a.e. on ∂Ω. Therefore, Tk(un) → Tk(u) in L1(∂Ω) and a.e.

in ∂Ω. We deduce that there exists E ⊂ ∂Ω such that Tk(un) → Tk(u) on ∂Ω \ E with µ(E) = 0,

where µ is area measure on ∂Ω.

For every k > 0, let Ek = {x ∈ ∂Ω such that |Tk(u)| < k} and F = ∂Ω \
⋃

k>0

Ek. By using Fatou’s

Lemma, we have

∫

∂Ω

∣
∣Tk(u)

∣
∣dσ ≤ lim inf

n→+∞

∫

∂Ω

|Tk(un)
∣
∣dσ

≤
||f ||L1(Ω) + ||g||L1(∂Ω)

λ
. (3.18)
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Now, we use (3.18) to get

µ(F ) =
1

k

∫

F

∣
∣Tk(u)

∣
∣dσ ≤

1

k

∫

∂Ω

∣
∣Tk(u)

∣
∣dσ

≤
||f ||L1(Ω) + ||g||L1(∂Ω)

kλ
.

We obtain µ(F ) = 0, as k goes to ∞. Let’ s now define on ∂Ω the function v by

v(x) = Tk(u(x)), x ∈ Ek.

We take x ∈ ∂Ωr (E ∪ F ), then there exists k > 0 such that x ∈ Ek and we have

un(x)− v(x) =
(
un(x) − Tk(un(x))

)
+
(
Tk(un(x)) − Tk(u(x))

)
.

Since x ∈ Ek, we have |Tk(u(x))| < k and so |Tk(un(x))| < k, from which we deduce that

|un(x)| < k. Therefore,

un(x)− v(x) = Tk(un(x))− Tk(u(x)) → 0, as n → +∞.

This means that un converges to v a.e. on ∂Ω, but for all x ∈ Ek, Tk(u(x)) = u(x). Thus,

v = u a.e. on ∂Ω. Therefore,

un → u a.e. on ∂Ω.

The following assertions are based on the Young measure and nonlinear weak −∗ convergence re-

sults (see [7, 19, 13]).

Step 3: The convergence in term of Young measure

Assertion 1

The sequence (∇Tk(un))n∈N converges to a Young measure νkx(λ) on R
N in the sense of the non-

linear weak-* convergence and

∇Tk(u) =

∫

RN

λdνkx(λ). (3.19)

Proof. Using Lemma 3.3, ∇Tk(un) is uniformly bounded in Lp−(Ω), so, equi-integrable on Ω.

Moreover, ∇Tk(un) weakly converges to ∇Tk(u) in Lp−(Ω). Therefore, using the representation of

weakly convergence sequences in L1(Ω) in terms of Young measures (see Theorem 2.1 and formula

(2.5)), we can write

∇Tk(u) =

∫

RN

λdνkx(λ) �

Assertion 2. |λ|π(.) is integrable with respect to the measure νkx(λ)dx on R
N × Ω, moreover,

Tk(u) ∈ W 1,π(.)(Ω).

Proof. We know that p(., un(.)) → p(., u(.)) in measure on Ω. Now, using Theorem 2.1 (ii),
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(iii) (p(., un(.)),∇Tk(un))n∈N converges on R× R
N to Young measure µk

x = δπ(x) ⊗ νkx .

Thus, we can apply the weak convergence properties (2.4) to the Carathéodory function

Fm(x, λ0, λ) ∈ Ω × (R × R
N ) 7→ |hm(λ)|λ0 with m ∈ N, where hm is defined in the preliminaries.

Then, we obtain
∫

Ω×RN

|hm(λ)|π(x)dνkx(λ)dx =

∫

Ω×(R×RN )

|hm(λ)|λ0dµk
x(λ0, λ)dx

=

∫

Ω

∫

R×RN

Fm(x, λ0, λ)dµ
k
x(λ0, λ)dx

= lim
n→+∞

∫

Ω

Fm(x, p(x, un(x)),∇Tk(un(x)))dx

= lim
n→+∞

∫

Ω

|hm(∇Tk(un))|
p(.,un(.))dx

≤ lim
n→+∞

∫

Ω

|∇Tk(un)|
p(.,un(.))dx

≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
(using (3.4)).

hm(λ) → λ, as m → +∞ and m 7→ hm(λ) is increasing. Then, using Lebesgue convergence

Theorem , we deduce from last inequality that
∫

Ω×RN

|λ|π(x)dνkx(λ)dx ≤ C2k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Hence, |λ|π(.) is integrable with respect to the measure νkx(λ)dx on R
N × Ω.

From (3.19), the last inequality and Jensen inequality, we get

∫

Ω

|∇Tk(u)|
π(x)dx =

∫

Ω

∣
∣
∣
∣

∫

RN

λdνkx(λ)

∣
∣
∣
∣

π(x)

dx ≤

∫

Ω×RN

|λ|π(x)dνkxdx < ∞.

Thus, ∇Tk(u) ∈ Lπ(.)(Ω). Moreover,

∫

Ω

|Tk(u)|
π(.)dx ≤ max

(
kp+ , kp−

)
meas(Ω). Hence, Tk(u) ∈

Lπ(.)(Ω) and we conclude that Tk(u) ∈ W 1,π(.)(Ω). �

Assertion 3.

i) The sequence
(
Φk

n

)

n∈N
defined by Φk

n := a(x, un,∇Tk(un)) is equi-integrable on Ω.

ii) The sequence
(
Φk

n

)

n∈N
weakly converges to Φk in L1(Ω) and we have

Φk(x) =

∫

RN

a(x, u, λ)dνkx(λ). (3.20)

Proof. i) Using the growth assumption (A5) with variable exponent p(., un(.)) and relation (3.4),

we deduce that (Φk
n) is bounded in Lπ′

n(.)(Ω), so, Lπ′
n(.)− equi-integrable on Ω.

Moreover, as π′
n(.) > 1, we obtain

|a(x, un,∇Tk(un))| ≤ 1 + |a(x, un,∇Tk(un))|
π′
n(.).
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Thus, for all subset E ⊂ Ω, we have
∫

E

|a(x, un,∇Tk(un))|dx ≤ meas(E) +

∫

E

|a(x, un,∇Tk(un))|
π′
n(.)dx.

Therefore, for meas(E) small enough, (Φk
n) is equi-integrable on Ω.

ii) Set Φ̃k
n = a(x, u(x),∇vn) with ∇vn = ∇Tk(un).χSn

where Sn =
{
x ∈ Ω, |π(x) − πn(x)| <

1
2

}
.

Applying (A5) with variable exponent π(.) on a(x, u(x),∇vn), we have for all subset E ⊂ Ω,
∫

E

|a(x, u(x),∇vn)|dx ≤ C

∫

E

(
1 +M(x) + |∇vn|

π(.)−1
)
dx

≤ C

∫

E

(
1 +M(x))dx +

∫

E∩Sn

|∇Tk(un)|
π(.)−1dx.

The first term of the right hand side of the last inequality is small for meas(E) small enough. For

x ∈ Sn, π(x) < πn(x) +
1
2 , thus

∫

E∩Sn

|∇Tk(un)|
π(.)−1dx ≤

∫

E∩Sn

(
1 + |∇Tk(un)|

πn(.)−
1
2

)
dx

and ∫

Ω

|∇Tk(un)|
(πn(.)−

1
2 )(2πn(.))

′

dx =

∫

Ω

|∇Tk(un)|
πn(.)dx < ∞,

which is equivalent to saying |∇Tk(un)|
πn(.)−

1
2 ∈ L(2πn(.))

′

(Ω). Now, using Hölder type inequality,
∫

E∩Sn

|∇Tk(un)|
π(.)−1dx ≤

∫

E

(

1 + |∇Tk(un)|
πn(.)−

1
2

)

dx

≤ meas(E) + 2
∣
∣
∣
∣∇Tk(un)

∣
∣
∣
∣
Lπn(.)(Ω)

||χE ||L2πn(.)(Ω). (3.21)

According to Proposition 1,

||χE ||L2πn(.)(Ω) ≤ max

{
(
ρ2πn(.)

(
χE

)) 1
2p− ,

(
ρ2πn(.)(χE)

) 1
2p+

}

= max

{
(
meas(E)

) 1
2p− ,

(
meas(E)

) 1
2p+

}

.

The right-hand side of (3.21) is uniformly small for meas(E) small, and the equi-integrability of

Φ̃k
n follows. Therefore, (up to a subsequence) Φ̃k

n weakly converges in L1(Ω) to Φ̃k, as n → +∞.

Now, we prove that Φ̃k = Φk; more precisely, we show that Φ̃k
n − Φk

n strongly converges in L1(Ω)

to 0.

Let β > 0, by (3.4),

∫

Ω

|∇Tk(un)|
πn(.)dx is uniformly bounded, which implies that

∫

Ω

|∇Tk(un)|dx

is finite, since ∫

Ω

|∇Tk(un)|dx ≤

∫

Ω

(1 + |∇Tk(un)|
πn(x))dx.

By Chebyschev Inequality, we have

meas({|∇Tk(un)| > L}) ≤

∫

Ω
|∇Tk(un)|dx

L
.
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Therefore, sup
n∈N

meas({|∇Tk(un)| > L}) tends to 0 for L large enough. Since Φ̃k
n − Φk

n is equi-

integrable, there exists δ = δ(β) such that for all A ⊂ Ω, meas(A) < δ and

∫

A

|Φ̃k
n − Φk

n|dx <
β

4
.

Therefore, if we choose L large enough, we get

∫

Ω |∇Tk(un)|dx

L
< δ, someas({|∇Tk(un)| > L}) < δ.

Hence, ∫

{|∇Tk(un)|>L}

|Φ̃k
n − Φk

n|dx <
β

4
.

By Lemma 2.2, we also have

meas

({

x ∈ Ω; sup
λ∈K

|a(x, un(x), λ) − a(x, u(x), λ)| ≥ σ

})

−→ 0,

as n → +∞.

Thus, by the above equi-integrability, for all σ > 0, there exists n0 = n0(σ, L) ∈ N such that for

all n ≥ n0, ∫

{
x∈Ω; sup|λ|≤L |a(x,un(x),λ)−a(x,u(x),λ)|≥σ

} |Φ̃k
n − Φk

n|dx <
β

4
.

Using the definition of Φk
n and Φ̃k

n, we have

Φk
n − Φ̃k

n = a(x, un(x),∇Tk(un))− a(x, u(x),∇Tk(un)) on Sn.

Now, we reason on

Sn,L,σ :=

{

x ∈ Ω; sup
|λ|≤L

|a(x, un(x), λ) − a(x, u(x), λ)| < σ, |∇Tk(un)| ≤ L

}

.

We get
∫

Sn,L,σ

|Φ̃k
n − Φk

n|dx ≤

∫

Sn,L,σ

sup
|λ|≤L

|a(x, un(x), λ) − a(x, u(x), λ)|dx

≤ σmeas(Ω).

We observe that
∫

Sn

|Φ̃k
n − Φk

n|dx =

∫

Sn∩Sn,L,σ

|Φ̃k
n − Φk

n|dx +

∫

Sn\Sn,L,σ

|Φ̃k
n − Φk

n|dx

and

Sn \ Sn,L,σ ⊂

{

x ∈ Ω; sup
|λ|≤L

|a(x, un(x), λ) − a(x, u(x), λ)| ≥ σ

}

∪

{

|∇Tk(un)| > L

}

.

Consequently, by choosing σ = σ(β) <
β

4meas(Ω)
, we get

∫

Sn

|Φ̃k
n − Φn|dx <

β

4
+

β

4
+

β

4
=

3β

4
,
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for all n ≥ n0(σ, L). By Lemma 2.2, we also have meas({x ∈ Ω, |π(x) − πn(x)| ≥
1
2}) → 0 for n

large enough; which means that meas(Ω \ Sn) converges to 0 for n large enough. Thus,

∫

Ω\Sn

|Φ̃k
n − Φk

n|dx =

∫

Ω\Sn

|Φk
n|dx ≤

β

4
.

Therefore, for all β > 0 there exists n0 = n0(β) such that for all n ≥ n0,

∫

Ω

|Φ̃k
n − Φk

n|dx ≤ β.

Hence, Φ̃k
n − Φk

n strongly converges to 0 in L1(Ω). We prove that

Φk(x) =

∫

RN

a(x, u(x), λ)dνkx (λ) a.e. x ∈ Ω and Φk ∈ Lπ′(.)(Ω).

Notice that

lim
n→+∞

∫

Ω

|∇Tk(un)|(1− χSn
)dx = lim

n→+∞

∫

Ω\Sn

|∇Tk(un)|dx = 0,

since (∇Tk(un))n∈N is equi-integrable and meas(Ω \ Sn) converges to 0 for n large enough.

Therefore, (∇Tk(un))n∈N and ∇Tk(un)χSn
converge to the same Young measure νkx(λ).

Moreover, by applying Theorem 2.1 i) to the Carathéodory function F (x, (λ0, λ)) := a(x, λ0, λ),

we infer that

Φ̃(x) = Φ(x) =

∫

RN

a(x, u(x), λ)dνkx (λ) a.e. x ∈ Ω.

Using (A5), it follows that |a(x, u(x), λ)|π
′(.) ≤ C(M(x) + |λ|π(.)). Thus, with Jensen Inequality,

it follows that

∫

Ω

|Φk(x)|π
′(.)dx =

∫

Ω

∣
∣
∣
∣

∫

RN

a(x, u(x), λ)dνkx (λ)

∣
∣
∣
∣

π′(.)

dx

≤

∫

Ω×RN

∣
∣a(x, u(x), λ)|π

′(.)dνkx(λ)dx

≤ C

∫

Ω×RN

(

M(x) + |λ|π(.)
)

dνkx(λ)dx < ∞.

Hence, Φk ∈ Lπ′(.)(Ω). �

Assertion 4

(a) For all k′ > k > 0, we have Φk = Φk′

χ{|u|<k}.

(b) For all k > 0,
∫

Ω

Φk.∇Tk(u)dx ≥

∫

Ω×RN

a(x, u(x), λ).λdνkx (λ)dx. (3.22)

(c) The “div-curl” inequality holds:

∫

Ω×RN

(
a(x, u(x), λ) − a(x, u(x),∇Tk(u(x))

)
(λ −∇Tk(u(x)))dν

k
x (λ)dx ≤ 0. (3.23)
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(d) For all k > 0,

Φk = a(x, u(x),∇Tk(u)) for a.e. x ∈ Ω

and ∇Tk(un) converges to ∇Tk(u) in measure on Ω, as n → +∞.

Proof.

(a) Let k′ > k > 0 and gkn := a(x, un,∇Tk′(un))χ[|u|<k]. By Assertion 3-ii), (gkn)n∈N weakly con-

verges to Φk′

χ[|u|<k] in L1(Ω). If we prove that (gkn)n∈N weakly converges to Φk in L1(Ω), then the

wished result will come of the uniqueness of the limit. Let us put

hk
n := a(x, un,∇Tk′(un))χ[|un|<k].

As ∇Tk(un) ≡ ∇Tk′(un)χ[|un|<k], for all k
′ > k > 0, then, we get

hk
n := a(x, un,∇Tk′(un))χ[|un|<k] ≡ a(x, un,∇Tk(un)),

so, (hk
n)n∈N weakly converges to Φk in L1(Ω) by Assertion 3-ii). Set

dkn := gkn − hk
n = a(x, un,∇Tk′(un))(χ[|u|<k] − χ[|un|<k]).

On the one hand, thanks to Assertion 3-i), (dkn)n∈N is equi-integrable. On the other hand dkn → 0

a.e. on Ω. Indeed, χ[|un|<k] = χ(−k,k)(un) and if |un| 6= k a.e. on Ω, χ(−k,k)(.) is continuous on R.

In other words χ(−k,k)(.) is continuous on the image of Ω by u a.e. k > 0. Moreover, un → u a.e.

on Ω, then χ[|un|<k] → χ[|u|<k] a.e. in Ω. Now, using Vitali’s Theorem (dkn)n∈N strongly converges

to 0 in L1(Ω), so it weakly converges in L1(Ω). Hence, (gkn)n∈N and (hk
n)n∈N weakly converge to

the same limit Φk in L1(Ω).

(b) Let S be a set of W 2,∞ functions S : R → R such that S′(.) has a compact support.

We construct a sequence (SM )M∈N ⊂ S such that

• S′
M and S′′

M are uniformly bounded;

• for all M ∈ N, S′
M = 1 on [−M + 1,M − 1], suppS′ ⊂ [−M,M ];

• the sequence (b(z)S′
M (z))M∈N is non-decreasing for all z ∈ R.

For all ϕ ∈ C∞(Ω), v = ϕS′
M (un) is an admissible test function in the weak formulation (3.3). We

have
∫

Ω

Tn(b(un))S
′
M (un)ϕdx +

∫

Ω

S′
M (un)a(x, un,∇TM (un)).∇ϕdx

+

∫

Ω

S′′
M (un)a(x, un,∇TM (un)).∇TM (un)ϕdx+

∫

∂Ω

λTn(un)S
′
M (un)ϕdσ

+ ε

∫

Ω

[|∇un|
p+−2∇un∇(ϕS′

M (un)) + |un|
p+−2unS

′
M (un)ϕ

]
dx

=

∫

Ω

fnS
′
M (un)ϕdx+

∫

∂Ω

gnS
′
M (un)ϕdσ. (3.24)
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Since un converges to u a.e. in Ω and a.e. on ∂Ω, by continuity of b, S′
M and the compacteness of

suppS′
M , we obtain

∫

Ω

Tn(b(un))S
′
M (un)ϕdx →

∫

Ω

b(u)S′
M (u)ϕdx, as n → +∞ (3.25)

and

λ

∫

Ω

Tn(un)S
′
M (un)ϕdσ → λ

∫

Ω

uS′
M (u)ϕdσ, as n → +∞. (3.26)

Moreover, we have |fnS
′
M (un)ϕ| ≤ ||S′

M ||L∞(R|f ||ϕ| ∈ L1(Ω), fnS
′
M (un)ϕ → fS′

M (u)ϕ a.e. in Ω.

and |gnS
′
M (un)ϕ| ≤ ||S′

M ||L∞(R)|g||ϕ| ∈ L1(R), gnS
′
M (un)ϕ → gS′

M (u)ϕ a.e. on ∂Ω. Thus, by

Lebesgue dominated convergence Theorem
∫

Ω

fnS
′
M (un)ϕdx →

∫

Ω

fS′
M (u)ϕdx, as n → +∞ (3.27)

and ∫

∂Ω

gnS
′
M (un)ϕdσ →

∫

∂Ω

gS′
M (u)ϕdσ, as n → +∞. (3.28)

Let us prove now, that
∫

Ω

S′
M (un)a(x, un,∇TM (un)).∇ϕdx →

∫

Ω

S′
M (u)ΦM .∇ϕdx, as n → +∞. (3.29)

For all L > 0, we have
∫

Ω

S′
M (un)a(x, un,∇TM (un)).∇ϕdx =

∫

{|∇ϕ|≤L}

S′
M (un)Φ

M
n .∇ϕdx

+

∫

{|∇ϕ|>L}

S′
M (un)Φ

M
n .∇ϕdx. (3.30)

For the first term of the right-hand side of (3.30), we have
∫

{|∇ϕ|≤L}

S′
M (un)Φ

M
n .∇ϕdx →

∫

{|∇ϕ|≤L}

S′
M (u)ΦM .∇ϕdx, as n → +∞. (3.31)

Thanks ΦM
n ⇀ ΦM in L1(Ω) and ∇ϕS′

M (un)χ{|∇ϕ|≤L} →∗ ∇ϕS′
M (u)χ{|∇ϕ|≤L} in L∞(Ω). Fur-

thermore, the second term of the right hand-side of (3.30) converges to zero for L large enough,

uniformly in n. Indeed, using Hölder type inequality and the fact that Lp+(Ω) →֒ Lπn(.)(Ω), we

get
∣
∣
∣
∣

∫

{|∇ϕ|>L}

ΦM
n ∇ϕS′

M (un)dx

∣
∣
∣
∣

≤ C||S′
M ||L∞(R)||Φ

M
n ||

Lπ′
n(.)(Ω)

||∇ϕχ{|∇ϕ|>L}||Lπn(.)(Ω)

≤ C
(
p−, ||S

′
M ||L∞(R),meas(Ω)

)
||ΦM

n ||
Lπ′

n(.)(Ω)
||∇ϕ||Lp+ (Ω)meas

(
{|∇ϕ| > L}

)
.

From (A5), (3.4) and Proposition 2, we obtain

||Φn
M ||

Lπ′
n(.)(Ω)

< C.
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Moreover, ϕ ∈ C∞(Ω) and C∞(Ω) is dense in the space W 1,p+(Ω). Then, by Proposition 2 and

the fact that lim
L→+∞

meas({|∇ϕ| > L}) = 0, we get

meas
(
{|∇ϕ| > L}

)
||ΦM

n ||
Lπ′

n(.)(Ω)
||∇ϕ||Lp+ (Ω) → 0, as L → +∞.

Hence, the second term of the right hand-side of (3.30) converges to zero, as L tends to infinity.

Thus, as n → +∞ and L → +∞ in (3.30), we deduce (3.29).

Let us consider the third term of left hand-side of (3.24), we obtain

∫

Ω

|S′′
M (un)|a(x, un,∇TM (un)).∇TM (un)ϕdx ≤ C

∫

{|un|<M}

|S′′
M (un)|a(x, un,∇TM (un)).∇TM (un)dx

≤ C′

∫

{M−1<|un|<M}

a(x, un,∇TM (un))∇TM (un)dx

+ C

∫

{|un|≤M−1}

|S′′
M (un)

︸ ︷︷ ︸

=0

|a(x, un,∇TM (un)).∇TM (un)dx,

(3.32)

where C = C
(
||ϕ||L∞(Ω)

)
, C′ = C

(
||S′′

M ||L∞(R), ||ϕ||L∞(Ω)

)
and |a(x, un,∇TM (un)).∇TM (un) is

finite. Otherwise,

∫

{M−1<|un|<M}

a(x, un,∇TM (un))∇TM (un)dx → 0, as M → +∞.

Since, thanks to Lemma 3.4, lim
M→+∞

meas({M − 1 < |un| < M}) = 0 and a(x, un,∇TM (un))∇TM (un)

is equi-integrable.

Finally, using (3.25), (3.26) (3.27), (3.28), (3.29), (3.32) and passing to the limit in (3.24), as n

tends to infinty and as ε goes to 0, we obtain

∫

Ω

b(u)S′
M (u)ϕdx +

∫

Ω

S′
M (u)ΦM .∇ϕdx+ λ

∫

∂Ω

uS′
M (u)ϕdσ =

∫

Ω

fS′
M (u)ϕdx+

∫

∂Ω

gS′
M (u)ϕdσ.

(3.33)

For k > 0 fixed, Tk(u) ∈ W 1,π(.)(Ω) and the exponent π(.) verify (2.1). Therefore, C∞(Ω) is dense

in W 1,π(.)(Ω), so, we replace ϕ by Tk(u). Now, for M > k, thanks to (a), we replace ΦM .∇Tk(u)

by Φk.∇Tk(u) in (3.33).

S′
M converges a.e. to 1 on R, as M → +∞, then using the monotone convergence theorem in

the first term of left hand-side of (3.33) and dominated convergence theorem in the other term of

(3.33), we get

∫

Ω

[
b(u)Tk(u) + Φk.∇Tk(u)]dx + λ

∫

∂Ω

uTk(u)dσ =

∫

Ω

fTk(u)dx+

∫

∂Ω

gTk(u)dσ.

(3.34)
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The relation (3.7) is equivalent to
∫

Ω

Tn(b(un))Tk(un)dx +

∫

Ω

a(x, un,∇Tk(un)).∇Tk(un)dx +

∫

∂Ω

λTn(un)Tk(un)dσ

+ ε

∫

Ω

[
|un|

p+−2unTk(un) + |∇un|
p+−2∇un∇Tk(un)

]
dx

=

∫

Ω

fnTk(un)dx +

∫

∂Ω

gnTk(un)dσ.

(3.35)

The sequences
(
Tn(b(un))Tk(un)

)

n∈N
,
(
Tn(un)Tk(un)

)

n∈N
are nonnegative and converge a.e. in Ω

to b(u)Tk(u) and a.e. on ∂Ω to uTk(u). By Fatou’s Lemma, we have

lim inf
n→+∞

∫

Ω

Tn(b(un))Tk(un)dx ≥

∫

Ω

b(u)Tk(u)dx (3.36)

and

λ lim inf
n→+∞

∫

∂Ω

Tn(un)Tk(un)dx ≥ λ

∫

∂Ω

uTk(u)dσ. (3.37)

Now, we consider the right hand side of (3.35). We have

|fnTk(un)| ≤ k|f | ∈ L1(Ω), fnTk(un) → fTk(u) a.e. in Ω and |gnTk(un)| ≤ k|g| ∈ L1(∂Ω),

gnTk(un) → gTk(u) a.e. on ∂Ω. Thus, by Lebesgue dominated convergence Theorem
∫

Ω

fnTk(un)dx →

∫

Ω

fTk(u)dx, as n → +∞ (3.38)

and ∫

∂Ω

gnTk(un)dσ →

∫

∂Ω

gTk(u)dσ, as n → +∞. (3.39)

Combining (3.36),(3.37), (3.38), (3.39) and using (3.35), we get

lim inf
n→+∞

(∫

Ω

fnTk(un)dx+

∫

∂Ω

gnTk(un)dσ

)

−

(∫

Ω

b(u)Tk(u)dx+ λ

∫

∂Ω

uTk(u)dσ

)

≥ lim inf
n→+∞

(∫

Ω

fnTk(un)dx+

∫

∂Ω

gnTk(un)dσ −

∫

Ω

Tn(b(un))Tk(un)dx − λ

∫

∂Ω

Tn(un)Tk(un)dσ

)

,

which is equivalent to
∫

Ω

fTk(u)dx +

∫

∂Ω

gTk(u)dσ −

(∫

Ω

b(u)Tk(u)dx+ λ

∫

∂Ω

uTk(u)dσ

)

≥ lim inf
n→+∞

∫

Ω

a(x, un,∇Tk(un))∇Tk(un)dx + ε

∫

Ω

[
|un|

p+−2unTk(un) + |∇un|
p+−2∇un∇Tk(un)

]
dx

≥ lim inf
n→+∞

∫

Ω

a(x, un,∇Tk(un)∇Tk(un)dx.

Thus, by using the relation (3.34), we obtain
∫

Ω

Φk∇Tk(u)dx ≥ lim inf
n→+∞

∫

Ω

a(x, un,∇Tk(un))∇Tk(un)dx. (3.40)
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(c) From [1]-Lemma 2.1, m 7→ a(x, un, hm(∇Tk(un))).hm(∇Tk(un)) is increasing and converges to

a(x, un,∇Tk(un)).∇Tk(un) for m large enough. Thus, we deduce that

a(x, un, hm(∇Tk(un))).hm(∇Tk(un)) ≤ a(x, un,∇Tk(un)).∇Tk(un) = Φk
n.∇Tk(un).

Therefore, using (b) and Theorem 2.1, we get
∫

Ω

Φk.∇Tk(u)dx ≥ lim inf
n→+∞

∫

Ω

Φk
n.∇Tk(un)dx

≥ lim
n→+∞

∫

Ω

a(x, un, hm(∇Tk(un))).hm(∇Tk(un))dx

=

∫

Ω×RN

a(x, u, hm(λ)).hm(λ)dνkx (λ)dx. (3.41)

Using Lebesgue convergence Theorem in (3.41), we get for m large enough
∫

Ω

Φk.∇Tk(u)dx ≥

∫

Ω×RN

a(x, u, λ).λdνkx(λ)dx. (3.42)

We have
∫

Ω×RN

(a(x, u(x), λ) − a(x, u(x),∇Tk(u(x)))(λ −∇Tk(u(x)))dν
k
x (λ)dx

=

∫

Ω×RN

a(x, u(x), λ).λdνkx (λ)dx −

∫

Ω×RN

a(x, u(x), λ).∇Tk(u(x))dν
k
x (λ)dx

−

∫

Ω×RN

a(x, u(x),∇Tk(u(x))).λdν
k
x (λ)dx +

∫

Ω×RN

a(x, u(x),∇Tk(u(x))).∇Tk(u(x))dν
k
x(λ)dx

=

∫

Ω×RN

a(x, u(x), λ).λdνkx (λ)dx −

∫

Ω

(∫

RN

a(x, u(x), λ)dνkx (λ)

)

∇Tk(u(x))dx

−

∫

Ω

a(x, u(x),∇Tk(u(x))).

(∫

RN

λdνkx

)

dx+

∫

Ω

a(x, u(x),∇Tk(u(x))).∇Tk(u(x))

(∫

RN

dνkx

)

dx

=

∫

Ω×RN

a(x, u(x), λ).λdνkx (λ)dx −

∫

Ω

Φk.∇Tk(u(x))dx ≤ 0.

We pass from the first equality to the second equality by using Fubini-Tonelli Theorem and from

the second inequality to the third one by using (3.19), (3.20) and the fact that νx is probability

measures on R
N . Finally (3.42) give us the desired inequality.

(d) Using (3.23) and the strict monotonicity assumption (A4), we deduce that

(
a(x, u(x), λ) − a(x, u(x),∇Tk(u(x))

)(
λ−∇Tk(u(x))

)
= 0 a.e. x ∈ Ω, λ ∈ R

N .

Thus, λ = ∇Tk(u(x)) a.e. x ∈ Ω with respect to the measure νkx on R
N . Therefore, the measure

νkx reduces to the Dirac measure δ∇Tk(u(x)). Using (3.20), we obtain

Φk =

∫

RN

a(x, u(x), λ)dνkx (λ) = a(x, u(x),∇Tk(u(x))) a.e. x ∈ Ω.
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Now, by using Theorem 2.1 (ii), we deduce that ∇Tk(un) converges in measure to ∇Tk(u).

�

Lemma 3.6. u is an entropy solution of (1.1).

Proof of the Lemma 3.6.

Let un be a weak solution of the problem (3.2). Then, by Assertion 4−(d), (∇Tk(un))n∈N converges

to ∇Tk(u) in measure, thus (up to a subsequence still denoted (∇Tk(un))n∈N), (∇Tk(un))n∈N

converges to ∇Tk(u) a.e. Ω. Moreover, we deduce from Lemma 3.4 that ∇Tk(un) is uniformly

bounded in Lp−(Ω), so, p−−equi-integrable on Ω. Then, by using Vitali’s Theorem

∇Tk(un) → ∇Tk(u) in Lp−(Ω), which implies that ∇Tk(un) → ∇Tk(u) in L1(Ω).

Furthermore, thanks to Assertion 2, u ∈ T 1,π(.)(Ω) and it follows from Lemma 3.5 that

un → u a.e on ∂Ω.

Therefore, u ∈ T
1,π(.)
tr (Ω). Now, using Lemma 3.2, the fact that Tn(b(un)) → b(u) a.e. in Ω and

un → u a.e. on ∂Ω, it follows from Fatou’s Lemma that
∫

Ω

|b(u)| ≤ lim inf
n→+∞

∫

Ω

∣
∣Tn(b(un))

∣
∣dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω)

and ∫

∂Ω

|u| ≤ lim inf
n→+∞

∫

∂Ω

∣
∣Tn(un)

∣
∣dx ≤

1

λ

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Hence, b(u) ∈ L1(Ω) and u ∈ L1(∂Ω).

Let ϕ ∈ C∞(Ω), then we can choose Tk(un − ϕ) as a test function in (3.3) (C∞(Ω) is dense in the

space W 1,p+(Ω) and Tk(un − ϕ) ∈ L∞(∂Ω)) to get
∫

Ω

Tn(b(un))Tk(un − ϕ)dx +

∫

Ω

a(x, un,∇un).∇Tk(un − ϕ)dx +

∫

∂Ω

λTn(un)Tk(un − ϕ)dσ

+ ε

∫

Ω

[
|∇un|

p+−2∇un∇Tk(un − ϕ) + |un|
p+−2unTk(un − ϕ)

]
dx

=

∫

Ω

fnTk(un − ϕ)dx+

∫

∂Ω

gnTk(un − ϕ)dσ. (3.43)

For the first term of the left hand side of (3.43), we have
∫

Ω

Tn(b(un))Tk(un − ϕ)dx =

∫

Ω

[
Tn(b(un))− Tn(b(ϕ))

]
Tk(un − ϕ)dx

+

∫

Ω

Tn(b(ϕ))Tk(un − ϕ)dx.

By Fatou’s Lemma, we infer

lim inf
n→+∞

∫

Ω

Tn(b(un))Tk(un − ϕ)dx ≥

∫

Ω

b(u)Tk(u− ϕ)dx, (3.44)
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since,
[
Tn(b(un))− Tn(b(ϕ))

]
Tk(un − ϕ) →

(
b(u− b(ϕ)

)
Tk(u− ϕ) a.e.

with
[
Tn(b(un))− Tn(b(ϕ))

]
Tk(un − ϕ) ≥ 0

and

Tn(b(ϕ))Tk(un − ϕ) → b(ϕ)Tk(u− ϕ) in L1(Ω).

In the same manner

lim inf
n→+∞

λ

∫

∂Ω

Tn(un)Tk(un − ϕ)dσ ≥ λ

∫

∂Ω

uTk(u− ϕ)dσ. (3.45)

For the fourth term of the left hand side of (3.43), we prove that

lim
n→+∞

ε

∫

Ω

[
|∇un|

p+−2∇un∇Tk(un − ϕ) + |un|
p+−2unTk(un − ϕ)

]
dx ≥ 0 as ε → 0. (3.46)

Setting l = k + ||ϕ||L∞(Ω) we have,

ε

∫

Ω

|∇un|
p+−2∇un∇Tk(un − ϕ)dx = ε

∫

{|un−ϕ|<k}

|∇Tl(un)|
p+−2∇Tl(un)∇

(
Tl(un)− ϕ

)
dx

= ε

∫

{|un−ϕ|<k}

|∇Tl(un)|
p+dx− ε

∫

{|un−ϕ|<k}

|∇Tl(un)|
p+−2∇Tl(un)∇ϕdx

≥ −ε

∫

{|un−ϕ|<k}

|∇Tl(un)|
p+−2∇Tl(un)∇ϕdx. (3.47)

Moreover, by taking v = Tl(un) in (3.3), we deduce that

ε

∫

Ω

[
|∇un|

p+−2∇un∇Tl(un) + |un|
p+−2unTl(un)

]
dx ≤ l

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
,

which implies that

ε

∫

Ω

|∇Tl(un)|
p+dx ≤ l

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Therefore, ε∇Tl(un) is uniformly bounded in Lp+(Ω). From, Assertion 4− (d), ∇Tl(un) converges

a.e. in Ω (up to a subsequence) to ∇Tl(u). So, by Vitali’s Theorem, ε∇Tl(un) converges to ε∇Tl(u)

in Lp+(Ω). Thus, ε|∇Tl(un)|
p+−2∇Tl(un)χ{|un−ϕ|<k} converges to ε|∇Tl(u)|

p+−2∇Tl(u)χ{|u−ϕ|<k}

in Lp′
+(Ω). Using (3.47), we obtain

lim
n→+∞

ε

∫

Ω

|∇un|
p+−2∇un∇Tk(un − ϕ)dx ≥ −ε

∫

{|u−ϕ|<k}

|∇Tl(u)|
p+−2∇Tl(u)∇ϕdx.

Therefore,

lim
n→+∞

ε

∫

Ω

|∇un|
p+−2∇un∇Tk(un − ϕ)dx ≥ 0, as ε → 0. (3.48)
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Now, we prove that

lim
n→+∞

ε

∫

Ω

|un|
p+−2unTk(un − ϕ)dx ≥ 0, as ε → 0.

We have
∫

Ω

|un|
p+−2unTk(un − ϕ)dx =

∫

Ω

(

|un|
p+−2un − |ϕ|p+−2ϕ

)

Tk(un − ϕ)dx

+

∫

Ω

|ϕ|p+−2ϕTk(un − ϕ)dx

≥

∫

Ω

|ϕ|p+−2ϕTk(un − ϕ)dx, (3.49)

since
(
|un|

p+−2un − |ϕ|p+−2ϕ
)
Tk(un − ϕ) is nonnegative.

Furthermore, Tk(un − ϕ) converges weakly∗ to Tk(u − ϕ) in L∞(Ω) and |ϕ|p+−2ϕ ∈ Lp′
+(Ω), so

lim
n→+∞

∫

Ω

|ϕ|p+−2ϕTk(un − ϕ)dx =

∫

Ω

|ϕ|p+−2ϕTk(u− ϕ)dx. (3.50)

Combining (3.49) and (3.50), we obtain

lim
n→+∞

ε

∫

Ω

|un|
p+−2unTk(un − ϕ)dx ≥ 0, as ε → 0. (3.51)

The relations (3.48) and (3.51) give us (3.46).

For the second term of the left hand side of (3.43), we recall that l = k + ||ϕ||L∞(Ω) and we get

∫

Ω

a(x, un,∇un).∇Tk(un − ϕ)dx =

∫

Ω

a(x, un,∇Tl(un)).∇(Tl(un)− ϕ)χ{|un−ϕ|<k}dx

=

∫

Ω

a(x, un,∇Tl(un)).∇Tl(un)χ{|un−ϕ|<k}dx−

∫

Ω

a(x, un,∇Tl(un)).∇ϕχ{|un−ϕ|<k}dx.

(3.52)

Moreover, a(x, un,∇Tl(un)).∇Tl(un)χ{|un−ϕ|<k} is nonnegative and converges a.e. in Ω to

a(x, u,∇Tl(u))∇Tl(u)χ{|u−ϕ|<k}. Thanks to Fatou’s Lemma, we get

lim inf
n→+∞

∫

Ω

a(x, un,∇Tl(un)).∇Tl(un)χ{|un−ϕ|<k}dx ≥

∫

Ω

a(x, u,∇Tl(u)).∇Tl(u)χ{|u−ϕ|<k}dx.

(3.53)

We now focus our attention on

∫

Ω

a(x, un,∇Tl(un))∇ϕχ{|un−ϕ|<k}.

Let us prove that a(x, un,∇Tl(un)).∇ϕχ{|un−ϕ|<k} is equi-integrable. Let E be a subset of Ω.

∫

E

a(x, un,∇Tl(un)).∇ϕχ{|un−ϕ|<k}dx ≤

∫

E

|a(x, un,∇Tl(un))||∇ϕ|dx

≤

∫

E

1

π′
n(.)

|a(x, un,∇Tl(un))|
π′
n(.)dx+

∫

E

1

πn(.)
|∇ϕ|πn(.)dx

≤ C1

∫

E

(
M(x) + |∇Tl(un)|

πn(.)
)
dx +

∫

E

|∇ϕ|πn(.)dx.
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Moreover,

∫

E

|∇ϕ|πn(.)dx =

∫

E∩{|∇ϕ|≤1}

|∇ϕ|πn(.)dx+

∫

E∩{|∇ϕ|>1}

|∇ϕ|πn(.)dx

≤ meas(E) +

∫

E

|∇ϕ|p+dx,

since |∇ϕ|p+ ,M ∈ L1(Ω) and |∇Tl(un)|
πn(.) is equi-integrable

(
using density argument for C∞(Ω)

and (3.4)
)
. Then, we obtain

lim
meas(E)→0

∫

E

a(x, un,∇Tl(un))∇ϕχ{|un−ϕ|<k}dx = 0.

Furthermore,

a(x, un,∇Tl(un))∇ϕχ{|un−ϕ|<k} → a(x, u,∇Tl(u)).∇ϕχ{|u−ϕ|<k} a.e. in Ω.

By applying Vitali’s Theorem, we obtain

lim
n→+∞

∫

Ω

a(x, un,∇Tl(un))∇ϕχ{|un−ϕ|<k}dx =

∫

Ω

a(x, u,∇Tl(u)).∇ϕχ{|u−ϕ|<k}dx. (3.54)

Using (3.52), (3.53) and (3.54) we get

lim inf
n→+∞

∫

Ω

a(x, un,∇un).∇Tk(un − ϕ)dx ≥

∫

Ω

a(x, u,∇Tl(u))∇(Tl(u)− ϕ)χ{|u−ϕ|<k}dx

=

∫

Ω

a(x, u,∇u)∇Tk(u − ϕ)dx. (3.55)

Now, we consider the right hand side of (3.43). For the first term of the right hand side of (3.43),

since fn → f in L1(Ω) and Tk(un − ϕ) ⇀∗ Tk(u − ϕ) in L∞(Ω), we have

lim
n→+∞

∫

Ω

fnTk(un − ϕ)dx =

∫

Ω

fTk(u− ϕ)dx. (3.56)

For the second term of the right hand side of (3.43), by using the fact that gn strongly converges

to g in L1(∂Ω), we obtain

lim
n→+∞

∫

∂Ω

gnTk(un − ϕ)dσ =

∫

∂Ω

gTk(u − ϕ)dσ, (3.57)

since

Tk(un − ϕ) ⇀∗ Tk(u − ϕ) in L∞(∂Ω), (3.58)

because un → u a.e. on ∂Ω.
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Using (3.44), (3.45), (3.46), (3.55), (3.56), (3.57) and (3.43), we get

∫

Ω

b(u)Tk(u− ϕ)dx +

∫

Ω

a(x, u,∇u).∇Tk(u− ϕ)dx +

∫

∂Ω

λuTk(u − ϕ)dσ

≤ lim inf
n→+∞

(∫

Ω

Tn(b(un))Tk(un − ϕ)dx +

∫

Ω

a(x, un,∇un).∇Tk(un − ϕ)dx

+

∫

∂Ω

λTn(un)Tk(un − ϕ)dσ + ε

∫

Ω

[
|∇un|

p+−2∇un∇Tk(un − ϕ) + |un|
p+−2unTk(un − ϕ)

]
dx

)

=

∫

Ω

fTk(u − ϕ)dx+

∫

∂Ω

gTk(u− ϕ)dσ, as ε → 0,

which is equivalent to

∫

Ω

b(u)Tk(u− ϕ)dx +

∫

Ω

a(x, u,∇u).∇Tk(u− ϕ)dx +

∫

∂Ω

λuTk(u− ϕ)dσ

≤

∫

Ω

fTk(u− ϕ)dx +

∫

∂Ω

gTk(u − ϕ)dσ,

(3.59)

for ϕ ∈ C∞(Ω).

As π(.) verifies the log-Hölder condition (2.1), C∞(Ω) is dense in the space W 1,π(.)(Ω). Moreover,

W 1,π(.)(Ω) →֒ W 1,p−(Ω) →֒ L∞(Ω), since π(.) ≥ p− > N and Ω is a bounded open domain with

Lipschitz boundary ∂Ω. Therefore, the inequality (3.59) holds true for ϕ ∈ W 1,π(.)(Ω) ∩ L∞(Ω).

Hence, u is an entropy solution of (1.1). �

Now, we state the uniqueness result of entropy solution. This result uses the same arguments

as [2]-Theorem 2.8.

Theorem 3.5. Assume that b is strictly increasing. Assume that a = a(x, z, η) satisfies (A3)−(A6)

and M constant. Moreover, a satisfies:

for all bounded subset K of R× R
N , there exists a constant C(K) such that

a.e. x ∈ Ω, for all (z, η), (z̃, η) ∈ K,

|a(x, z, η)− a(x, z̃, η)| ≤ C(K)|z − z̃|. (3.60)

Finally, suppose the following regularity property:

for all f ∈ L∞(Ω) and g ∈ L∞(∂Ω)

there exists an entropy solution of (1.1),

which is Lipchitz continuous on Ω. (3.61)

Then, for all f ∈ L1(Ω) and g ∈ L1(∂Ω) the problem (1.1) admits a unique entropy solution.
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Remark 3.6. As in [2, Theorem 2.8], the condition (3.61) goes back to idea of [3]. Moreover, in

the Theorem 3.5 the relation (3.60) is used to obtain the inequality (3.69) below.

Proof. The proof of this theorem is done in two steps.

Step 1. A priori estimates.

Lemma 3.7. If v is an entropy solution of (1.1), there exists a positive constant C such that

ρp(.,v(.))
(
|∇v|χF

)
≤ Ck,

where F = {h− k < |v| < h}, h > k > 0.

Proof. Let ϕ = Th−k(v) as test function in the entropy inequality (3.1), we get
∫

Ω

a(x, v,∇v).∇Tk(v − Th−k(v))dx +

∫

Ω

b(v)Tk(v − Th−k(v))dx + λ

∫

∂Ω

vTk(v − Th−k(v))dσ

≤

∫

Ω

fTk(v − Th−k(v))dx +

∫

∂Ω

gTk(v − Th−k(v))dσ.

Thus, ∫

{h−k<|v|<h}

a(x, v,∇v).∇Tk(v − Th−k(v))dx ≤ k
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)

and using (A6), we have
∫

F

|∇v|p(x,v(x))dx ≤ kC2

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Consequently,

ρp(.,v(.))
(
|∇v|χF

)
≤ Ck, where C = C2

(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
. �

We give the following lemma.

Lemma 3.8. If u is an entropy solution of (1.1), then

meas
(
{|u| > h}

)
≤

||f ||L1(Ω) + ||g||L1(∂Ω)

min
(
b(h), |b(−h)|

) , ∀h ≥ 1.

Proof. Let us take ϕ = 0 and k = h in entropy inequality (3.1).

Since ∫

Ω

a(x, u,∇u).∇Th(u)dx+ λ

∫

∂Ω

uTh(u)dσ ≥ 0,

the relation (3.1) gives
∫

Ω

b(u)Th(u)dx ≤

∫

Ω

fTh(u)dx+

∫

∂Ω

gTh(u)dσ.
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Then,
∫

{|u|≤h}

b(u)Th(u)dx+

∫

{|u|>h}

b(u)Th(u)dx ≤ h
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
,

or

∫

{|u|>h}

b(u)Th(u)

h
dx =

∫

{u>h}

b(u)dx+

∫

{u<−h}

−b(u)dx ≤
(
||f ||L1(Ω) + ||g||L1(∂Ω)

)
.

Therefore,
∫

{|u|>h}

|b(u)|dx ≤ ||f ||L1(Ω) + ||g||L1(∂Ω).

Since b is nondecreasing, we deduce

∫

{|u|>h}

min(b(h), |b(−h)|)dx ≤

∫

{|u|>h}

|b(u)| ≤ ||f ||L1(Ω) + ||g||L1(∂Ω), ∀h ≥ 1.

So,

meas
(
{|u| > h}

)
≤

||f ||L1(Ω) + ||g||L1(∂Ω)

min
(
b(h), |b(−h)|

) , ∀h ≥ 1. �

Step 2. Uniqueness.

The existence has already been proved. Now, we show the uniqueness. For more details see [2]-

Proof of Theorem 2.8.

Let u be a Lipschitz continuous entropy solution of (1.1) with f ∈ L∞(Ω), g ∈ L∞(∂Ω) and v be

an entropy solution, with f̂ ∈ L1(Ω), ĝ ∈ L1(∂Ω).

Since Ω is open bounded domain with smooth boundary ∂Ω, the space of Lipschitz functions

C0,1(Ω) and W 1,∞(Ω) are homeomorphic and they can be identified. Therefore, u belongs to

W 1,∞(Ω). Thus, for all h > 0, we can write the entropy inequality corresponding to the solution

u, with Th(v) as a test function and to the solution v, with Th(u) as a test function. For all k > 0,

we get







∫

Ω

a(x, u,∇u).∇Tk(u − Th(v))dx +

∫

Ω

b(u)Tk(u− Th(v))dx

+λ

∫

∂Ω

uTk(u − Th(v))dσ ≤

∫

Ω

fTk(u− Th(v))dx +

∫

∂Ω

gTk(u− Th(v))dσ
(3.62)

and







∫

Ω

a(x, v,∇v).∇Tk(v − Th(u))dx +

∫

Ω

b(v)Tk(v − Th(u))dx

+λ

∫

∂Ω

vTk(v − Th(u))dσ ≤

∫

Ω

f̂Tk(v − Th(u))dx +

∫

∂Ω

ĝTk(v − Th(u))dσ.
(3.63)
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Adding (3.62) and (3.63) we obtain






∫

Ω

a(x, u,∇u).∇Tk(u − Th(v))dx +

∫

Ω

a(x, v,∇v).∇Tk(v − Th(u))dx

+

∫

Ω

b(u)Tk(u − Th(v))dx +

∫

Ω

b(v)Tk(v − Th(u))dx

+λ

∫

∂Ω

uTk(u− Th(v))dσ + λ

∫

∂Ω

vTk(v − Th(u))dσ

≤

∫

Ω

[
fTk(u− Th(v)) + f̂Tk(v − Th(u))

]
dx

+

∫

∂Ω

[
gTk(u− Th(v)) + ĝTk(v − Th(u))

]
dσ.

(3.64)

Set A = {0 < |u− v| < k, |v| ≤ h}; B = A ∩ {|u| ≤ h}; C = A ∩ {|u| > h} and

A′ = {0 < |v−u| < k, |u| ≤ h}; B′ = A′ ∩{|v| ≤ h}; C′ = A′ ∩ {|v| > h}. We start with the first

integral in (3.64). We have
∫

{0<|u−Th(v)|<k}

a(x, u,∇u).∇Tk(u− Th(v))dx

=

∫

{0<|u−Th(v)|<k}∩{|v|≤h}

a(x, u,∇u).∇Tk(u− Th(v))dx

+

∫

{0<|u−Th(v)|<k}∩{|v|>h}

a(x, u,∇u).∇Tk(u− Th(v))dx

=

∫

{0<|u−v|<k}∩{|v|≤h}

a(x, u,∇u).∇(u− v)dx

+

∫

{0<|u−hsign(v)|<k}∩{|v|>h}

a(x, u,∇u).∇udx

≥

∫

A

a(x, u,∇u)∇(u− v)dx

=

∫

B

a(x, u,∇u)∇(u − v)dx+

∫

C

a(x, u,∇u)∇(u− v)dx.

Then, we get 





∫

{0<|u−Th(v)|<k}

a(x, u,∇u).∇Tk(u− Th(v))dx

≥

∫

B

a(x, u,∇u)∇(u− v)dx −

∫

C

a(x, u,∇u)∇vdx.

(3.65)

Now we use the fact that ∇u is bounded. By assumption of the theorem (M is constant),

|a(x, u,∇u)| ≤ C(|∇u|p(x,u(x)) + 1) ∈ L∞(Ω). Therefore, there exists a constant K such that
∣
∣
∣
∣

∫

C

a(x, u,∇u)∇vdx

∣
∣
∣
∣

≤

∫

C

|a(x, u,∇u)||∇v|dx

≤ K

∫

C

|∇v|dx ≤ K

∫

{h−k<|v|<h}

|∇v|dx, (3.66)

since C ⊂ {h− k < |v| < h}.

Thanks to Lemma 3.8, lim
h→+∞

meas({h− k < |v| < h}) = 0 and by Lemma 3.7, |∇v|χF ∈ L1(Ω).
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So, the right hand side of (3.66) converges to zero, as h goes to infinity.

Consequently, the second integral of the right hand side of (3.65) converges to zero, as h goes to

infinity. Then, we can write that

∫

{0<|u−Th(v)|<k}

a(x, u,∇u).∇Tk(u− Th(v))dx ≥

∫

B

a(x, u,∇u).∇(u − v)dx

+ Ih, with lim
h→+∞

Ih = 0.

As B = B′, we may adopt the same procedure to treat the second integral of (3.64) to obtain

∫

{0<|v−Th(u)|<k}

a(x, v,∇v).∇Tk(v − Th(u))dx ≥ −

∫

B

a(x, v,∇v).∇(u − v)dx

+ Jh, with lim
h→+∞

Jh = 0.

For the other terms in the left hand side of (3.64), we denote by

Kh =

∫

Ω

b(u)Tk(u− Th(v))dx +

∫

Ω

b(v)Tk(v − Th(u))dx

and

Lh = λ

∫

∂Ω

uTk(u− Th(v))dσ + λ

∫

∂Ω

vTk(v − Th(u))dσ.

We have

b(u)Tk(u − Th(v)) → b(u)Tk(u − v) a.e. in Ω as h → +∞

and

|b(u)Tk(u − Th(v))| ≤ k|b(u)| ∈ L1(Ω).

Then, by Lebesgue dominated convergence Theorem, we get

lim
h→+∞

∫

Ω

b(u)Tk(u− Th(v))dx =

∫

Ω

b(u)Tk(u− v)dx

and

lim
h→+∞

∫

Ω

b(v)Tk(v − Th(u))dx =

∫

Ω

b(v)Tk(v − u)dx.

Then,

lim
h→+∞

Kh =

∫

Ω

(b(u)− b(v))Tk(u− v)dx.

Similarly, we obtain

lim
h→+∞

Lh = λ

∫

∂Ω

(u− v)Tk(u− v)dσ.

Now, we consider the right hand side of (3.64), we have

lim
h→+∞

[
fTk(u− Th(v)) + f̂Tk(v − Th(u))

]
= (f − f̂)Tk(u− v) a.e. in Ω
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and
∣
∣fTk(u− Th(v)) + f̂Tk(v − Th(u))

∣
∣ ≤ k(|f |+ |f̂ |) ∈ L1(Ω).

By Lebesgue dominated convergence Theorem, we get

lim
h→+∞

∫

Ω

f
[
Tk(u − Th(v)) + Tk(v − Th(u))

]
dx =

∫

Ω

(
f − f̂

)
Tk(u − v)dx.

Similarly, we have

lim
h→+∞

∫

∂Ω

g
[
Tk(u− Th(v)) + ĝTk(v − Th(u))

]
dσ =

∫

∂Ω

(
g − ĝ

)
Tk(u− v)dσ.

After passing to the limit as h goes to +∞ in (3.64), we get







∫

{0<|u−v|<k}

(
a(x, u,∇u)− a(x, v,∇v)

)
∇(u − v)dx

+

∫

Ω

(b(u)− b(v))Tk(u − v)dx+ λ

∫

∂Ω

(u − v)Tk(u− v)dσ

≤

∫

Ω

(
f − f̂

)
Tk(u− v)dx +

∫

∂Ω

(
g − ĝ

)
Tk(u− v)dσ,

(3.67)

which is equivalent to






∫

{0<|u−v|<k}

(
a(x, u,∇v) − a(x, v,∇v)

)
∇(u− v)dx

+

∫

{0<|u−v|<k}

(
a(x, u,∇u)− a(x, u,∇v)

)
∇(u− v)dx

+

∫

Ω

(b(u)− b(v))Tk(u − v)dx+ λ

∫

∂Ω

(u − v)Tk(u− v)dσ

≤

∫

Ω

(
f − f̂

)
Tk(u− v)dx +

∫

∂Ω

(
g − ĝ

)
Tk(u− v)dσ.

(3.68)

Dividing (3.68) by k and letting k goes to 0, we have







lim
k→0

1

k

∫

{0<|u−v|<k}

(
a(x, u,∇v)− a(x, v,∇v)

)
∇(u − v)dx

+ lim
k→0

1

k

∫

{0<|u−v|<k}

(
a(x, u,∇u)− a(x, u,∇v)

)
∇(u − v)dx

+

∫

Ω

|b(u)− b(v)|dx + λ

∫

∂Ω

|u− v|dσ

≤

∫

Ω

(
f − f̂

)
sign(u− v)dx+

∫

∂Ω

(
g − ĝ

)
sign(u− v)dσ.

(3.69)

Thanks to the relation (3.60), the first integral of (3.69) goes to 0 as k → 0 (See [2], proof of

Theorem 2.8-Step 2). Thus, we obtain







lim
k→0

1

k

∫

{0<|u−v|<k}

(
a(x, u,∇u)− a(x, u,∇v)

)
∇(u − v)dx

+

∫

Ω

|b(u)− b(v)|dx + λ

∫

∂Ω

|u− v|dσ

≤

∫

Ω

|f − f̂
∣
∣dx +

∫

∂Ω

∣
∣g − ĝ

∣
∣dσ.

(3.70)
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Since, the three integral of left-hand in (3.70) are positive, we deduce that

∫

Ω

|b(u)− b(v)|dx + λ

∫

∂Ω

|u− v|dσ ≤

∫

Ω

|f − f̂
∣
∣dx+

∫

∂Ω

∣
∣g − ĝ

∣
∣dσ. (3.71)

Let us take a sequence (fi)i∈N ⊂ L∞(Ω) and (gi)i∈N ⊂ L∞(∂Ω) and let (ui)i∈N be the corresponding

sequence of Lipschitz continuous entropy solutions. By (3.71), we have

∫

Ω

|b(u)− b(v)|dx + λ

∫

∂Ω

|u− v|dσ ≤

∫

Ω

[
|b(u)− b(ui)|+ |b(v)− b(ui)|

]
dx

+ λ

∫

∂Ω

[
|u− ui|+ |v − ui|

]
dσ

≤

∫

Ω

[
|f − fi|+ |f̂ − fi|

]
dx+

∫

∂Ω

[
|g − gi|+ |ĝ − gi|

]
dσ, (3.72)

so that at the limit as i → ∞ in left hand-side of (3.72) and using the density argument (L∞(Ω)

and L∞(∂Ω) are dense (respectively) in L1(Ω) and L1(∂Ω)), we infer that

b(u) = b(v) a.e. in Ω and u = v a.e. on ∂Ω.

Hence,

u = v a.e. in Ω and u = v a.e. on ∂Ω.

Since b is assumed strictly increasing. �
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1 Introduction

To investigate many different fields of science and engineering, the fractional calculus represents a

powerful tool, with many applications in mathematical physics, hydrology, finance, astrophysics,

thermodynamics, statistical mechanics, biophysics, control theory, cosmology, bioengineering and

so on, [5, 6].

In recent years, there has been an important works in ordinary and partial fractional differential

equations. For the Caputo fractional-order ordinary differential equations case, see Kilbas et al.

[7], Miller and Ross [8]. In addition, Yunru Bai and Hua Kong have treated the existence of

solution for nonlinear Caputo-Hadamard fractional differential equations in [9]. For the Caputo

fractional-order partial differential equations case, see the work of Tian Liang Guo and KanJian

Zhang in [10]. Furthermore, Xianmin Zhang has investigated the Caputo-Hadamard partial frac-

tional differential equations in [11]. The choice of an appropriate fractional derivative (or integral)

depends on the considered system, and for this reason there are a large number of works devoted

to different fractional operators.

Recently, U. Katugampola presented new types of fractional operators, which generalize both

the Riemann-Liouville and Hadamard fractional operators [4]. Although the Katugampola frac-

tional integral operator is an Erdélyi-Kober type operator [13] author in [14] argued that is not

possible to obtain Hadamard equivalence operators from Erdélyi-Kober type operators. In this

sense, Almeida, Malinowska and Odzijewicz [2] introduced a new fractional operator, called the

Caputo-Katugampola derivative, which generalizes the concept of Caputo and Caputo-Hadamard

fractional derivatives. It turns out that, the new operator is the left inverse of the Katugam-

pola fractional integral and keeps some of the fundamental properties of the Caputo and Caputo-

Hadamard fractional derivatives. Such derivative is the generalization of the Caputo and Caputo-

Hadamard fractional derivative. The existence and uniqueness of the solution of the ordinary

Caputo-Katugampola differential equations is given in [3]. A. Cernea in [12] studied a Darboux

problem associated to a fractional hyperbolic integro-differential inclusion defined by Caputo-

Katugampola fractional derivative and several existence results for this problem are proved.

In this paper, we study the existence and uniqueness of solutions of the following partial

differential equation with Caputo-Katugampola fractional derivative

CD
α,ρ

a+ u (x, y) = f (x, y, u (x, y)) , (x, y) ∈ J = [a1, b1]× [a2, b2] , (1.1)

u (x, a2) = ϕ (x) , x ∈ [a1, b1] ,

u (a1, y) = ψ (y) , y ∈ [a2, b2] ,

ϕ (a1) = ψ (a2) ,

(1.2)
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where f : J × R → R, ϕ : [a1, b1] → R and ψ : [a2, b2] → R are given continuous functions.

The rest of the paper is organized as follows. Some definitions and preliminaries are presented

in Sect. 2. Finally, the existence and uniqueness results, is given in Sect. 3.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout

this paper.

Definition 1. [2, 3, 4] Given α > 0, ρ > 0 and an interval [a, b] of R, where 0 < a < b. The

Katugampola fractional integral of a function u ∈ L1([a, b]) is defined by

I
α,ρ

a+ u (t) =
ρ1−α

Γ (α)

t
∫

a

sρ−1u (s)

(tρ − sρ)
1−α

ds,

where Γ is the Gamma function.

Definition 2. [2, 3, 4] Given α > 0, ρ > 0 and an interval [a, b] of R, where 0 < a < b. The
Katugampola fractional derivative is defined by

D
α,ρ

a+ u (t) =
ρα

Γ (1− α)
t1−ρ d

dt

t
∫

a

sρ−1u (s)

(tρ − sρ)α
ds.

Definition 3. [2, 3, 4] Given 0 < α < 1, ρ > 0 and an interval [a, b] of R, where 0 < a < b. The

Caputo-Katugampola fractional derivative is defined by

CD
α,ρ

a+ u (t) =D
α,ρ

a+ [u (t)− u (a)]

=
ρα

Γ (1− α)
t1−ρ d

dt

t
∫

a

sρ−1[u (s)− u(a)]

(tρ − sρ)
α ds.

Definition 4. Let 0 < ai < bi, i = 1, 2 reals numbers, a = (a1, a2) and u : [a1, b1] × [a2, b2] → R

be an integrable function. The mixed Katugampola fractional integrals of order α = (α1, α2) , and

parameter ρ = (ρ1, ρ2) is defined by

I
α,ρ

a+ u (x, y) =
ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

sρ1−1tρ2−1

(xρ1 − sρ1)
1−α1 (yρ2 − tρ2)

1−α2
u (s, t) dtds.

where α1, α2, ρ1 and ρ2 are strictly positives.

Definition 5. Let 0 < ai < bi, i = 1, 2 reals numbers, a = (a1, a2) and u : [a1, b1] × [a2, b2] → R

be a function. The mixed Katugampola fractional derivative of order α = (α1, α2) , and parameter
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ρ = (ρ1, ρ2) is defined by

D
α,ρ

a+ u (x, y) = x1−ρ1y1−ρ2D2
x,yI

1−α,ρ

a+ u (x, y)

=
x1−ρ1y1−ρ2ρα1

1 ρα2

2

Γ (1− α1) Γ (1− α2)
D2

x,y

∫ x

a
+

1

∫ y

a
+

2

sρ1−1tρ2−1

(xρ1 − sρ1)α1 (yρ2 − tρ2)α2

×u (s, t) dtds.

Where (α1, α2) ∈ (0, 1)
2
, D2

x,y = ∂2

∂x∂y
and ρ1, ρ2 are strictly positives.

Definition 6. Let 0 < ai < bi, i = 1, 2 reals numbers, a = (a1, a2) and u : [a1, b1] × [a2, b2] → R

be a function. The mixed Caputo-Katugampola fractional derivative of order α = (α1, α2) , and

parameter ρ = (ρ1, ρ2) is defined by

CD
α,ρ

a+ u (x, y) = D
α,ρ

a+ (u (x, y)− u (x, a2)− u (a1, y) + u (a1, a2))

where (α1, α2) ∈ (0, 1)
2
and ρ1, ρ2 are strictly positives.

Lemma 2.1. Let 0 < ai < bi, i = 1, 2 reals numbers, a = (a1, a2) and u : [a1, b1]× [a2, b2] → R is

an absolutely continuous function. The mixed Caputo-Katugampola fractional derivative of order

α = (α1, α2) , and parameter ρ = (ρ1, ρ2) is given by

CD
α,ρ

a+ u (x, y) = I
1−α,ρ

a+

(

x1−ρ1y1−ρ2D2
x,yu (x, y)

)

=
ρα1

1 ρα2

2

Γ (1− α1) Γ (1− α2)

∫ x

a
+

1

∫ y

a
+

2

D2
s,tu (s, t)

(xρ1 − sρ1)
α1 (yρ2 − tρ2)

α2
dtds

almost everywhere, where (α1, α2) ∈ (0, 1)
2
, D2

s,t =
∂2

∂s∂t
and ρ1, ρ2 are strictly positives.

Lemma 2.2. Let 0 < ai < bi, i = 1, 2 reals numbers, a = (a1, a2) and u : [a1, b1]× [a2, b2] → R be

an integrable function. Then

I
α,ρ

a+ I
β,ρ

a+ u (x, y) = I
α+β,ρ

a+ u (x, y) (2.1)

almost everywhere, where α = (α1, α2) , β = (β1, β2) and parameter ρ = (ρ1, ρ2). If additionally u

is a continuous function, then the identity (2.1) holds everywhere.
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Proof. Using Fubini’s Theorem we get

I
α,ρ

a+ I
β,ρ

a+ u (x, y) =
ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

s
ρ1−1
1 s

ρ2−1
2 I

β,ρ

a+ u (s1, s2)

(xρ1 − s
ρ1

1 )
1−α1 (yρ2 − s

ρ2

2 )
1−α2

ds2ds1

=
ρ
1−β1

1 ρ
1−β2

2

Γ (β1) Γ (β2)

ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

s
ρ1−1
1 s

ρ2−1
2

(xρ1 − s
ρ1

1 )
1−α1 (yρ2 − s

ρ2

2 )
1−α2

×

∫ s1

a
+

1

∫ s2

a
+

2

t
ρ1−1
1 t

ρ2−1
2

(sρ1

1 − t
ρ1

1 )
1−β1 (sρ2

2 − t
ρ2

2 )
1−β2

u (t1, t2) dt2dt1ds2ds1

=
ρ
1−β1

1 ρ
1−β2

2

Γ (β1) Γ (β2)

ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

t
ρ1−1
1 t

ρ2−1
2 u (t1, t2)× (2.2)

∫ x

t1

∫ y

t2

s
ρ1−1
1 s

ρ2−1
2 ds2ds1dt2dt1

(xρ1 − s
ρ1

1 )
1−α1 (yρ2 − s

ρ2

2 )
1−α2 (sρ1

1 − t
ρ1

1 )
1−β1 (sρ2

2 − t
ρ2

2 )
1−β2

.

Using the change of variables

x =
(sρ1

1 − t
ρ1

1 )
1−β1

(xρ1 − t
ρ1

1 )
1−α1

and y =
(sρ2

2 − t
ρ2

2 )
1−β2

(yρ2 − t
ρ2

2 )1−α2
,

we get
∫ x

t1

∫ y

t2

s
ρ1−1
1 s

ρ2−1
2

(xρ1 − s
ρ1

1 )
1−α1 (yρ2 − s

ρ2

2 )
1−α2

1

(sρ1

1 − t
ρ1

1 )
1−β1 (sρ2

2 − t
ρ2

2 )
1−β2

ds2ds1

=

∫ x

t1

s
ρ1−1
1

(xρ1 − s
ρ1

1 )
1−α1 (sρ1

1 − t
ρ1

1 )
1−β1

ds1 ×

∫ y

t2

s
ρ2−1
2

(yρ2 − s
ρ2

2 )
1−α2 (sρ2

2 − t
ρ2

2 )
1−β2

ds2

=
(xρ1 − t

ρ1

1 )

ρ1

(yρ2 − t
ρ2

2 )

ρ2

∫ 1

0

(1− x)
α1−1

xβ1dx

∫ 1

0

(1− y)
α1−1

yβ1dy

=
(xρ1 − t

ρ1

1 )

ρ1

(yρ2 − t
ρ2

2 )

ρ2
B (α1, β1)B (α2, β2)

=
(xρ1 − t

ρ1

1 )

ρ1

(yρ2 − t
ρ2

2 )

ρ2

Γ (α1) Γ (β1)

Γ (α1 + β1)

Γ (α2) Γ (β2)

Γ (α2 + β2)
. (2.3)

From (2.2) and (2.3) we obtain (2.1).

Lemma 2.3. Let 0 < ai < bi, i = 1, 2 reals numbers, a = (a1, a2) and u : [a1, b1]× [a2, b2] → R be

an integrable function. Then

D
α,ρ

a+ I
α,ρ

a+ u (x, y) = u (x, y)

almost everywhere, where α = (α1, α2) ∈ (0, 1)
2
and parameter ρ = (ρ1, ρ2).

Proof. From Lemma (2.2), we get

D
α,ρ

a+ I
α,ρ

a+ u (x, y) = x1−ρ1y1−ρ2D2
x,yI

1−α,ρ

a+ I
α,ρ

a+ u (x, y)

= x1−ρ1y1−ρ2D2
x,yI

1,ρ
a+ u (x, y)

= u (x, y) .
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3 Existence and uniqueness results

For the existence and uniqueness of solutions for the problem (1.1)-(1.2) we need the following

lemma.

Lemma 3.1. The function u ∈ C (J) is a solution of fractional order problem (1.1)-(1.2) if and

only if

u (x, y) = ϕ (x) + ψ (y)− ϕ (a1) + I
α,ρ

a+ f (x, y, u (x, y)) . (3.1)

Proof. First suppose that u is a solution of the integral equation (3.1). Applied CD
α,ρ

a+ and using

Lemma 2.3 we obtain that u solves the the equation (1.1). Since the integral is zero when x = a1,

or y = a2, then the initial conditions in (1.2) are satisfied. Hence u solves the problem (1.1)-(1.2).

Conversly, if u is a solution of the problem (1.1)-(1.2). Let

h (x, y) = f (x, y, u (x, y))

= D
α,ρ

a+ (u (x, y)− u (x, a2)− u (a1, y) + u (a1, a2))

= x1−ρ1y1−ρ2D2
x,yI

1−α,ρ

a+ [u (x, y)− u (x, a2)− u (a1, y) + u (a1, a2)] . (3.2)

Applying the operator I1,ρ
a+ to (3.2), we get

I
1,ρ
a+ h (x, y) = I

1−α,ρ

a+ [u (x, y)− u (x, a2)− u (a1, y) + u (a1, a2)] .

Applying the operator D1−α,ρ

a+ to this equation we find

[u (x, y)− u (x, a2)− u (a1, y) + u (a1, a2)] = D
1−α,ρ

a+ I
1,ρ
a+ h (x, y)

=
(

x1−ρ1y1−ρ2
)

D2
x,yI

α,ρ

a+ I
1,ρ
a+ h (x, y)

= I
α,ρ

a+ h (x, y) .

Hence, the proof is complete.

3.1 Existence of solutions

In this subsection we study the existence of solutions for the problem (1.1)-(1.2).

Theorem 3.1. Let k > 0, h∗1 > a1 and h∗2 > a2.

Define

G = {(x, y, u) : (x, y) ∈ [a1, h
∗

1]× [a2, h
∗

2] , |u− ϕ (x) − ψ (y) + ϕ (a1)| ≤ k} ,

M = sup
(x,y,u)∈G

|f (x, y, u)|
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and

(h1, h2) =











(h∗1, h
∗

2) if M = 0,
(

min

(

h∗1,

(

k
1
2 ρ

α1
1

Γ(α1+1)

M
1
2

)
1

α1

)

,min

(

h∗2,

(

k
1
2 ρ

α2
2

Γ(α2+1)

M
1
2

)
1

α2

))

otherwise.

Then, there exists a function u ∈ C [a1, h1]× [a2, h2] that solves the problem (1.1)-(1.2).

Proof. If M = 0 then f (x, y, u) = 0, for all (x, y, u) ∈ G. In this case it is clear that the function

u : [a1, h1]× [a2, h2] → R with u (x, y) = ϕ (x) + ψ (y) − ϕ (a1) is a solution of the problem (1.1)-

(1.2).

For M 6= 0, using Lemma 3.1 we obtain that the problem (1.1)-(1.2) is equivalent to the Volterra

integral equation (3.1).

Define the function T by

T (x, y) = ϕ (x) + ψ (y)− ϕ (a1) . (3.3)

and the set U by

U = {u ∈ C ([a1, h1]× [a2, h2]) , ‖u− T ‖
∞

≤ k} . (3.4)

The set U is nonempty since T ∈ U . It is clear that U is a closed and convex subset of the Banach

space of all continuous functions on [a1, h1]× [a2, h2].

We define the operator A on this set U by

(Au) (x, y) = T (x, y) +
ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

sρ1−1tρ2−1f (s, t, u (s, t))

(xρ1 − sρ1)
1−α1 (yρ2 − tρ2)

1−α2
dtds. (3.5)

We have to show that A has a fixed point. This is done through the Schauder’s Fixed Point

Theorem.

It is easy to see that A is continuous. Now we show that A is defined to U into itself, let u ∈ U

and (x, y) ∈ [a1, h1]× [a2, h2] then

|(Au) (x, y)− T (x, y)| =
ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

sρ1−1tρ2−1 |f (s, t, u (s, t))|

(xρ1 − sρ1)
1−α1 (yρ2 − tρ2)

1−α2
dtds

≤
Mρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x

a
+

1

∫ y

a
+

2

sρ1−1tρ2−1

(xρ1 − sρ1)1−α1 (yρ2 − tρ2)1−α2
dtds

≤
M

Γ (α1 + 1)Γ (α2 + 1)

(

xρ1 − a
ρ1

1

ρ1

)α1
(

yρ2 − a
ρ2

2

ρ2

)α2

≤
M

ρα1

1 ρα2

2 Γ (α1 + 1)Γ (α2 + 1)
h
ρ1α1

1 h
ρ2α2

2

≤
M

ρα1

1 ρα2

2 Γ (α1 + 1)Γ (α2 + 1)
hα1

1 hα2

2

≤
M

ρα1

1 ρα2

2 Γ (α1 + 1)Γ (α2 + 1)

kρα1

1 ρα2

2 Γ (α1 + 1)Γ (α2 + 1)

M

≤ k.
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Thus, we have Au ∈ U if u ∈ U . We will now show that AU = {Au : u ∈ U} is relatively compact.

This is done by the using Arzela-Ascoli Theorem.

Firstly, we show that A(U) is uniformly bounded. Indeed, let u ∈ U and (x, y) ∈ [a1, h1]× [a2, h2]

and from the previous step we get

‖Au‖
∞

≤ ‖T ‖
∞

+ k.

Secondly, we show that A(U) is equicontinuous. Indeed, let (x1, y1) ∈ [a1, h1]× [a2, h2] , (x2, y2) ∈

[a1, h1]× [a2, h2] such that x1 < x2 and y1 < y2, we have

|(Au) (x1, y1)− (Au) (x2, y2)|

≤ |T (x1, y1)− T (x2, y2)|+
Mρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x1

a
+

1

∫ y1

a
+

2

sρ1−1tρ2−1

(xρ1

1 − sρ1)
1−α1 (yρ2

1 − tρ2)
1−α2

−
sρ1−1tρ2−1

(xρ1

2 − sρ1)
1−α1 (yρ2

2 − tρ2)
1−α2

dtds

+
Mρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x1

a
+

1

∫ y2

y1

sρ1−1tρ2−1

(xρ1

2 − sρ1)
1−α1 (yρ2

2 − tρ2)
1−α2

dtds

+
Mρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x2

x1

∫ y1

a
+

2

sρ1−1tρ2−1

(xρ1

2 − sρ1)
1−α1 (yρ2

2 − tρ2)
1−α2

dtds

+
Mρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ x2

x1

∫ y2

y1

sρ1−1tρ2−1

(xρ1

2 − sρ1)
1−α1 (yρ2

2 − tρ2)
1−α2

dtds

≤ |T (x1, y1)− T (x2, y2)|

+
3M

ρα1

1 ρα2

2 Γ (α1) Γ (α2)

[

(xρ1

2 − a
ρ1

1 )
α1 (yρ2

2 − y
ρ2

1 )
α2 + (yρ2

2 − a
ρ2

2 )
α2 (xρ1

2 − x
ρ1

1 )
α1
]

Hence, A(U) is equicontinous, since T is uniformly continuous in [a1, h1]×[a2, h2]. As a consequence

of the Schauder’s Fixed Point Theorem, we deduce that A has a fixed point u in U. This fixed

point is the required solution of the problem (1.1)-(1.2). Hence, the proof is complete.

3.2 Uniqueness of solutions

In this subsection we discuss the uniqueness results for the problem (1.1)-(1.2).

Let u1, u2 ∈ C ([a1, h1]× [a2, h2]) , and (x, y) ∈ [a1, h1]× [a2, h2].

Suppose there exists a constant L > 0 independent of x, y, u1, and u2 such that

|f (x, y, u1)− f (x, y, u2)| ≤ L |u1 − u2| , (3.6)

then we have

‖(Au1)− (Au2)‖C([a1,x]×[a2,y])
≤
L ‖u1 − u2‖C([a1,x]×[a2,y])

Γ (α1 + 1)Γ (α2 + 1)

(

xρ1

ρ1

)α1
(

yρ2

ρ2

)α2

. (3.7)
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Indeed, let u1, u2 ∈ C ([a1, h1]× [a2, h2]) , (x, y) ∈ [a1, h1] × [a2, h2] and (v, w) ∈ [a1, x] × [a2, y],

we have

|(Au1) (v, w) − (Au2) (v, w)|

=
ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ v

a
+

1

∫ w

a
+

2

sρ1−1tρ2−1 |f (s, t, u1 (s, t))− f (s, t, u2 (s, t))|

(vρ1 − sρ1)1−α1 (wρ2 − tρ2)1−α2
dtds

≤
Lρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ v

a
+

1

∫ w

a
+

2

sρ1−1tρ2−1

(vρ1 − sρ1)
1−α1 (wρ2 − tρ2)

1−α2
|u1 (s, t)− u2 (s, t)| dtds

≤
Lρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)
‖u1 − u2‖C([a1,x]×[a2,y])

∫ v

a
+

1

∫ w

a
+

2

sρ1−1tρ2−1

(vρ1 − sρ1)
1−α1 (wρ2 − tρ2)

1−α2
dtds

≤
L

Γ (α1 + 1)Γ (α2 + 1)
‖u1 − u2‖C([a1,x]×[a2,y])

(

vρ1

ρ1

)α1
(

wρ2

ρ2

)α2

≤
L

Γ (α1 + 1)Γ (α2 + 1)
‖u1 − u2‖C([a1,x]×[a2,y])

(

xρ1

ρ1

)α1
(

yρ2

ρ2

)α2

.

From the above inequality we get (3.7).

‖(Au1)− (Au2)‖C([a1,x]×[a2,y])
≤
L ‖u1 − u2‖C([a1,x]×[a2,y])

Γ (α1 + 1)Γ (α2 + 1)

(

xρ1

ρ1

)α1
(

yρ2

ρ2

)α2

.

Next, we have the following result

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 are satisfied. Also let j ∈ N, (x, y) ∈

[a1, h1]× [a2, h2] and u1, u2 ∈ U. Suppose f satisfies the Lipschitz condition with respect to the third

variable with the Lipschitz constant L. Then

∥

∥Aju1 −Aju2
∥

∥

C([a1,x]×[a2,y])
≤

(

xρ1

ρ1

)α1j (
yρ2

ρ2

)α2j

Γ (1 + α1j) Γ (1 + α2j)
‖u1 − u2‖C([a1,x]×[a2,y])

. (3.8)

Proof. We will prove (3.8) by induction. In the case j = 0, the inequality holds. Assume (3.8) is
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true for j − 1 ∈ N0 then for all (x, y) ∈ [a1, h1]× [a2, h2] and (v, w) ∈ [a1, x]× [a2, y] we have

∣

∣

(

Aju1
)

(v, w) −
(

Aju2
)

(v, w)
∣

∣

=
∣

∣

(

AAj−1u1
)

(v, w) −
(

AAj−1u2
)

(v, w)
∣

∣

=
ρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ v

a
+

1

∫ w

a
+

2

sρ1−1tρ2−1
∣

∣f
(

s, t, Aj−1u1 (s, t)
)

− f
(

s, t, Aj−1u2 (s, t)
)∣

∣

(vρ1 − sρ1)
1−α1 (wρ2 − tρ2)

1−α2
dtds

≤
Lρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ v

a+

1

∫ w

a+

2

sρ1−1tρ2−1
∣

∣Aj−1u1 (s, t)−Aj−1u2 (s, t)
∣

∣

(vρ1 − sρ1)
1−α1 (wρ2 − tρ2)

1−α2
dtds

≤
Lρ1−α1

1 ρ1−α2

2

Γ (α1) Γ (α2)

∫ v

a
+

1

∫ w

a
+

2

sρ1−1tρ2−1
∥

∥Aj−1u1 −Aj−1u2
∥

∥

C([a1,s]×[a2,t])

(vρ1 − sρ1)1−α1 (wρ2 − tρ2)1−α2
dtds

≤
Ljρ

1−α1j
1 ρ

1−α2j
2

Γ (α1) Γ (α2) Γ (1 + α1 (j − 1)) Γ (1 + α2 (j − 1))
‖u1 − u2‖C([a1,x]×[a2,y])

∫ v

a
+

1

∫ w

a
+

2

sρ1+α1ρ1(j−1)−1tρ2+α2ρ2(j−1)−1

(vρ1 − sρ1)
1−α1 (wρ2 − tρ2)

1−α2
dtds

≤
Ljρ

1−α1j
1 ρ

1−α2j
2

Γ (α1) Γ (α2) Γ (1 + α1 (j − 1)) Γ (1 + α2 (j − 1))
‖u1 − u2‖C([a1,x]×[a2,y])

×
Γ (α1) Γ (α2) Γ (1 + α1 (j − 1)) Γ (1 + α2 (j − 1))

Γ (1 + α1j) Γ (1 + α2j)

xρ1α1j

ρ1

yρ2α2j

ρ2

≤

(

xρ1

ρ1

)α1j (
yρ2

ρ2

)α2j

Γ (1 + α1j) Γ (1 + α2j)
‖u1 − u2‖C([a1,x]×[a2,y])

.

Hence, the proof is complete.

Theorem 3.3. Let k, h∗1 and h∗1 are positive numbers, define the set G as in Theorem 3.1 and

assume that the function f : G→ R satisfies a Lipschitz condition with respect to the third variable

with the Lipschitz constant L. Then, there exists a unique solution u ∈ C ([a1, h1]× [a2, h2]) for

the problem (1.1)-(1.2). Where h1, h2 are the same as in Theorem 3.1.

Proof. According to Theorem 3.1, the problem (1.1)-(1.2) has a solution. To prove the uniqueness,

we adopt Theorem 3.2, we use the operato A as defined in (3.5), the function T as defined in (3.3)

and the set U as defined in (3.4). We will apply Weissinger’s Fixed Point Theorem to prove that

A has a unique fixed point.

Let j ∈ N and u1, u2 ∈ C ([a1, h1]× [a2, h2]) . From (3.8) and taking the norms on [a1, h1]× [a2, h2],

we get

∥

∥Aj−1u1 −Aj−1u2
∥

∥

C([a1,h1]×[a2,h2])
≤

(

xρ1

ρ1

)α1j (
yρ2

ρ2

)α2j

Γ (1 + α1j) Γ (1 + α2j)
‖u1 − u2‖C([a1,h1]×[a2,h2])

.
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Let ωj =

(

xρ1

ρ1

)α1j(
yρ2

ρ2

)α2j

Γ(1+α1j)Γ(1+α2j)
. It is clear that

∞
∑

j=0

ωj =
∞
∑

j=0

((

xρ1

ρ1

)α1
(

yρ2

ρ2

)α2
)j

Γ (1 + α1j) Γ (1 + α2j)
= E

(

(αi, 1)i=1,2 ; (

(

xρ1

ρ1

)α1
(

yρ2

ρ2

)α2

)

)

,

hence the series converges. This completes the proof.

4 Conclusion

Here we have studied the existence and uniqueness of the solutions for the Darboux problem of

partial differential equations with Caputo-Katugampola fractional derivative.
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ABSTRACT

Given a coupling function c and a non empty subset of R, we define a closure operator.

We are interested in extended real-valued functions whose sub-level sets are closed

for this operator. Since this class of functions is closed under pointwise suprema, we

introduce a regularization for extended real-valued functions. By decomposition of the

closure operator using polarity scheme, we recover the regularization by bi-conjugation.

We apply our results to derive a strong duality for a minimization problem.

RESUMEN

Dada una función de acoplamiento c y un subconjunto no vaćıo de R, definimos un

operador clausura. Estamos interesados en funciones extendidas a valores reales cuyos

conjuntos de sub-nivel son cerrados para este operador. Dado que esta clase de funciones

es cerrada bajo supremos puntuales, introducimos una regularización para funciones

extendidas a valores reales. Gracias a la descomposición del operador clausura usando

el esquema de polaridad, recuperamos la regularización por bi-conjugación. Aplicamos

nuestros resultados para derivar una dualidad fuerte para un problema de minimización.

Keywords and Phrases: Duality, regularization, level sets, c-elementary functions, polarity,

conjugacy.
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1 Introduction

Regularization and conjugation of extended real-valued functions play an important role in opti-

mization theory since it is a base of duality theory. Until the Fenchel’s work([4]), many authors

have introduced and studied different kinds of regularization and conjugation among which we can

cite Moreau ([8]), Crouzeix ([1]), Rockafellar ([13]), Mart́ınez-Legaz ([7]), Singer ([15]), Penot-Volle

([11]), Volle ([16, 17]). In [16], M. Volle used a dual pair of polarities to introduce and study level

set regularization and conjugacy.

In this work, we introduce and study level set regularization and conjugacy by means of a

coupling function and a nonvoid subset of the real numbers. The outline of the paper is as follows.

In Section 2, we recall Moreau conjugation scheme. Section 3 is devoted to the study of the

Γ−regularization of extended real-valued functions and hull of sets. We introduce these notions

and give some properties (Proposition 2, 4 and Theorem 3.8). In Section 4, we introduce the

level set regularization of extended real-valued functions. By decomposition of a closure operator

via a couple of dual polarities, we show that this regularization coincides with the bi-conjugation

relative to the polarity couple (Proposition 8 and Theorem 4.6). We derive an analytic expression

of level set regularization of extended real-valued functions (Proposition 10). Section 5 is devoted

to an application of our theory to a minimization problem. A perturbational dual of this problem

is defined and a necessary and sufficient condition is given to ensure a strong duality property for

this problem (Theorem 5.1, Corollary 5.2 and Corollary 5.3).

2 Preliminaries

Let us start this section by recalling the Moreau conjugation ([8]). Let U, V two nonvoid sets

and c : U × V → R, a coupling function. Given an extended real-valued function h : U → R :=

R ∪ {−∞,+∞}, we define the c−conjugate of h by hc(v) := sup
u∈U

{c(u, v)− h(u)}, for any v ∈ V .

By exchanging the role of U and V , we define the c−conjugate of a given function k : V → R by

kc(u) := sup
v∈V

{c(u, v) − k(v)} for any u ∈ U . The c−bi-conjugate of a given h : U → R is then

defined by hcc(u) := sup
v∈V

{c(u, v)− hc(v)} for any u ∈ U .

Example 2.1. The usual Legendre-Fenchel conjugacy is obtained by taking U := X, a topological

vector space with topological dual V := X∗ and c the standard bilinear coupling function.

Example 2.2. Other examples of coupling functions have been considered in the literature among

which, we can cite:

(1) U = V = {x ∈ Rn|x1 > 0, . . . , xn > 0} and c(u, v) = min
1≤i≤n

viui, ([14]),
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(2) (U, d) a metric space, α > 0, V = U and c(u, v) = −αd(u, v), ([6]),

(3) (U, d) a metric space, V = U×]0,+∞[ and c(u, (v, α)) = −αd(u, v), ([6]),

(4) U = V = Rn, 0 < α ≤ 1, β > 0 and c(u, v) = −β‖u− v‖α, ([7]),

(5) U a topological space, V = C (U,R), space of countinuous real functions on U and c(u, v) =

v(u), ([5],[10]).

Given a function h : U → R, the following notation and definitions will be needed: dom h =

{u ∈ U | h(u) < +∞}, the effective domain of h, [h ≤ t] := {u ∈ U | h(u) ≤ t}, the t-sub-level set

of h(or level set of h in short).

Given a subset A of U, we define its indicator function iA by iA(u) = 0 if u ∈ A and iA(u) =

+∞ if u ∈ U \A. Following the terminology introduced in [9] we will also use the valley function

vA of A defined by vA(u) = −∞ if u ∈ A and vA(u) = +∞ if u ∈ U \A.

3 Γ−regularization of functions and hull of sets

3.1 Γ−regularization of functions

The notion of continuous affine functions can be generalized by those of c−elementary functions.

In this work, we call c−elementary function on U (resp. on V ), the function of the form c(., v)− r

(resp. c(u, .) − r) with v ∈ V (resp. u ∈ U) and r ∈ R. The upper hull (i.e., the supremum) of

a family of c−elementary functions is called c-regular. We denote by Γc(U), the set of c−regular

functions defined on U . We call c-hull or Γc−regularization of h : U → R, the greatest c−regular

minorant of h. This function is denoted by hΓc . It is well known ([8]) that

hcc = hΓc , for each h : U → R. (3.1)

Remark 3.1. The equality (3.1) is still valid if the coupling function is an extended real-valued

function. In this case, one must interpret the conjugate hc as follows

hc(v) = − inf
u∈U

{h(u)− c(u, v)},

with the usual conventions (+∞)− (+∞) = (−∞)− (−∞) = +∞.

There exists an equivalent approach to generalized convex duality in terms of Φ -convexity

[2], which consists of working with a set U and a class of functions Φ ⊂ R
U
.
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3.2 Hull of sets

Let P be a nonvoid subset of R. The following definition generalizes the notion of half space.

Definition 1. We call (c,P)−elementary subset of U any subset of Uof the form {u ∈ U | r −

c(u, v) ∈ P}, where (v, r) ∈ V ×R. We note it by EPv,r.

Note that, if P = R, then EPv,r = U for any (v, r) ∈ V × R. In this case, the only

(c,P)−elementary subset of U is U itself. The (c,P)−elementary subsets of U allow us to de-

fine a notion of hull of a subset A of U .

Definition 2. The (c,P)−hull of A ⊂ U is the intersection of all (c,P)−elementary subsets of U

containing A. The (c,P)−hull of A is denoted by 〈A〉c,P.

Remark 3.2. If there is not (c,P)−elementary subset of U containing A, then 〈A〉c,P = U by

convention.

Proposition 1. If P 6= R, then 〈∅〉c,P = ∅.

Proof Let s ∈ R \ P. Assume 〈∅〉c,P 6= ∅. Let a ∈ 〈∅〉c,P. Then r − c(a, v) ∈ P for any

(v, r) ∈ V ×R. In particular s = (s+ c(a, v))− c(a, v) ∈ P, absurd.

It follows from the definition of 〈.〉c,P that, for each A ⊂ U , and for each u ∈ U , one has

u /∈ 〈A〉c,P ⇐⇒ ∃(v, r) ∈ V ×R : A ⊂ EPv,r and r − c(u, v) /∈ P. (3.2)

By definition 1, one has A ⊂ 〈A〉c,P , for any A ⊂ U . Moreover, if A ⊂ B then 〈A〉c,P ⊂ 〈B〉c,P.

Therefore, 〈〈A〉c,P〉c,P = 〈A〉c,P, ∀A ⊂ U . We deduce that 〈.〉c,P is an algebraic closure operator.

Definition 3. A subset A of U is said to be (c,P)−regular if A = 〈A〉c,P. We denote Rc,P(U),

the set of all (c,P)-regular subsets of U .

Observe that (c,P)−elementary sets are (c,P)−regular. More generally, any intersection of

(c,P)−regular subsets is (c,P)−regular and the (c,P)−regular hull of A ⊂ U coincides with the

intersection of all (c,P)−regular subsets of U containing A.

In what follows, we will use the following values for P : P1 = R+ := [0,+∞[, P2 = R∗
+ :=

]0,+∞[, P3 = R

∗ := R \ {0} and P4 = {0}. For i = 1, 2, 3, 4, 〈.〉c,i := 〈.〉c,Pi
for short. For

i = 1, 2, 3, the set 〈A〉c,i can be explained as follows:

Proposition 2. For any A ⊂ U , one has:

〈A〉c,1 = {u ∈ U | c(u, v) ≤ sup
a∈A

c(a, v), ∀v ∈ V }, (3.3)

〈A〉c,2 = {u ∈ U | ∀v ∈ V, ∃a ∈ A | c(u, v) ≤ c(a, v)}, (3.4)

〈A〉c,3 = {u ∈ U | ∀v ∈ V, ∃a ∈ A | c(u, v) = c(a, v)}. (3.5)
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Proof By (3.2), one has:

a /∈ 〈A〉c,1 ⇐⇒ ∃(v, r) ∈ V ×R : A ⊂ [c(., v) ≤ r] and r < c(a, v)

⇐⇒ ∃(v, r) ∈ V ×R : sup
u∈A

c(u, v) ≤ r < c(a, v)

⇐⇒ ∃v ∈ V : sup
u∈A

c(u, v) < c(a, v).

Thus, a ∈ 〈A〉c,1 ⇐⇒ ∀v ∈ V, c(a, v) ≤ sup
u∈A

c(u, v), and (3.3) holds.

a /∈ 〈A〉c,2 ⇐⇒ ∃(v, r) ∈ V ×R : A ⊂ [c(., v) < r] and r ≤ c(a, v)

⇐⇒ ∃(v, r) ∈ V ×R : c(u, v) < r ≤ c(a, v), ∀u ∈ A

⇐⇒ ∃v ∈ V : c(u, v) < c(a, v), ∀u ∈ A.

Thus, a ∈ 〈A〉c,2 ⇐⇒ ∀v ∈ V, ∃u ∈ A : c(a, v) ≤ c(u, v), and (3.4) holds.

a /∈ 〈A〉c,3 ⇐⇒ ∃(v, r) ∈ V ×R : A ⊂ [c(., v) 6= r] and r = c(a, v)

⇐⇒ ∃v ∈ V : c(u, v) 6= c(a, v), ∀u ∈ A.

Thus a ∈ 〈A〉c,3 ⇐⇒ ∀v ∈ V, ∃u ∈ A : c(a, v) = c(u, v), and (3.5) holds.

Remark 3.3. Observe that one cannot remove the real parameter r in the definition of 〈A〉c,4.

Example 3.4. We observe the situation in topological vector case. Assume U is a topological vector

space with topological dual V and c the standard coupling function. The c−elementary functions

are affine continuous functions, and we have:

1. (c,P1)−elementary sets are ∅, U and closed half spaces. Moreover, if U is locally convex,

then by Hahn-Banach separation theorem and (3.3), 〈A〉c,1 = convA, the closed convex hull

of A.

2. (c,P2)−elementary sets are ∅, U and half open spaces. The (c,P2)−hull of a subset of U is

its evenly convex hull ([4],[7],. . . ).

3. (c,P3)−elementary sets are ∅, U and complementary set of closed hyperplane. The (c,P3)−hull

of a subset of U is its evenly co-affine hull ([15]). Observe that ([15], corollary 2.2) A is

evenly convex if and only if A is evenly co-affine and convex.

4. (c,P4)−elementary sets are ∅, U and closed hyperplane. Moreover, if U is locally convex,

then by the Hahn-Banach separation theorem and (3.2), the (c,P4)−hull of a non empty

subset of U is its closed affine hull.

Proposition 3. Let P and Q be two nonvoid subsets of R. Assume that any (c, P )-elementary

set is (c,Q)-regular. Then, 〈A〉c,Q ⊂ 〈A〉c,P , ∀A ⊂ U.
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Proof Let a /∈ 〈A〉c,P . By definition, there exists an (c, P )-elementary set E such that A ⊂ E

and a /∈ E. Since E is also (c,Q)-regular, it follows from (3.2) that a /∈ 〈A〉c,Q, and we are

done.

Corollary 3.5. For any A ⊂ U , one has:

〈A〉c,1 ⊃ 〈A〉c,2 ⊃ 〈A〉c,3 and 〈A〉c,4 ⊃ 〈A〉c,3.

Proof Let v ∈ V and r ∈ R, it is obvious that

{u ∈ U | c(u, v) ≤ r} =
⋂

s>r

{u ∈ U | c(u, v) < s}.

Consequently, any (c,P1)−elementary subset is (c,P2)−regular, and by Proposition 3, one has

〈A〉c,1 ⊃ 〈A〉c,2 for any A ⊂ U .

It is easy to verify that:

{u ∈ U | c(u, v) < r} =
⋂

s≥r

{u ∈ U | c(u, v) 6= s},

{u ∈ U | c(u, v) = r} =
⋂

s6=r

{u ∈ U | c(u, v) 6= s},

therefore, 〈A〉c,2 ⊃ 〈A〉c,3 ⊂ 〈A〉c,4.

We derive from Corollary 3.5, the following comparison between the sets Rc,Pi
(U):

Rc,P1
(U) ⊂ Rc,P2

(U) ⊂ Rc,P3
(U) and Rc,P4

(U) ⊂ Rc,P3
(U). (3.6)

Remark 3.6. Observe that

1. P1 ⊃ P2 and Rc,P1
(U) ⊂ Rc,P2

(U).

2. P3 ⊃ P2 and Rc,P3
(U) ⊃ Rc,P2

(U).

3. Rc,P1
(U) ⊂ Rc,P3

(U) whereas P1 and P3 are not comparable in the sense of inclusion.

4. In particular, in the case of locally convex vector space, we recover the fact that every closed

convex subset is evenly convex.

Proposition 4. Assume that the coupling function c satisfies the property:

∀v ∈ V, ∃w ∈ V | − c(., v) = c(., w). (3.7)

Then, one has:

Rc,P4
(U) ⊂ Rc,P1

(U) ⊂ Rc,P2
(U) ⊂ Rc,P3

(U). (3.8)
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Proof By (3.6), we only need to show that Rc,P4
(U) ⊂ Rc,P1

(U). Let (v, r) ∈ V × R. We

have

[c(., v) = r] = [c(., v) ≤ r]
⋂

[−c(., v) ≤ −r].

By assumption on the coupling function, there exists w ∈ V such that −c(., v) = c(., w). Conse-

quently,

[c(., v) = r] = [c(., v) ≤ r]
⋂

[c(., w) ≤ −r].

We conclude with Proposition 3.

Example 3.7. Assume that U = V = Rn, and coupling function c is defined by c(u, v) = ‖u− v‖,

where ‖.‖ is the euclidean norm. The non trivial (c,P4)−elementary sets are spheres (not convex)

whereas the non trivial (c,P1)−elementary sets are closed balls (closed convex). In this case,

Rc,P1
(U) and Rc,P4

(U) are not comparable. Observe that in this case assumption (3.7) does not

hold.

Proposition 5. For any A ⊂ U , one has 〈A〉c,1 = [iΓc

A ≤ 0].

Proof By (3.2), one has

a /∈ 〈A〉c,1 ⇐⇒∃v ∈ V : icA(v) < c(a, v)

⇐⇒0 < sup
v∈V

{c(a, v)− icA(v)}

⇐⇒0 < iΓc

A (a)

⇐⇒0 /∈
[

iΓc

A ≤ 0
]

.

Thus 〈A〉c,1 =
[

iΓc

A ≤ 0
]

.

The following result makes the link between hull of set and Γ-regularization of function by

means of indicator function.

Theorem 3.8. Assume that the coupling function c satisfies the condition:

∀ (v, β) ∈ V ×R∗
+, ∃v̄ ∈ V | βc(., v) = c(., v̄). (3.9)

Then for each A ⊂ U such that dom icA 6= ∅, one has: iΓc

A = i〈A〉c,1.

Proof Let b ∈ U .

(1) Assume that b /∈ 〈A〉c,1. By (3.3), there exists (v, ǫ) ∈ V ×R∗
+ such that c(b, v)− sup

a∈A
c(a, v) ≥

ǫ. From (3.9), one has:

∀n ≥ 1, ∃vn ∈ V : nc(., v) = c(., vn).
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Consequently,

nǫ ≤ c(b, vn)− sup
a∈A

c(a, vn) = c(b, vn)− icA(vn) ≤ iΓc

A (b), ∀n ≥ 1.

Therefore iΓc

A (b) = +∞.

(2) Assume that b ∈ 〈A〉c,1. By (3.3), one has

c(b, w) − sup
a∈A

c(a, w) ≤ 0, ∀v ∈ V.

Thus

iΓc

A (b) = sup
v∈V

{

c(b, v)− sup
a∈A

c(a, v)

}

≤ 0.

Let v ∈ dom icA. By (3.9), one gets

∀n ≥ 1, ∃ vn ∈ V :
1

n
c(., v) = c(., vn).

Consequently,

1

n

(

c(b, v)− sup
a∈A

c(a, v)

)

= c(b, vn)− sup
a∈A

c(a, vn) ≤ iΓc

A (b), ∀n ≥ 1.

Therefore,

0 = lim
n→+∞

1

n

(

c(b, v)− sup
a∈A

c(a, v)

)

≤ iΓc

A (b),

and finally, iΓc

A (b) = 0.

Remark 3.9. Assumption (3.9) is satisfied by coupling functions (1), (3) and (5) of Example 2.2.

Coupling functions (2) and (4) of the same example do not satisfy assumption (3.9).

4 Level set regularization of functions

In this section, we introduce a notion of (c,P)−level set regularization of extended real-valued

functions. We show that this level set regularization can be interpreted as bi-conjugacy relative

to a couple of dual polarities by decomposition of the closure operator. We then give some other

expressions of these regularizations.

4.1 Definitions and properties

Definition 4. A function h : U → R is said to be (c,P)−level regular if all of its sub-level sets

are (c,P)−regular, i.e 〈[h ≤ r]〉c,P = [h ≤ r], ∀r ∈ R.
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We denote Nc,P(U), the set of (c,P)−level regular functions defined on U to R. Observe that

this set contains the constant function −∞.

Proposition 6. The set Nc,P(U) is closed under pointwise suprema, i.e given (hi)i∈I a family of

(c,P)−level regular functions,then h := sup
i∈I

hi is (c,P)−level regular.

Proof Let r ∈ R. Since [h ≤ r] = ∩i∈I [hi ≤ r], the conclusion follows from the fact that any

intersection (c,P)−regular sets is (c,P)−regular.

We define the (c,P)−level set regularization of an extended real-valued function as follows.

Definition 5. The (c,P)−level set regularization of a function h : U → R is the greatest

(c,P)−level regular minorant of h. This function is denoted by h〈〉c,P .

Example 4.1. Assume U is topological vector space with topological dual V and c the standard

coupling function. (c,P2)−level regular functions are evenly quasi-convex functions. Moreover,

if U is locally convex then (c,P1)−level regular functions are lower semi-continuous quasi-convex

functions.

Example 4.2. Assume that U is a metric space, V = C (U,R) a space of continuous functions

from U to R, and c : U × V → R defined by c(u, v) = v(u). A function h : U → R ∪ {+∞} is

(c,P1)−level regular if and only if h is lower semi-continuous ([3], corollary 11).

Proposition 7. Any c−elementary function is (c,Pi)−level regular for i = 1, 2, 3. More precisely,

one has

Γc(U) ⊂ Nc,P1
(U) ⊂ Nc,P2

(U) ⊂ Nc,P3
(U) and Nc,P4

(U) ⊂ Nc,P3
(U).

Proof Let h := c(., v)− r an c−elementary function. For any t ∈ R, we have

[h ≤ t] = {u ∈ U | t+ r − c(u, v) ≥ 0},

which is obviously (c,P1)−elementary set. Therefore Γc(U) ⊂ Nc,P1
(U). The other inclusions

follow from (3.6).

Remark 4.3. c−elementary functions are not necessary (c,P4)−level set regular functions. For

example, in the topological case, one cannot write a half space as an intersection of affine hyper-

planes.

Example 4.4. Let n ≥ 1, an integer number. Assume that U = V = Rn and c a standard scalar

product of Rn. Let h1, h2 : Rn → J0;nK two functions defined by

h1(x) =

{

0 if x = 0

max{i ∈ J1, nK | xi 6= 0} if x 6= 0,
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h2(x) =

{

0 if xi 6= 0, ∀i ∈ J1, nK

max{i ∈ J1, nK | xi = 0} else .

For any r ∈ R, we have

[h1 ≤ r] =











∅ if r < 0

{x ∈ Rn | xi+1 = . . . = xn = 0} if i ≤ r < i+ 1, i = 0, 1, . . . , n− 1

R

n if n ≤ r,

[h2 ≤ r] =











∅ if r < 0

{x ∈ Rn | xi+1 6= 0, . . . , xn 6= 0} if i ≤ r < i+ 1, i = 0, 1, . . . , n− 1

R

n if n ≤ r.

It is clear that:

(1) h1 is (c,P4)−level regular. In particular, h1 ∈ Nc,Pi
(U), for i = 1, 2, 3, 4.

(2) h2 is (c,P3)−level regular but not (c,P2)−level regular since [h2 ≤ n−1] = {x ∈ Rn | xn 6= 0}

is not convex.

Example 4.5. Let U = V = R, c the standard product of R. The indicator function of R∗,i
R

∗ is

(c,P3)−level regular but not quasi-convex.

4.2 Decomposition of 〈〉c,P

Let us consider a map ∆c,P : 2U → 2V×R defined by:

∆c,P(A) := {(v, r) ∈ V ×R | A ⊂ EPv,r}, (4.1)

which, we simply denote ∆ in the sequel. Given (Ai)i∈I a family of subsets of U , we have

∆
⋃

i∈I

Ai :=

{

(v, r) ∈ V ×R |
⋃

i∈I

Ai ⊂ EPv,r

}

=
{

(v, r) ∈ V ×R | Ai ⊂ EPv,r, ∀i ∈ I
}

=
⋂

i∈I

{

(v, r) ∈ V ×R | Ai ⊂ EPv,r
}

=
⋂

i∈I

∆Ai.

Therefore ∆ is said to be a polarity ([16]). We associate to ∆, its dual polarity ∆∗ : 2V×R → 2U

defined by

∆∗(B) =
⋃

{A ∈ 2U | B ⊂ ∆(A)}. (4.2)

Observe that for each (v, r) ∈ V ×R and for each u ∈ U , one has

u ∈ ∆∗(v, r) ⇐⇒ (v, r) ∈ ∆(u) ⇐⇒ u ∈ EPv,r, (4.3)
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therefore ∆∗(v, r) = EPv,r. Since ∆∗ is a polarity, then we have for each B ⊂ V ×R,

∆∗(B) = ∆∗
(

⋃

(v,r)∈B

{(v, r)}
)

=
⋂

(v,r)∈B

∆∗(v, r) =
⋂

(v,r)∈B

EPv,r. (4.4)

The operator 〈〉c,P can be decomposed as follows.

Proposition 8. For any A ⊂ U , we have (∆∗ ◦∆)(A) = 〈A〉c,P.

Proof Given A ⊂ U , one has

(∆∗ ◦∆)(A) = ∆∗({(v, r) ∈ V ×R | A ⊂ EPv,r}) =
⋂

A⊂EPv,r

EPv,r = 〈A〉c,P.

4.3 Conjugacy associated to polarities ∆ and ∆∗ ([16, 17])

The conjugate of a function h : U → R relative to the polarity ∆ is the function h∆ : V ×R→ R

given by

h∆(v, r) := sup
u/∈∆∗(v,r)

−h(u) = sup
u/∈EPv,r

−h(u). (4.5)

Analogously, the conjugate of a function k : V ×R→ R relative to the polarity ∆∗ is defined by

k∆
∗

(u) := sup
(v,r)/∈∆(u)

−k(v, r) = sup
u/∈EPv,r

−k(v, r). (4.6)

Thus, the bi-conjugacy relative to polarities ∆, ∆∗ of a function h : U → R is the function

h∆∆∗

: U → R given by

h∆∆∗

(a) := sup
(v,r)/∈∆(a)

inf
u/∈∆∗(v,r)

h(u) = sup
a/∈EPv,r

inf
u/∈EPv,r

h(u). (4.7)

It is well known ([16]) that this conjugacy can be interpreted by means of coupling function

δ : U × (V ×R) → R defined by

δ(u, (v, r)) =

{

0 si u /∈ EPv,r
−∞ si u ∈ EPv,r.

More precisely, given a function h : U → R, we have h∆ = hδ and h∆∆∗

= hδδ.

Theorem 4.6 ([16]). The (c,P)−level regularization of a function h : U → R coincides with

bi-conjugacy relative to polarities ∆, ∆∗: h〈〉c,P = h∆∆∗

.

Corollary 4.7. For any subset A of U , we have

i
〈〉c,P
A = i〈A〉c,P and v

〈〉c,P
A = v〈A〉c,P .
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Proof Let A ⊂ U . Let a ∈ A. It follows from Theorem 4.6 that

i
〈〉c,P
A (a) = sup

a/∈EPv,r

inf
u/∈EPv,r

iA(u).

We distinguish two cases:

• We first assume that a /∈ 〈A〉c,P. There exists (v, r) ∈ V ×R such that a /∈ EPv,r and A ⊂ EPv,r .

Consequently,

inf
u/∈EPv,r

iA(u) = +∞.

• Secondly, assume that a ∈ 〈A〉c,P. For all (v, r) ∈ V × R such that a /∈ EPv,r, there exists

u ∈ A such that u /∈ EPv,r. Consequently,

i
〈〉c,P
A (a) = sup

a/∈EPv,r

inf
u/∈EPv,r

iA(u)

=

{

0 if a ∈ 〈A〉c,P

+∞ if a /∈ 〈A〉c,P

=i〈A〉c,P(a).

Analogously, we have

v
〈〉c,P
A (a) = sup

a/∈EPv,r

inf
u/∈EPv,r

vA(u)

=

{

−∞ if a ∈ 〈A〉c,P

+∞ if a /∈ 〈A〉c,P

=v〈A〉c,P(a).

Proposition 9. For any function h : U → R and for any real number t, one has

[h〈〉c,P ≤ t] =
⋂

s>t

〈[h ≤ s]〉c,P.

Proof Let s > t and a /∈ 〈[h ≤ s]〉c,P. There exists (v̄, r̄) ∈ V × R such that a /∈ EPv̄,r̄ and

[h ≤ s] ⊂ EPv̄,r̄. We deduce that

h〈〉c,P(a) = sup
a/∈EPv,r

inf
u/∈EPv,r

h(u) ≥ inf
u/∈EPv̄,r̄

h(u) ≥ s > t.

Let a /∈
〈

[h〈〉c,P ≤ s]
〉

c,P
. There exists s ∈ R such that h〈〉c,P(a) > s > t. By Theorem 4.6, there

exists (v, r) ∈ V ×R such that

a /∈ EPv,r and inf
u/∈EPv,r

h(u) > s,

thus [h ≤ s] ⊂ EPv,r, and finally a /∈ 〈[h ≤ s]〉c,P.
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4.4 Other expressions of (c,P)−level regularizations

We now give another expression of the (c,P)−level regularization of an extended real-valued func-

tion h. These expressions give the value of the (c,P)−level regularization of h at a given point.

Given h : U → R and a ∈ U , we define sets Ih(a) and Jh(a) by:

Ih(a) := {t ∈ R | a /∈ 〈[h ≤ t]〉c,P} and Jh(a) = {t ∈ R | a ∈ 〈[h ≤ t]〉c,P}. (4.8)

Sets Ih(a) and Jh(a) are two intervals of R such that Ih(a) ∩ Jh(a) = ∅ and Ih(a) ∪ Jh(a) = R.

Moreover, for any (r, s) ∈ Ih(a)× Jh(a), we have r < s. We deduce that sup Ih(a) = inf Jh(a).

Proposition 10.

h〈〉c,P(a) = sup
{

t ∈ R : a /∈ 〈[h ≤ t]〉c,P

}

= inf
{

t ∈ R : a ∈ 〈[h ≤ t]〉c,P

}

.

Proof Let t ∈ Ih(a). There exists (v, r) ∈ V × R such that a /∈ EPv,r and [h ≤ t] ⊂ EPv,r.

Therefore

inf
u/∈EPv,r

h(u) ≥ t and so sup
a/∈EPv,r

inf
u/∈EPv,r

h(u) ≥ t.

By Theorem 4.6, one gets h〈〉c,P(a) ≥ t. Hence h〈〉c,P(a) ≥ sup Ih(a). Conversely, let t < h〈〉c,P(a),

then a /∈ [h〈〉c,P ≤ t] and by Proposition 9, there exists s > t such that a /∈ 〈[h ≤ s]〉c,P. Conse-

quently, sup Ih(a) ≥ s > t. Hence supIh(a) ≥ h〈〉c,P(a).

5 Applications to an optimization problem: sub-level set
duality

Let us consider the following minimization problem:

min
x

f(x), s.t x ∈ X, (P)

where X is a nonempty set and f : X → R ∪ {+∞} is an extended real-valued function.

5.1 Level set perturbational duality

We consider a perturbation function F : X × U → R satisfying

∃a ∈ U : F (., a) = f(.). (5.1)

We associate to F a valued function h : U → R defined by

h(u) := inf
x∈X

F (x, u). (5.2)
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We denote by α the optimal value of (P). It is obvious that α = h(a).

The perturbational dual of (P) ([16]) is given by

max
(v,r)

−h∆(v, r) s.t a /∈ EPv,r. (D)

We denote by β the optimal value of (D). By definition, one has

−∞ ≤ β := sup (D) = h∆∆∗

(a) ≤ h(a) =: α = inf (P) ≤ +∞. (5.3)

Thus, the weak duality holds. The following theorem gives a necessary and sufficient condition to

assure the strong duality.

Theorem 5.1. The following statements are equivalent:

(1) The strong duality holds for (P) i.e inf (P) = max (D),

(2) a /∈ 〈[h < α]〉c,P.

Proof. Assume that (1) holds. There exists (v̄, r̄) ∈ V ×R such that

a /∈ EPv̄,r̄ and α = h(a) = −h∆(v̄, r̄) := inf
u/∈EPv̄,r̄

h(u).

We deduce that [h < α] ⊂ EPv̄,r̄. Thus a /∈ 〈[h < α]〉c,P. Conversely, assume that (2) holds. There

exists (v̄, r̄) ∈ V ×R such that a /∈ EPv̄,r̄ and [h < α] ⊂ EPv̄,r̄ . Therefore

inf
u/∈EPv̄,r̄

h(u) ≥ α ≥ β.

Remember that

β := sup
a/∈EPv,r

−h∆(v, r) = sup
a/∈EPv,r

inf
u/∈EPv,r

h(u).

Thus

β ≥ inf
u/∈EPv̄,r̄

h(u) = −h∆(v̄, r̄) ≥ α ≥ β.

Hence β = −h∆(v̄, r̄) = α.

Theorem 5.1 is interesting in evenly convex case which is used in economic theory.

5.2 Evenly quasi-convex duality ([1],[7],[11],[12],[17])

We assume X and U are topological vector spaces, V = U∗ the topological dual of U , c = 〈, 〉 the

standard coupling function between U and U∗.
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Corollary 5.2. Assume that function F : X × U → R is quasi-convex and for each x ∈ X,

F (x, .) : U → R is upper semi-continuous. One has:

inf (P) = max
u∗∈U∗

inf
(x,u)∈X×U
〈u−a,u∗〉≥0

F (x, u).

Proof Since F is quasi-convex and for each x ∈ X , F (x, .) is upper semi-continuous then h

is quasi-convex and upper semi-continuous. Consequently, [h < α] is open convex set and so it is

evenly convex. As a /∈ [h < α], it results from Theorem 5.1 that

inf (P) = max (D) = max
r−〈a,u∗〉≤0

inf
r−〈u,u∗〉≤0

h(u) = max
u∗∈U∗

inf
〈u,u∗〉≥〈a,u∗〉

h(u),

where the last equality follows from the fact that for each u∗ ∈ U∗, function ku∗ : R→ R defined

by ku∗(r) = inf
r−〈u,u∗〉≤0

h(u) is not decreasing.

Corollary 5.3. Assume that function F : X × U → R is quasi-convex and for each x ∈ X,

F (x, .) : U → R is upper semi-continuous. One has:

inf (P) = max
u∗∈U∗

inf
(x,u)∈X×U
〈u−a,u∗〉=0

F (x, u).

Proof We know that under these assumptions on F , [h < α] is convex open set, therefore it is

(〈, 〉,R∗)−regular. Since a /∈ [h < α], it results from Theorem 5.1 that

inf (P) =max (D)

= max
(u∗,r)∈U∗×R
〈a,u∗〉 = r

inf
u∈U

〈u,u∗〉=r

h(u)

= max
u∗∈U∗

max
r∈R

〈a,u∗〉=r

inf
u∈U

〈u,u∗〉=r

h(u)

= max
u∗∈U∗

inf
u∈U

〈u−a,u∗〉=0

h(u)

= max
u∗∈U∗

inf
(x,u)∈X×U
〈u−a,u∗〉=0

F (x, u) by definition of h.

6 Conclusion

In this work, we introduced a closure operator by means of coupling function and a subset of R.

This operator allowed us to define a hull of sets and level set regularization of extended real-valued

functions. By decomposition of closure operator, we showed that a level set regularization of any
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extended real-valued function coincides with its bi-conjugacy relative to a couple of dual polarities.

We derive an analytic expression of a level set regularization of extended real-valued function. Our

results are applied to derive a strong duality for a minimization problem.
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