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Universidad de La Frontera

Av. Francisco Salazar 01145, Temuco – Chile

Fomin Sergey

fomin@umich.edu

Department of Mathematics

University of Michigan

525 East University Ave. Ann Arbor

MI 48109 - 1109 – USA

Jurdjevic Velimir

jurdj@math.utoronto.ca

Department of Mathematics

University of Toronto

Ontario – Canadá
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Facultad de Ciencias, Universidad de Chile

Casilla 653. Santiago – Chile

Ramm Alexander G.

ramm@math.ksu.edu

Department of Mathematics

Kansas State University

Manhattan KS 66506-2602 – USA

Rebolledo Rolando

rolando.rebolledo@uv.cl

Instituto de Matemáticas
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9 Avenue Alain Savary, BP 47870

FR-21078 Dijon Cedex – France

Tian Gang

tian@math.princeton.edu

Department of Mathematics

Princeton University

Fine Hall, Washington Road

Princeton, NJ 08544-1000 – USA

Tjøstheim Dag Bjarne

dag.tjostheim@uib.no

Department of Mathematics

University of Bergen

Johannes Allegaten 41

Bergen – Norway

Uhlmann Gunther

gunther@math.washington.edu

Department of Mathematics

University of Washington

Box 354350 Seattle WA 98195 – USA

Vainsencher Israel

israel@mat.ufmg.br

Departamento de Matemática
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ABSTRACT

Let A be a topological algebra and β a subadditive boundedness radius on A. In this

paper we show that β is, under certain conditions, automatically submultiplicative.

Then we apply this fact to prove that the spectrum of any element of A is non-empty.

Finally, in the case when A is a normed algebra, we compare the initial normed topology

with the normed topology τβ , induced by β on A, where β−1(0) = 0.

RESUMEN

Sea A un álgebra topológica y β un radio de acotamiento subaditivo en A. En este

art́ıculo mostramos que β es, bajo ciertas condiciones, automáticamente submultiplica-

tivo. Luego aplicamos este hecho para probar que el espectro de cualquier elemento de

A es no-vaćıo. Finalmente, en el caso cuando A es una álgebra normada, comparamos

la topoloǵıa normada inicial con la topoloǵıa normada τβ , inducida por β en A, donde

β−1(0) = 0.
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1 Introduction and Preliminaries

A topological algebra is an algebra A which is a topological vector space in such a way that the

ring multiplication in A is separately continuous. (i.e., continuous in each one of the two variables

the latter operation being a map of A×A into A.)

If the multiplication of a given topological algebra A is in both variables (i.e., jointly) contin-

uous, we say that A is a topological algebra with a continuous multiplication. (See e.g., [9, p. 4.

Definition 1.1.])

In what follows the topological algebras cosidered are supposed with a continuous multiplica-

tion and to be Hausdorff.

Among topological algebras, the normed ones have been studied intensively by many mathe-

maticians where the norm is used as a useful tool in measuring the distance between two elements.

But, since 1940, there has been a considerable interest in investigating other topological algebras

in absence of any norm and this led to the introduction of some famous topological algebras such

as locally bounded algebras, locally convex algebras, locally multiplicatively convex algebras, et

cetera.

The common idea to study a non-normed topological algebra, say A, is to substitute the role

of a norm on A, which determines the topology, in an appropriate way. For instance, Aoki [2]

proved that on a locally bounded algebra A, there is a p-norm generating the original topology on

A. Later, Zelazko [12] applied this fact on locally bounded algebras, and obtained many classical

results, known in the context of normed algebras. For example, in a complete locally bounded

topological algebra A, the operator x 7→ x−1 on Inv(A) (the group of all invertible elements

of A) is continuous. Also, the Cohen factorization theorem holds whenever A has a bounded

approximate identity. The role of norm in a locally convex topological algebra A is played by

a separating family of submultiplicative seminorms generating the topology on A. Recall that a

seminorm is a non-negative real-valued function p on A such that

(i) p(x+ y) ≤ p(x) + p(y)

(ii) p(αx) = |α| p(x)

for all x and y in A and α in C.

We say that p is submultiplicative seminorm if in addition p(xy) ≤ p(x)p(y) for all x and y

in A.

Hence, there is a good motivation for mathematicians to extend notions and theorems from

normed algebras to other topological algebras. A locally convex algebra is a topological algebra

A whose the underlying topological vector space is a locally convex space. The topology of a
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such topological algebra is determined by a family of (non-zero) seminorms. In the case when the

seminorms are submultiplicative, A is called a locally m-convex algebra.

Let A be a unital topological algebra with the unit e and x ∈ A. The spectrum of x, denoted

by σ(x), is defined

σ(x) = {λ ∈ C : λe − x /∈ Inv(A)}.

The spectral radius of x is the defined as

ρ(x) = sup{|λ| : λ ∈ σ(x)}.

It is well known that ρ(x) = inf{‖xn‖
1

n : n ∈ N} for every element x in a Banach algebra.

Using this fact, Allan [1], introduced the notion of boundedness radius in a topological algebra A

as follows

β(x) = inf{r > 0 : ((
xn

rn
))n → 0} , (inf φ = +∞).

Allan attempted to compare β(x) with ρ(x) and in one of the obtained results, shows that

β(x) is equal to ρ(x) in a complete locally convex algebra [1, Theorem 3.12], specially, in a Banach

algebra we have

ρ(x) = lim
n→∞

‖xn‖
1

n = inf{‖xn‖
1

n : n ∈ N} = β(x).

Oubbi [11] investigated on ρ and β and compared them together. In a topological algebra A,

he showed that ρ ≤ β if and only if
∑

xn is convergent whenever x ∈ A and β(x) < 1. Also, he

showed β(xn) = β(x)n for all n ∈ N and β(xy) ≤ β(x)β(y) whenver x, y ∈ A, xy = yx. In any

topological algebra, it is clear that β(λx) = |λ|β(x) (x ∈ A, λ ∈ C).

Let A b a topological algebra. The boundedness radius β is said to be subadditive, if for

each x, y ∈ A, β(x + y) ≤ β(x) + β(y). Moreover, β is called submultiplicative whenever β(xy) ≤

β(x)β(y).

Kinani, Oubbi and Oudadess [8], proved that in a unital and commutative locally convex

algebra, β is subadditive and submultiplicative. [8, Proposition II.9.]

In this paper, we show that in a topological algebra, if β is finite and subadditive, then it is

submultiplicative. (See Corollary 2.6.) Also, we refer to topological algebras in which β defines a

norm on them. (See Theorem 2.10 and Theorem 2.11.) Actually, we consider a topological algebra

A with boundedness radius β such that β satisfies the following conditions:

(1) β−1(0) = 0

(2) ∀x ∈ A, β(x) < ∞

(3) ∀x, y, β(x+ y) ≤ β(x) + β(y).
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2 The normed topology τβ induced by the boundedness ra-

dius β

In a locally convex algebra, amongst the important results is the following.

Theorem 2.1. Let A be a unital and commutative locally convex algebra, then β is subadditive.

Proof. See [8, Proposition II.9].

In this section, we first give an example to show that we can not drop commutativity in

Theorem 2.1 and we also prove that locally convexity of an algebra is not sufficient for β to be

subadditive. Finally, we consider topological algebras in which β is subadditive and we show that

in such algebras, β is automatically submultiplicative.

Example 2.2. Let a =

(

0 0
1 0

)

and b =

(

0 1
0 0

)

be elements of the noncommutative algebra

A = M2(C). Since a and b are nilpotent elements of A, β(a) = β(b) = 0, on the other hand

β(a+ b) = 1 because a+ b =

(

0 1
1 0

)

and so (a+ b)2 =

(

1 0
0 1

)

= I, now we have

(β(a + b))2 = β((a+ b)2) = β(I) = 1.

Which implies that β(a+ b) = 1. Hence β(a+ b) � β(a) + β(b).

This shows that we can not drop commutativity in Theorem 2.1.

Let A be a topological algebra and B = A× C is equipped with the following multiplication

(x1, α1)(x2, α2) = (α1x2 + α2x1, α1α2) (x1, x2 ∈ A, α1, α2 ∈ C).

The unitization B of A is a topological algebra under the product topology of B = A×C and we

have:

Theorem 2.3. The boundedness radius β is subadditive in B.

Proof. It is enough to show that for every z = (x, α) ∈ B , β(z) = |α|.

Let z = (x, α) ∈ B. If α = 0 then (x, 0) is a nilpotent element of B and β(z) = 0 = |α|. For

α 6= 0, suppose that n ∈ N, ε > 0. Let r ∈ (|α|, |α| + ε) then 1

rnα
n−1 → 0 and so 1

rnα
n−1x → 0.

On the other hand, (x, α)n = (nxαn−1, αn). Therefore

1

(r + ε)n
(x, α)n =

1

(r + ε)n
(nxαn−1, αn)

= (n(
r

r + ε
)n

xαn−1

rn
,

αn

(r + ε)n
) → (0, 0).



CUBO
22, 3 (2020)

Topological algebras with subadditive boundedness radius 293

This shows that β(z) ≤ r + ε < |α|+ 2ε, since ε is arbitrary, β(z) ≤ |α|.

For the converse, note that there exists r > 0 such that r < β(x, α) + ε and

(x, α)n

rn
= (

nxαn−1

rn
,
αn

rn
) → (0, 0).

Hence, αn

rn convergent to zero. So |α| < r < β(x, α)+ ε, it follows that β(α) = |α| < β(z)+ ε. Thus

|α| ≤ β(z).

Definition 2.4. Let A be an algebra. We say that a seminorm p on A has square property, if it

is square-preserving, namely,

p(x2) = p(x)2 for all x ∈ A.

Dedania in 1998 [6] proved the following theorem.

Theorem 2.5. Let A be an algebra and a seminorm p on A which has the square property. Then

p is submultiplicative.

According to the terminology in [4, p. 437, (6)] and due to Theorem 2.5, a seminorm p. as in

the latter theorem, is finally a uniform seminorm.

Corollary 2.6. Let A be a topological algebra, such that β(x) < ∞ and β(x + y) ≤ β(x) + β(y)

for all x, y ∈ A. Then β is submultiplicative.

Proof. Since β(x2) = β(x)2, the assertion follows from Theorem 2.5.

Let A be a topological algebra such that β satisfies conditions (1)-(3) then β is a norm on A

and by Corollary 2.6, β is a submultiplicative norm. Through this section, τβ denotes the topology,

induced by β on A. Now we face the following questions.

Question 1. Is there any topological algebra for which β satisfies the conditions (1)-(3)?

Question 2. Let (A, τ) be a topological algebra for which β satisfies the conditions (1)-(3).

What is then the relation between τ and τβ?

Question 3. Let A be a complete topological algebra such that β satisfies the conditions

(1)-(3). Does the normed algebra (A, τβ) is a Banach algebra?

In what follows, we are going to answer to these questions.

Theorem 2.7. Let A be a unital and commutative semisimple Banach algebra, then β satisfies

(1)− (3).

Proof. Since A is a commutative locally convex algebra, then, by [8, Lemma 2.9]

β(x + y) ≤ β(x) + β(y) for all x, y in A.
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Since A is a Banach algebra then A is locally bounded and using [3, Lemma 3.4], β(x) ≤ ‖x‖ for

all x in A, hence β satisfies condition (2).

A is a commutative semisimple Banach algebra, using Corollary 7.(iv) in [5] we have ρ−1(0) =

0. Because A is a Banach algebra, β(x) = ρ(x) for each x ∈ A. So β−1(0) = 0. It follows that β

satisfies (1)-(3).

Theorem 2.7 gives a category of algebras satisfying conditions (1)-(3) and an affirmative answer

to question 1.

Definition 2.8. A topological algebra A is called strongly sequential if there is a neighborhood U

of zero such that, for all x ∈ U, (xk)k∈N converges to zero.

Lemma 2.9. Let A be a topological algebra. Then β is continuous at zero if and only if A is

strongly sequential.

Proof. See [3, Proposition 3.1].

In order to answer Question 2, we give the following theorem.

Theorem 2.10. Let (A, τ) be a topological algebra. Suppose that β satisfies (1)-(3). Then (A, τ)

is strongly sequential if and only if τβ ⊆ τ .

Proof. Suppose (A, τ) is strongly sequential. By Lemma 2.9, β is continuous at zero. Since β is

subadditive, it is continuous on A. On the other hand, {β−1(0, 1

n ) : n ∈ N} is a local base for the

normed topology τβ . Therefore τβ ⊆ τ .

Conversely, let xα → 0 in τ. Since τβ ⊆ τ, xα converges to zero in τβ which implies that

β(xα) → 0. Hence β is continuous at zero and, again by Lemma 2.9, A is strongly sequential.

In order to answer Question 3, first we characterize a topological algebra for which (A, τβ) is

a Banach algebra and then we apply this characterization to give a negative answer to Question 3.

It is well known (See e.g., [10, p. 41]) that in a commutative C∗-algebra, the unique C∗-norm

is the spectral norm i.e.

‖x‖ = ρ(x) (x ∈ A) (2.1)

On the other hand, for each x ∈ A , ρ(x) = β(x) and so β is indeed the C∗-norm on A. Thus

(A, τβ) is a complete normed algebra whenever A is a C∗-algebra. The following theorem gives a

more general characterization of topological algebras for which (A, τβ) is complete.

In the sequel, by an F -algebra we mean a completely metrizable topological algebra.
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Theorem 2.11. Let (A, τ) be a strongly sequential F -algebra. Suppose that β satisfies (1)-(3).

Then (A, τβ) is a Banach algebra if and only if τβ = τ.

Proof. If τβ = τ, then (A, τβ) is a Banach algebra, trivially. For the converse, suppose that (A, τβ)

is a Banach algebra. By the assumption, (A, τ) is a strongly sequential F -algebra, so, Theorem

2.10 implies, τβ ⊆ τ . From the open mapping theorem, one immediately gets that τβ = τ .

The following example shows that the answer of Question 3 is not affirmative.

Example 2.12. Let A be the set of C1-functions on the interval [0, 1] and f ∈ A. Then A is a

semisimple commutative Banach algebra where the norm on A is given by ‖f‖ = ‖f‖∞ + ‖f ′‖∞

(See [10, p. 10, Example 1.2.6]).

Thus β satisfies (1)-(3) and so (A, τβ) is normed algebra. If (A, τβ) is complete, then A is a

Banach algebra, also it is a strongly sequential algebra (See e.g., [7, p. 58, Example 3.26]). Now,

by Theorem 2.11, τβ = τ. Let x be the identity map on [0, 1]. Since β(x) = 1 , the sequence (x
n

n )n

convergence to zero in τβ- topology. But xn

n 9 0 in the original topology τ. This is a contradiction

and so (A, τβ) is not complete.

As we mentioned, if β satisfies (1)-(3), then it is an algebraic norm on A. But in the absence

of one of the properties (1)-(3), β is not a norm necessarily. In what follows, we concentrate to

study topological algebras for which β is not a norm.

Lemma 2.13. Let (A, ‖ ‖) be a normed algebra such that, ‖a‖2 = ‖a2‖ for all a ∈ A. Then A is

commutative.

Proof. See [5, p. 77, Corollary 8, see also the comments after it].

Theorem 2.14. Let A be a topological algebra such that

(1) β(x) < ∞ (x ∈ A)

(2) β(x + y) ≤ β(x) + β(y) (x, y ∈ A).

Then β(xy − yx) = 0 for all x, y in A.

Proof. Let N = {x ∈ A, β(x) = 0}. It is clear that N is an ideal in A and A/N is a normed

algebra with the norm ‖x+N‖ = β(x). Since β has the square property, ‖(x+N)2‖ = ‖x+N‖2

for all x in A. Now, according to Lemma 2.13, the normed algebra A/N is commutative. Hence,

(x +N)(y +N) = (y +N)(x+N) for all x, y in A which means that β(xy − yx) = 0.

Corollary 2.15. Let A be a topological algebra and β satisfies (1)-(3), then A is commutative.
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Proof. Since β(x2) = β(x)2, the assertion follows from Lemma 2.13 or Theorem 2.14.

Lemma 2.16. Let A be a Banach algebra and x, y ∈ A. If xy = yx, xox = yoy (xoy = x+y−xy)

and β(x+ y) < 2, then x = y.

Proof. See [5, p. 44, Lemma 12].

Lemma 2.17. Let A be a normed algebra and x, y ∈ A. If xy = yx, xox = yoy and β(x+ y) < 2,

then x = y.

Proof. Let Ã be the completion of A. Suppose that T is an isometric isomorphism of A onto Ã. Since

(Tx)(Ty) = (Ty)(Tx), (Tx)o(Ty) = (Ty)o(Tx) and βÃ(Tx+Ty) = βÃ(T (x+y)) = βA(x+y) < 2

by Lemma 2.16, Tx = Ty and so x = y.

Theorem 2.18. Let A be a topological algebra and x, y ∈ A such that xox = yoy and β(x+y) < 2.

If β is finite and subadditive, then β(x− y) = 0.

Proof. Assume that N = {x ∈ A, β(x) = 0}. By the proof of Theorem 2.14, A/N is a normed

algebra under the norm ‖x+N‖ = β(x). Then

(x+N)o(x +N) = (y +N)o(y +N),

and,

βA/N ((x +N) + (y +N)) = βA/N ((x + y) +N)

≤ ‖(x+ y) +N‖ = β(x+ y) < 2.

Applying Lemma 2.17, x+N = y +N which means that β(x − y) = 0.

Theorem 2.19. Let A be a topological algebra such that

(i) β(x+ y) ≤ β(x) + β(y) (x, y ∈ A)

(ii) β(x) < ∞ (x ∈ A).

Then σA(x) 6= ∅ for all x ∈ A.

Proof. Let N = {x ∈ A, β(x) = 0}. Since A/N is a normed algebra, the spectrum of any of its

elements is non-empty. (See e.g., [5, p. 22. Theorem 7.]) On the other hand, the canonical map

π : A → A/N is an algebraic homomorphism and so ∅ 6= σA/N (π(x)) ⊆ σA(x) for each x ∈ A. (See

e.g., [5, p. 48. Proposition 9]) This completes the proof.
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ABSTRACT

A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) →
{0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1}
defined by f∗(uv) = f(u) + f(v) is a bijection. In this paper we prove that Tp- tree,

T ◦̂Pm, T ◦̂2Pm, regular bamboo tree, Cn◦̂Pm, Cn◦̂2Pm and subdivided grid graphs are

odd harmonious.

RESUMEN

Un grafoG(p, q) se dice impar armonioso si existe una inyección f : V (G) → {0, 1, 2, · · · ,
2q − 1} tal que la función inducida f∗ : E(G) → {1, 3, · · · , 2q − 1} definida por

f∗(uv) = f(u) + f(v) es una biyección. En este art́ıculo probamos que los grafos

Tp-árboles, T ◦̂Pm, T ◦̂2Pm, árboles bambú regulares, Cn◦̂Pm, Cn◦̂2Pm y cuadŕıculas

subdivididas son impar armoniosos.

Keywords and Phrases: harmonious labeling, odd harmonious labeling, transformed tree, sub-

divided grid graph, regular bamboo tree.
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1 Introduction

Throughout this paper by a graph is implied as a finite, simple and undirected. For standard

terminology and notation we follow Harary [3]. A graph G(V,E) with p vertices and q edges

is called a (p, q) – graph. The graph labeling is an assignment of integers to the set of vertices

or edges or both, subject to certain conditions. An extensive survey of various graph labeling

problems is available in [1]. Graham and Sloane [2] introduced harmonious labeling during their

study of modular versions of additive bases problems stemming from error correcting codes. A

graph G is said to be harmonious if there exists an injection f : V (G) → Zq such that the

induced function f∗ : E(G) → Zq defined by f∗(uv) = (f(u) + f(v)) (mod q) is a bijection

and f is called harmonious labeling of G. The concept of an odd harmonious labeling was due

to Liang and Bai [14]. A graph G is said to be odd harmonious if there exists an injection

f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1}
defined by f∗(uv) = f(u) + f(v) is a bijection. If f : V (G) → {0, 1, 2, · · · , q} then f is called

as strongly odd harmonious labeling and G is called a strongly odd harmonious graph. The odd

harmoniousness of a graph is useful for the solution of undetermined equations. The following

results have been proved in [14]:

1. If G is an odd harmonious graph, then G is a bipartite graph. Hence any graph that contains

an odd cycle is not an odd harmonious.

2. If a (p, q) – graph G is odd harmonious, then 2
√
q ≤ p ≤ (2q − 1).

3. If G is an odd harmonious Eulerian graph with q edges, then q ≡ 0, 2(mod 4).

Followed by this, Vaidya and Shah [18], [19] showed that shadow and splitting graphs are odd

harmonious. Selvaraju et al. [17] established that some path related graphs are odd harmonious.

Jeyanthi et al. proved that the following graphs are odd harmonious: double quadrilateral snake

and banana tree [5], cycle related graphs [6], plus graphs [7], super subdivision graphs [8], subdi-

vided shell graphs [9], spider and necklace graphs [10], m-shadow, m-splitting and m-mirror graphs

[11] and [12], grid graphs [13].

We use the following definitions in the subsequent section.

Definition 1.1. Let G = (V,E) be a graph. G is called a path Pn if V = {v1, v2, · · · , vn} such

that 1 ≤ i ≤ n, (vi, vi+1) ∈ E.

Definition 1.2. The Cartesian product of graphs G and H denoted as G�H, is the graph with

vertex set V (G)× V (H) = {(u, v)|u ∈ V (G) and v ∈ V (H)} and (u, v) is adjacent to (ú, v́) if and

only if either u = ú and (v, v́) ∈ E(H) or v = v́ and (u, ú) ∈ E(G). The Cartesian product of two

paths Pm and Pn denoted by Pm×Pn is known as a grid graph on mn vertices and 2mn− (m+n)

edges.
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Definition 1.3. Let G be a graph with p vertices and H be any graph and x be a vertex of H. A

graph G◦̂H is obtained from G and p copies of H by identifying vertex x of ith copy of H with ith

vertex of G.

Definition 1.4. [4] Let T be a tree and u0 and v0 be the two adjacent vertices in T . Let u and

v be the two pendant vertices of T such that the length of the path u0 − u is equal to the length of

the path v0 − v. If the edge u0v0 is deleted from T and u and v are joined by an edge uv, then

such a transformation of T is called an elementary parallel transformation (or an ept) and the edge

u0v0 is called transformable edge. If by some sequence of ept’s, T can be reduced to a path, then

T is called a Tp- tree (transformed tree) and such sequence regarded as a composition of mappings

(ept’s) denoted by P is called a parallel transformation of T . The path, the image of T under P is

denoted as P (T ). A Tp- tree and the sequence of two ept’s reducing it to a path are illustrated in

Figure 1.

a) A Tp- tree T b) An ept P1(T ) c) Second ept P2(T )
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Figure 1: Transformed tree

Definition 1.5. [15] Let T be a Tp-tree with n vertices v1, v2, · · · , vn. The graph T ◦̂Pm is obtained

from T and n copies of Pm by identifying a pendant vertex of ith copy of Pm with vertex vi of T .

Definition 1.6. [16] Consider k copies of paths Pn of length n− 1 and stars Sm with m pendant

vertices. Identify one of the two pendant vertices of the jth path with the centre of the jth star.

Identify the other pendant vertex of each path with a single vertex u0 (u0 is not in any of the star

and path). The graph obtained is a regular bamboo tree.



302 P. Jeyanthi and S. Philo CUBO
22, 3 (2020)

2 Main Results

In this section, we prove that Tp- tree, T ◦̂Pm, T ◦̂2Pm, regular bamboo tree, Cn◦̂Pm, Cn◦̂2Pm and

subdivided grid graphs are odd harmonious.

Theorem 2.1. Every Tp- tree is strongly odd harmonious.

Proof. Let T be a Tp-tree with n vertices. By definition, there exists a parallel transformation P

of T , we have V (P (T )) = V (T ) and E(P (T )) = (E(T )− Ed) ∪ Ea, where Ed is the set of deleted

edges and Ea is the set of newly added edges through the sequence P = (P1, P2, · · · , Pl) of the

ept’s used to obtain P (T ). Hence Ed and Ea have the same number of edges. Let u1, u2, · · · , un

be the vertices of P (T ) successively, from one pendant vertex of P (T ) right up to the other. This

Tp-tree has n vertices and n− 1 edges.

We define a labeling f : V (G) → {0, 1, 2, · · · , q = n− 1} as follows:

f(ui) = i− 1, 1 ≤ i ≤ n.

Let (uiuj) be an edge of T , 1 ≤ i<j ≤ n. Let the ept P1 delete the edge (uiuj) and adds the

edge (ui+tuj−t) where t is the distance from ui to ui+t and also the distance from uj to uj−t. Let

the parallel transformation P contain one of the constituent ept’s P1. Since (ui+tuj−t) is an edge

of P (T ), it follows that i+ t+ 1 = j − t, implies j = i+ 2t+ 1.

The induced edge label of (uiuj) is given by

f∗(uiuj) = f∗(uiui+2t+1) = f(ui) + f(ui+2t+1) = 2(i+ t)− 1,

f∗(ui+tuj−t) = f∗(ui+tui+t+1) = f(ui+t) + f(ui+t+1) = 2(i+ t)− 1,

f∗(uiuj) = f∗(ui+tuj−t).

The induced edge label is

f∗(uiui+1) = 2i− 1, 1 ≤ i ≤ n− 1.

Thus the induced edge labels are 1, 3, · · · , 2n − 3. Therefore every Tp-tree is strongly odd

harmonious.

A strongly odd harmonious labeling of a Tp- tree with 12 vertices is shown in Figure 2.
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Figure 2: Strongly odd harmonious labeling of Tp- tree with 12 vertices
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Theorem 2.2. If T is a Tp-tree then the graph T ◦̂Pm is strongly odd harmonious.

Proof. Let T be a Tp-tree with n vertices. By definition there exists parallel transformation P (T ),

we have V (P (T )) = V (T ) and E(P (T )) = (E(T )−Ed) ∪Ea, where Ed is the set of deleted edges

and Ea is the newly added edges through the sequence P = (P1, P2, · · · , Pl) of the ept’s used to

obtain P (T ). Hence Ed and Ea have the same number of edges. Let u1, u2, · · · , un be the vertices

of P (T ) successively, from one pendant vertex of P (T ) right up to the other. Let xj
0, x

j
1, · · · , xj

m−1,

1 ≤ j ≤ n be the vertices of the jth copy of Pm. Identify x
j
0 with uj, where 1 ≤ j ≤ n. Then the

graph T ◦̂Pm has nm vertices and nm− 1 edges.

We define a labeling f : V (G) → {0, 1, 2, · · · , q = nm− 1} as follows:

f(uj) = mj − 1, j = 1, 3, · · · , n− 1,

f(uj) = m(j − 1), j = 2, 4, · · · , n,
For 1 ≤ i ≤ m− 1, f(xj

i ) = mj − i− 1, j = 1, 3, · · · , n− 1,

f(xj
i ) = m(j − 1) + i, j = 2, 4, · · · , n.

Let (uiuj) be an edge of T , 1 ≤ i<j ≤ n. Let the ept P1 delete the edge (uiuj) and add the

edge (ui+tuj−t) where t is the distance from ui to ui+t and also the distance from uj to uj−t. Let

the parallel transformation P contain one of the constituent ept’s P1. Since (ui+tuj−t) is an edge

of P (T ), it follows that i+ t+ 1 = j − t, implies j = i + 2t+ 1. Therefore i and j are of opposite

equivalence, that is, i is even and j is odd or vice-versa.

The induced edge label of (uiuj) is given by

f∗(uiuj) = f∗(uiui+2t+1) = f(ui) + f(ui+2t+1) = 2m(i+ t)− 1,

f∗(ui+tuj−t) = f∗(ui+tui+t+1) = f(ui+t) + f(ui+t+1) = 2m(i+ t)− 1,

f∗(uiuj) = f∗(ui+tuj−t).

The induced edge labels are

f∗(ujuj+1) = 2mj − 1, 1 ≤ j ≤ n− 1,

For 1 ≤ i ≤ m− 2, f∗(xj
ix

j
i+1) = 2mj − 2i− 3, j = 1, 3, · · · , n− 1,

f∗(xj
ix

j
i+1) = 2m(j − 1) + 2i+ 1, j = 2, 4, · · · , n,

f∗(ujx
j
1) = 2mj − 3, j = 1, 3, · · · , n− 1,

f∗(ujx
j
1) = 2m(j − 1) + i, j = 2, 4, · · · , n.

Thus the induced edge labels are 1, 3, · · · , 2mn− 3. Hence every T ◦̂Pm is strongly odd har-

monious.

A strongly odd harmonious labeling of T ◦̂P4 where T is a Tp-tree with 10 vertices is shown in

Figure 3.
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Figure 3: Strongly odd harmonious labeling of T ◦̂P4

Theorem 2.3. If T is a Tp-tree then the graph T ◦̂2Pm is strongly odd harmonious.

Proof. Let T be a Tp-tree with n vertices. By definition there exists a parallel transformation P (T ),

we have V (P (T )) = V (T ) and E(P (T )) = (E(T )−Ed) ∪Ea, where Ed is the set of deleted edges

and Ea is the set of newly added edges through the sequence P = (P1, P2, · · · , Pl) of the ept’s used

to obtain P (T ). Hence Ed and Ea have the same number of edges. Let xj
1,0, x

j
1,1, x

j
1,2, · · · , xj

1,m−1

and x
j
2,0, x

j
2,1, x

j
2,2, · · · , xj

2,m−1, 1 ≤ j ≤ n be the vertices of two disjoint paths Pm. Identify x
j
1,0

and x
j
2,0 with uj , 1 ≤ j ≤ n to obtain T ◦̂2Pm. Then the graph T ◦̂2Pm has n(2m− 1) vertices and

n(2m− 1)− 1 edges.

We define a labeling f : V (G) → {0, 1, 2, · · · , q = n(2m− 1)− 1} as follows:

f(uj) = m− 1 + (2m− 1)(j − 1), if j is odd,

f(uj) = 3m− 2 + (2m− 1)(j − 2), if j is even,

f(xj
1,i) = m− 1 + (2m− 1)(j − 1)− i, if j is odd,

f(xj
1,i) = 3m− 2 + (2m− 1)(j − 2)− i, if j is even,

f(xj
2,i) = m− 1 + (2m− 1)(j − 1) + i, if j is odd,

f(xj
2,i) = 3m− 2 + (2m− 1)(j − 2) + i, if j is even.

Let (uiuj) be an edge of T , 1 ≤ i<j ≤ n. Let the ept P1 delete the edge (uiuj) and add the

edge (ui+tuj−t) where t is the distance from ui to ui+t and also the distance from uj to uj−t. Let

the parallel transformation P contain one of the constituent ept
′

s P1. Since (ui+tuj−t) is an edge

of P (T ), it follows that i+ t+ 1 = j − t, implies j = i + 2t+ 1. Therefore i and j are of opposite

equivalence, that is, i is even and j is odd or vice-versa.

The induced edge label of (uiuj) is given by

f∗(uiuj) = f∗(uiui+2t+1) = f(ui) + f(ui+2t+1) = 4mi+ 4mt− 2i− 2t− 1,

f∗(ui+tuj−t) = f∗(ui+tui+t+1) = f(ui+t) + f(ui+t+1) = 4mi+ 4mt− 2i− 2t− 1,

f∗(uiuj) = f∗(ui+tuj−t).
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The induced edge labels are

f∗(ujx
j
1,1) = 2(m− 1) + 2(2m− 1)(j − 1)− 1, if j is odd,

f∗(ujx
j
1,1) = 2(3m− 2) + 2(2m− 1)(j − 2)− 1, if j is even,

f∗(ujx
j
2,1) = 2(m− 1) + 2(2m− 1)(j − 1) + 1, if j is odd,

f∗(ujx
j
2,1) = 2(3m− 2) + 2(2m− 1)(j − 2) + 1, if j is even,

f∗(ujuj+1) = 2(2m− 1)(j − 1) + 4m+ 3, 1 ≤ j ≤ n− 1,

For 1 ≤ i ≤ m− 2,

f∗(xj
1,ix

j
1,i+1) = 2(2m− 1)(j − 1) + 2(m− 1)− 2i− 1, if j is odd,

f∗(xj
1,ix

j
1,i+1) = 2(2m− 1)(j − 2) + 2(3m− 2)− 2i− 1, if j is even,

f∗(xj
2,ix

j
2,i+1) = 2(2m− 1)(j − 1) + 2(m− 1) + 2i+ 1, if j is odd,

f∗(xj
2,ix

j
2,i+1) = 2(2m− 1)(j − 2) + 2(3m− 2) + 2i+ 1, if j is even.

Hence T ◦̂2Pm is strongly odd harmonious.

The strongly odd harmonious labeling of T ◦̂2P4 where T is a Tp-tree with 13 vertices is shown

in Figure 4.
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Figure 4: strongly odd harmonious labeling of T ◦̂2P4

Theorem 2.4. Every regular bamboo tree is odd harmonious.

Proof. Let vj0, v
j
1, v

j
2, · · · , vjn−1 be the vertices of the jth path Pn, 1 ≤ j ≤ m where v

j
0 is identified

with the apex vertex v0 and v
j
n−1 is identified with u

j
0 which is the centre of the jth star. Let

u
j
1, u

j
2, · · · , uj

t be the pendant vertices of the j
th star. The regular bamboo tree has m(t+n−1)+1

vertices and m(t+ n− 1) edges.
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We define the labeling f : V (G) → {0, 1, 2, · · · , 2m(n+ t− 1)− 1} as follows:

Case(i): m is odd

f(v0) = 0,

For 1 ≤ j ≤ m,

f(vji ) = 2j − 1 +m(i− 1), if i is odd,

f(vji ) = 2 + 4(m− j) +m(i− 2), if i is even,

f(uj
i ) = m(n− 1) + 2m− 1 + 2m(t− i)− 2(m− j), 1 ≤ i ≤ t.

The induced edge labels are

For 1 ≤ j ≤ m,

f∗(v0v
j
1) = 2j − 1,

f∗(vji v
j
i+1) = 2j + 2m(i− 1) + 4(m− j) + 1, if i is odd,

f∗(vji v
j
i+1) = 4(m− j) + 2m(i− 1) + 2j + 1, if i is even,

f∗(vjn−1u
j
i ) = 2m(n+ t− i)− 2j + 1, 1 ≤ i ≤ t.

Case (ii): m is even

f(v0) = n− 1,

f(v1i ) = n− 1− i, 1 ≤ i ≤ n− 1,

For 2 ≤ j ≤ m and 1 ≤ i ≤ t,

f(vji ) = n+ 2(j − 2) + (m− 1)(i− 1), if i is odd,

f(vji ) = n+ 1 + 4(m− j) + (m− 1)(i− 2), if i is even,

If n is odd, f(u1
i ) = 2mn+ 2(m− 1)(t− 1)− 2m+ 2(t− i) + 7,

If n is even, f(u1
i ) = 2mn+ 2(m− 1)(t− 1) + 2(t− i)− 1,

If n is odd, f(uj
i ) = m(n− 1) + 5 + 2(m− 1)(t− i)− 2(m− j),

If n is even, f(uj
i ) = m(n− 2) + 3 + 2(m− 1)(t− i) + 4(m− j).

The induced edge labels are

f∗(v0v
1
1) = 2n− 3,

f∗(v0v
j
1) = 2n− 1 + 2(j − 2), 2 ≤ j ≤ m,

f∗(vji v
j
i+1) = 2n+ 2(j − 2) + 2(m− 1)(i− 1) + 4(m− j) + 1, 2 ≤ j ≤ m.

For 2 ≤ j ≤ m and 1 ≤ i ≤ t,

If n is even, f∗(vjn−1u
j
i ) = 2mn− 2j + 1 + 2(m− 1)(t− i).

If n is odd, f∗(vjn−1u
j
i ) = 2m(n− 1)− 2j + 2(m− 1)(t− i) + 9.

f∗(v1n−1u
1
i ) =







2mn+ 2(m− 1)(t− 1)− 2m+ 2(t− i) + 7 if n is odd

2mn+ 2(m− 1)(t− 1) + 2(t− i)− 1 if n is even.

Thus every regular bamboo tree is odd harmonious.

An odd harmonious labeling of a regular bamboo tree with m = 5, n = 6, t = 2 is shown in Figure 5.
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Figure 5: A regular bamboo tree with m = 5, n = 6, t = 2

An odd harmonious labeling of a regular bamboo tree with m = 4, n = 5, t = 2 is shown in Figure

6.
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Figure 6: A regular bamboo tree with m = 4, n = 5, t = 2

Theorem 2.5. The graph Cn◦̂Pm, n ≡ 0(mod 4) is odd harmonious.

Proof. Let u1, u2, · · · , un be the vertices of cycle Cn. Let u
0
i , u

1
i , · · · , um−1

i be the vertices of path

Pm. We identify u0
i with ui, 1 ≤ i ≤ n to obtain Cn◦̂Pm. Then the graph Cn◦̂Pm has mn edges

and vertices.

We define the labeling f : V (G) → {0, 1, 2, · · · , 2nm− 1} as follows:

Case (i): m is odd

f(ui) = mi, i = 1, 3, · · · , n− 1,

f(ui) = mi−m− 1, i = 2, 4, · · · , n
2
,

f(ui) = mi−m+ 1, i =
n

2
+ 2, · · · , n;

f(uj
i ) = mi− j, if i is odd and j is even,
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f(uj
i ) =







mi− j − 2 if 1 ≤ i ≤ n

2
− 1

mi− j if
n

2
+ 1 ≤ i ≤ n− 1

if both i and j are odd,

f(uj
i ) =







mi−m+ j − 1 if 2 ≤ i ≤ n

2
mi−m+ j + 1 if

n

2
+ 2 ≤ i ≤ n

if both i and j are even,

f(uj
i ) = mi−m+ j + 1, if i is even and j is odd.

The induced edge labels are

f∗(uiui+1) = 2im− 1, 1 ≤ i ≤ n

2
,

f∗(uiui+1) = 2im+ 1,
n

2
+ 1 ≤ i ≤ n− 1,

f∗(u1un) = mn+ 1,

f(uiu
1
i ) =







2mi− 3 if 1 ≤ i ≤ n

2
− 1

2mi− 1 if
n

2
+ 1 ≤ i ≤ n− 1

f(uiu
1
i ) =







2mi− 2m+ 1 if 2 ≤ i ≤ n

2
2mi− 2m+ 3 if

n

2
+ 2 ≤ i ≤ n

if i is even and j is odd,

f(uj
iu

j+1

i ) =







2mi− 2j − 3 if 1 ≤ i ≤ n

2
− 1

2mi− 2j − 1 if
n

2
+ 1 ≤ i ≤ n− 1

if i is odd,

f(uj
iu

j+1

i ) =







2mi− 2m+ 2j − 1 if 2 ≤ i ≤ n

2
2mi− 2m+ 2j + 1 if

n

2
+ 2 ≤ i ≤ n

if i is even.

Case (ii): m is even

f(ui) = mi− 2, i = 1, 3, · · · , n− 1,

f(ui) =







mi−m+ 1 if 2 ≤ i ≤ n

2
mi−m+ 3 if

n

2
+ 2 ≤ i ≤ n

if i is even,

f(uj
i ) =







mi− j if 1 ≤ i ≤ n

2
− 1

mi− j + 2 if
n

2
+ 1 ≤ i ≤ n− 1

if both i and j are odd,

f(uj
i ) = mi− j − 2, 1 ≤ i ≤ n− 1, if i is odd and j is even,

f(uj
i ) = mi−m+ j − 1, 2 ≤ i ≤ n− 2, if i is even and j is odd,

f(uj
i ) =







mi−m+ j + 1 if 2 ≤ i ≤ n

2
mi−m+ j − 1 if

n

2
+ 2 ≤ i ≤ n

if both i and j are even.

The induced edge labels are

f∗(uiui+1) =







2mi− 1 if 1 ≤ i ≤ n

2
2mi+ 1 if

n

2
+ 1 ≤ i ≤ n

if i is even and j is odd,

f∗(u1un) = mn+ 1;

f(uiu
1
i ) =







2mi− 3 if 1 ≤ i ≤ n

2
− 1

2mi− 1 if
n

2
+ 1 ≤ i ≤ n− 1

if i is odd,
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f∗(uiu
1
i ) =







2mi− 2m+ 1 if 2 ≤ i ≤ n

2
2mi− 2m+ 3 if

n

2
+ 2 ≤ i ≤ n

if i is even,

f∗(uj
iu

j+1

i ) =







2mi− 2j − 3 if 1 ≤ i ≤ n

2
− 1

2mi− 2j − 1 if
n

2
+ 1 ≤ i ≤ n− 1

if i is odd,

f∗(uj
iu

j+1

i ) =







2mi− 2m+ 2j + 1 if 2 ≤ i ≤ n

2
2mi− 2m+ 2j − 1 if

n

2
+ 2 ≤ i ≤ n

if i is even.

Therefore Cn◦̂Pm is odd harmonious.

An odd harmonious labeling of C4◦̂P5 and C12◦̂P4 are shown in Figure 7.
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Figure 7: An odd harmonious labeling of C4◦̂P5 and C12◦̂P4

Theorem 2.6. The graph Cn◦̂2Pm, n ≡ 0(mod 4) is odd harmonious.

Proof. Let u1, u2, · · · , un be the vertices of Cn. Let x
j
1,0, x

j
1,1, x

j
1,2, · · · , xj

1,m−1 and x
j
2,0, x

j
2,1,

x
j
2,2, · · · , xj

2,m−1, 1 ≤ j ≤ n be the vertices of two disjoint paths Pm. Identify x
j
1,0 and x

j
2,0

with uj , 1 ≤ j ≤ n to obtain Cn◦̂2Pm. Then the graph Cn◦̂2Pm has n(2m− 1) edges and vertices.

We define the labeling f : V (G) → {0, 1, 2, · · · , 2n(2m− 1)− 1} as follows:

f(uj) = m− 1 + (2m− 1)(j − 1), j = 1, 3, · · · , n− 1,

f(uj) =







3m− 2 + (2m− 1)(j − 2) if 2 ≤ j ≤ n

2
7m− 2 + (2m− 1)(j − 4) if

n

2
+ 2 ≤ j ≤ n

if j is even,

f(xj
1,i) = (m− 1) + (2m− 1)(j − 1)− i, if i is even and j is odd,
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f(xj
1,i) =







m+ (2m− 1)(j − 1)− i− 1 if 1 ≤ j ≤ n

2
− 1

m+ (2m− 1)(j − 1)− i+ 1 if
n

2
+ 1 ≤ j ≤ n− 1

if both i and

j are odd,

f(xj
2,i) = m+ (2m− 1)(j − 1) + i− 1, 1 ≤ j ≤ n− 1, if i is even and j is odd,

f(xj
2,i) =







m+ (2m− 1)(j − 1) + i− 1 if 1 ≤ j ≤ n

2
− 1

m+ (2m− 1)(j − 1) + i+ 1 if
n

2
+ 1 ≤ j ≤ n− 1

if both i and

j are odd,

f(xj
1,i) =







3m+ (2m− 1)(j − 2)− i− 2 if 2 ≤ j ≤ n

2
7m+ (2m− 1)(j − 4)− i− 2 if

n

2
+ 2 ≤ j ≤ n

if both i and j are even,

f(xj
1,i) =







3m+ (2m− 1)(j − 2)− i− 2 if 2 ≤ j ≤ n

2
7m+ (2m− 1)(j − 4)− i− 4 if

n

2
+ 2 ≤ j ≤ n

if i is odd and j is even,

f(xj
2,i) =







3m+ (2m− 1)(j − 2) + i− 2 if 2 ≤ j ≤ n

2
7m+ (2m− 1)(j − 4) + i− 2 if

n

2
+ 2 ≤ j ≤ n

if both i and j are even,

f(xj
2,i) =







3m+ (2m− 1)(j − 2) + i− 2 if 2 ≤ j ≤ n

2
7m+ (2m− 1)(j − 4) + i− 4 if

n

2
+ 2 ≤ j ≤ n

if i is odd and j is even.

The induced edge labels are

f∗(ujuj+1) = 4m+ 2(2m− 1)(j − 1)− 3, 1 ≤ j ≤ n

2
− 1,

f∗(ujuj+1) = 8m+ 2(2m− 1)(j − 2)− 3,
n

2
+ 1 ≤ j ≤ n− 1,

f∗(ujx
j
1,1) =







2m+ 2(2m− 1)(j − 1)− 3 if 1 ≤ j ≤ n

2
− 1

2m+ 2(2m− 1)(j − 1)− 1 if
n

2
+ 1 ≤ j ≤ n− 1

if j is odd,

f∗(ujx
j
1,1) =







6m+ 2(2m− 1)(j − 2)− 5 if 2 ≤ j ≤ n

2
14m+ 2(2m− 1)(j − 4)− 7 if

n

2
+ 2 ≤ j ≤ n

if j is even,

f∗(ujx
j
2,1) =







2m+ 2(2m− 1)(j − 1)− 1 if 1 ≤ j ≤ n

2
− 1

2m+ 2(2m− 1)(j − 1) + 1 if
n

2
+ 1 ≤ j ≤ n− 1

if j is odd,

f∗(ujx
j
2,1) =







6m+ 2(2m− 1)(j − 2)− 3 if 2 ≤ j ≤ n

2
14m+ 2(2m− 1)(j − 4)− 5 if

n

2
+ 2 ≤ j ≤ n

if j is even,

f∗(xj
1,ix

j
1,i+1) =







4mj − 2m− 2j − 2i− 1 if 1 ≤ j ≤ n

2
− 1

4mj − 2m− 2j − 2i+ 1 if
n

2
+ 1 ≤ j ≤ n− 1

if j is odd,

f∗(xj
1,ix

j
1,i+1

) =







6m+ 2(2m− 1)(j − 2)− 2i− 5 if 2 ≤ j ≤ n

2
14m+ 2(2m− 1)(j − 4)− 2i− 7 if

n

2
+ 2 ≤ j ≤ n

if j is even,

f∗(xj
2,ix

j
2,i+1) =







2m+ 2(2m− 1)(j − 1) + 2i− 1 if 1 ≤ j ≤ n

2
− 1

2m+ 2(2m− 1)(j − 1) + 2i+ 1 if
n

2
+ 1 ≤ j ≤ n− 1

if j is odd,
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f∗(xj
2,ix

j
2,i+1) =







6m+ 2(2m− 1)(j − 2) + 2i− 3 if 2 ≤ j ≤ n

2
14m+ 2(2m− 1)(j − 4) + 2i− 5 if

n

2
+ 2 ≤ j ≤ n

if j is even,

f∗(u1un) = 8m+ (2m− 1)(n− 4)− 3.

Thus Cn◦̂2Pm is odd harmonious.

An odd harmonious labeling of C8◦̂2P3 is shown in Figure 8.
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Figure 8: An odd harmonious labeling of C8◦̂2P3

Theorem 2.7. Every subdivided grid Pm × Pm, m ≥ 2 is strongly odd harmonious.

Proof. Let vi,1, vi,2, · · · , vi,m, 1 ≤ i ≤ m be the vertices of the ith row of Pm × Pm. Let u1,i,

u2,i, · · · , um−1,i, 1 ≤ i ≤ m be the vertices of the subdivided of ith column and w1,i, w2,i, · · · , wm−1,i,

1 ≤ i ≤ m be the vertices of the subdivided of ith row. Then the subdivided grid graph has

m(3m− 2) and 4m(m− 1) vertices and edges respectively.

We define a labeling f : V (G) → {0, 1, 2, · · · , q = 4m(m− 1)} as follows:

f(vi,j) = 2(j − 1) + 2(2m− 1)(i− 1), 1 ≤ j ≤ m and i is odd,

f(vi,j) = 2(3m− j − 1) + 2(2m− 1)(i− 2), 1 ≤ j ≤ m and i is even,

f(ui,j) = 2m− 1 + 4(m− j) + 2(2m− 1)(i− 1), 1 ≤ j ≤ m and i is odd,

f(ui,j) = 6m− 3 + 4(j − 1) + 2(2m− 1)(i− 2), 1 ≤ j ≤ m and i is even,

f(wi,1) = 2i− 1, 1 ≤ i ≤ m− 1,

f(wi,j) = (m− 1)(4j − 2)− 4i+ 2j − 1, 1 ≤ i ≤ m− 1 and j is even,

f(wi,j) = (m− 1)(4j − 6) + 4i+ 2j − 5, 1 ≤ i ≤ m− 1 and j is odd.
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The induced edge labels are

f∗(vi,jui,j) = 2(j − 1) + 4(2m− 1)(i− 1) + 2m− 1 + 4(m− j), 1 ≤ j ≤ m and i is odd,

f∗(ui,jvi+1,j) = 2m− 1 + 2(5m− 3j − 1) + 4(2m− 1)(i− 1), 1 ≤ j ≤ m and i is odd,

f∗(ui,jvi+1,j) = 6m− 3 + 6(j − 1) + 4(2m− 1)(i− 1), 1 ≤ j ≤ m and i is even,

f∗(vi,jwt,k) = 2(j − 1) + 2(2m− 1)(i− 1) + (m− 1)(4k − 2)− 4t− 2k − 1, i is odd and k is even,

f∗(vi,jwt,k) = 2(j − 1) + 2(2m− 1)(i− 1) + (m− 1)(4k − 6) + 4t+ 2k − 5, i is odd and k is odd,

f∗(vi,jwt,k) = 2(3m− j − 1) + 2(2m− 1)(i− 2) + 2(m− 1)(2k − 1)− 4t− 2k − 1, i is even and k

is even,

f∗(vi,jwt,k) = 2(3m− j − 1) + 2(2m− 1)(i− 2) + 2(m− 1)(2k − 3) + 4t+ 2k − 5, i is even and k

is odd,

f∗(v1,jwi,1) = 2(j − 1) + 2i− 1, 1 ≤ i and j ≤ m− 1,

f∗(wi,1v1,j) = 2(j − 1) + 2i− 1, 1 ≤ i ≤ m− 1 and 2 ≤ j ≤ m.

Therefore every subdivided grid graph is strongly odd harmonious.

A strongly odd harmonious labeling of subdivided grid P4 × P4 is shown in Figure 9.
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Figure 9: Strongly odd harmonious labeling of subdivided grid P4 × P4
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ABSTRACT

This paper introduces the concept of upper detour monophonic domination number of a

graph. For a connected graphG with vertex set V (G), a set M ⊆ V (G) is called minimal

detour monophonic dominating set, if no proper subset of M is a detour monophonic

dominating set. The maximum cardinality among all minimal monophonic dominating

sets is called upper detour monophonic domination number and is denoted by γ+

dm(G).

For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G

with γm(G) = γdm(G) = p and γ+

dm(G) = q. For any three positive integers p, q, r

with 2 < p < q < r, there is a connected graph G with m(G) = p, γdm(G) = q and

γ+

dm(G) = r. Let p and q be two positive integers with 2 < p < q such that γdm(G) = p

and γ+

dm(G) = q. Then there is a minimal DMD set whose cardinality lies between p

and q. Let p, q and r be any three positive integers with 2 ≤ p ≤ q ≤ r. Then, there

exist a connected graph G such that γdm(G) = p, γ+

dm(G) = q and |V (G)| = r.

RESUMEN

Este artículo introduce el concepto de número de dominación de desvío monofónico

superior de un grafo. Para un grafo conexo G con conjunto de vértices V (G), un

conjunto M ⊆ V (G) se llama conjunto dominante de desvío monofónico minimal, si

ningún subconjunto propio de M es un conjunto dominante de desvío monofónico.

La cardinalidad máxima entre todos los conjuntos dominantes de desvío monofónico

minimales se llama número de dominación de desvío monofónico superior y se denota

por γ+

dm(G). Para cualquier par de enteros positivos p y q con 2 ≤ p ≤ q existe un

grafo conexo G con γm(G) = γdm(G) = p y γ+

dm(G) = q. Para cualquiera tres enteros

positivos p, q, r con 2 < p < q < r, existe un grafo conexo G con m(G) = p, γdm(G) = q

y γ+

dm(G) = r. Sean p y q dos enteros positivos con 2 < p < q tales que γdm(G) = p y

c©2020 by the author. This open access article is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.
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γ+

dm(G) = q. Entonces existe un conjunto DMD mínimo cuya cardinalidad se encuentra

entre p y q. Sean p, q y r tres enteros positivos cualquiera con 2 ≤ p ≤ q ≤ r. Entonces

existe un grafo conexo G tal que γdm(G) = p, γ+

dm(G) = q y |V (G)| = r.

Keywords and Phrases: Monophonic number, Domination Number, Detour monophonic num-

ber, Detour monophonic domination number, Upper detour monophonic domination number.

2020 AMS Mathematics Subject Classification: 05C69, 05C12.

1 Introduction

Consider an undirected connected graph G(V,E) without loops or multiple edges. Let P :

u1, u2, ...un be a path of G. An edge e is said to be a chord of P if it is the join of two non

adjacent vertices of P . A path is said to be monophonic path if there is no chord. If S is a set of

vertices of G such that each vertex of G lies on an u− v monophonic path in G for some u, v ∈ S,

then S is called monophonic set. Monophonic number is the minimum cardinality among all the

monophonic sets of G. It is denoted by m(G) [1,2].

A vertex v in a graph G dominates itself and all its neighbours. A set T of vertices in a graph G

is a dominating set if N [T ] = V (G). The minimum cardinality among all the dominating sets of G

is called domination number and is dented by γ(G)[4]. A set T ⊂ V (G) is a monophonic dominating

set of G if T is both monophonic set and dominating set. The monophonic domination number

is the minimum cardinality among all the monophonic dominating sets of G and is denoted by

γm(G)[5,6]. A monophonic set M in a connected graph G is minimal monophonic set if no proper

subset of M is a monophonic set. The upper monophonic number is the maximum cardinality

among all minimal monophonic sets and is denoted by m+(G)[9].

The shortest x − y path is called geodetic path and longest x − y monophonic path is called

detour monophonic path. If every vertex of G lies on a x−y detour monophonic path in G for some

x, y ∈ M ⊆ V (G), M could be identified as a detour monophonic set. The minimum cardinality

among all the detour monophonic set is the detour monophonic number and is denoted by dm(G).

A minimal detour monophonic set D of a connected graph G is a subset of V (G) whose any proper

subset is not a detour monophonic set of G. The maximum cardinality among all minimal detour

monophonic sets is called upper detour monophonic set, denoted by dm+(G) [10].

If D is both a detour monophonic set and a dominating set, it could be a detour monophonic

dominating set. The minimum cardinality among all detour monophonic dominating sets of G

is the detour monophonic dominating number( DMD number) and is denoted by γdm(G)[7,8]. A

vertex v is an extreme vertex if the sub graph induced by its neighbourhood is complete. A vertex

u in a connected graph G is a cut-vertex of G, if G− u is disconnected. In this article, we consider
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G as a connected graph of order n ≥ 2 if otherwise not stated. For basic notations and terminology

refer [3].

Theorem 1.1 (8). Each extreme vertex of a connected graph G belongs to every detour monophonic

dominating set of G.

Example 1.1. Consider the graph G given in Figure 1. Here M1 = {v1, v4} is a monophonic

set. Therefore m(G) = 2. M1 also dominate G. Hence γ(G) = 2. The set M2 = {v1, v2, v3} is

a minimum detour monophonic set. Thus dm(G) = 3. M2 does not dominate G. M2 ∪ {v4} is a

minimum DMD set. Therefore γdm(G) = 4.

2 UDMD Number of a Graph

Definition 2.1. A detour monophonic dominating set M in a connected graph G is called minimal

detour monophonic dominating set if no proper subset of M is a detour monophonic dominating

set. The maximum cardinality among all minimal detour monophonic dominating sets is called

upper detour monophonic domination number and is denoted by γ+

dm(G).

Figure 1: Graph G with UDMD number 5

Example 2.1. Consider the graph G given in Figure 1. The set M = {v1, v5, v6, v7, v8} is a

minimal DMD set with maximum cardinality. Therefore γ+

dm(G) = 5.

Theorem 2.1. Let G be a connected graph and v an extreme vertex of G. Then v belongs to every

minimal detour monophonic dominating set of G.

Proof. Every minimal detour monophonic dominating set is a minimum detour monophonic set.

Since each extreme vertex belongs to every minimum detour monophonic dominating set, the result

follows.
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Theorem 2.2. Let v be a cut- vertex of a connected graph G. If M is a minimal DMD set of G,

then each component of G− v have an element of M.

Proof. Suppose let A is a component of G − v having no vertices of M . Let u be any one of the

vertex in A. Since M is a minimal DMD set, there exist two vertices p, q in M such that u lies

on a p − q detour monophonic path P : p, u0, u1, ..., u, ..., um = q in G. Consider two sub-paths

P1 : p− u and P2 : u− q of P . Given v is a cut-vertex of G. Therefore both P1 and P2 contain v.

Hence P is not a path. This is a contradiction. That is, each component of G− v have an element

of every minimal DMD set.

Theorem 2.3. For a connected graph G of order n, γdm(G) = n if and only if γ+

dm(G) = n.

Proof. First, suppose γ+

dm(G) = n. That is M = V (G) is the unique minimal DMD set of G, so that

no proper subset of M is a DMD set. Hence M is the unique DMD set. Therefore γdm(G) = n.

Conversely, let γdm(G) = n. Since every DMD set is a minimal DMD set, γdm(G) ≤ γ+

dm(G).

Therefore γ+

dm(G) ≥ n. Since V (G) is the maximum DMD set, γ+

dm(G) = n.

3 UDMD Number of Some Standard Graphs

Example 3.1. Complete bipartite graph Km,n

For complete bipartite graph G = Km,n,

γ+

dm(G) =



















2, if m = n = 1;

n, if n ≥ 2,m = 1;

4, if m = n = 3

max{m,n} if m, n ≥ 2,m, n 6= 3

Proof. Case (i): Let m = n = 1. Then Km,n = K2. Therefore γ+

dm(G) = 2.

Case (ii): Let n ≥ 2,m = 1. This graph is a rooted tree. There are n end vertices. All these are

extreme vertices. Therefore they belong to every DMD set and consequently every minimal DMD

set.

Case (iii): If m = n = 3, then exactly two vertices from both the particians form a minimal DMD

set.

Case (iv): Let m,n ≥ 2,m, n 6= 3. Assume that m ≤ n. Let A = {a1, a2, ...am} and B =

{b1, b2, ...bn} be the partitions of G. First, prove M = B is a minimal DMD set. Take a vertex

aj , 1 ≤ j ≤ m, which lies in a detour monophonic path biajbk for k 6= j so that M is a detour

monophonic set. They also dominate G. Hence M is a DMD set.
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Next, let S be any minimal DMD set such that |S| > n. Then S contains vertices from both

the sets A and B. Since A and B are themselves minimal DMD sets, they do not completely

belongs to S. Note that if S contains exactly two vertices from A and B, then it is a minimum

DMD set. Thus γ+

dm(G) = n = max{m,n}.

Example 3.2. Complete graph Kn

For complete graph G = Kn, γ+

dm(G) = n.

Proof. For a complete graph G, every vertex in G is an extreme vertex. By theorem 2.1 they

belong to every minimal DMD set.

Example 3.3. Cycle graph Cn

For Cycle graph G = Cn with n vertices ,

γ+

dm(G) =















3, if n ≤ 7, n 6= 4

2, if n = 4

4 +
n− 7− r

3
, if n ≥ 8, n− 7 ≡ r mod(3)

Proof. For n ≤ 7 the results are trivial. For n ≥ 8, let Cn : v1, v2, v3, ..., vn, v1 be the cycle with

n vertices. Then the set of vertices {v1, v3, vn−1} is a minimal detour monophonic set but not

dominating. This set dominates only seven vertices. There are n− 7 remaining vertices. If r is the

reminder when n− 7 is divided by 3, then
n− 7− r

3
+ 1 vertices dominate the remaining vertices.

Therefore every minimal DMD set contains 4 +
n− 7− r

3
vertices.

4 Characterization of γ+
dm(G)

Theorem 4.1. For any two positive integers p and q with 2 ≤ p ≤ q there is a connected graph G

with γm(G) = γdm(G) = p and γ+

dm(G) = q.

Proof. Construct a graph G as follows. Let C6 : u1, u2, u3, u4, u5, u6, u1 be the cycle of order 6.

Join p−1 disjoint vertices M1 = {x1, x2, ..., xp−1} with the vertex u1. Let M2 = {y1, y2, ..., yq−p−1}

be a set of q−p− 1 disjoint vertices. Add each vertex in M2 with u4 and u6. Let xp−1 be adjacent

with u2 and u6. This is the graph G given in Figure 2.

Since all vertices except xp−1 in M1 are extreme, they belong to every minimum monophonic

dominating set and DMD set. The set M = M1 ∪{u4} is a minimum monophonic dominating set.

Therefore γm(G) = p. Moreover, the set of all vertices in M form a DMD set and is minimum.

That is γdm(G) = p.
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Next, we prove that γ+

dm(G) = q. Clearly N = M1 ∪M2 ∪ {u5, u6} is a DMD set. N is also

a minimal DMD set of G. For the proof, let N ′ be any proper subset of N . Then there exists at

least one vertex u ∈ N and u /∈ N ′. If u = yi, for 1 ≤ i ≤ q − p − 1, then yi does not lie on any

x− y detour monophonic path for some x, y ∈ N ′. Similarly if u ∈ {u5, u6, xp−1}, then that vertex

does not lie on any detour monophonic path in N ′. Thus N is a minimal DMD set. Therefore

γ+

dm(G) ≥ q.

Figure 2: γm(G) = γdm(G) = p and γ+

dm(G) = q.

Note that N is a minimal DMD set with maximum cardinality. On the contrary, suppose

there exists a minimal DMD set, say T , whose cardinality is strictly greater than q. Then there

is a vertex u ∈ T, u /∈ N . Therefore u ∈ {u2, u3, u4}. If u = u4, then M1 ∪ {u4} is a DMD set

properly contained in T which is a contradiction. If u = u3, then the set M1 ∪ {u3, u5} is a DMD

set which is a proper subset of T and is a contradiction. If u = u2, then the set (N −{u6})∪ {u2}

is a DMD set properly contained in T and is a contradiction. Thus γ+

dm(G) = q.

Theorem 4.2. For any three positive integers p, q, r with 2 < p < q < r, there is a connected

graph G with m(G) = p, γdm(G) = q and γ+

dm(G) = r.

Proof. Let G be the graph constructed as follows. Take q− p copies of a cycle of order 5 with each

cycle Ci has a vertex set {di, ei, fi, gi, hi}, for 1 ≤ i ≤ q− p. Join each ei with all other vertices in

Ci. Also join the vertex fi−1 of Ci−1 with the vertex di of Ci. Let {u, v} and {b1, b2, ..., br−q+1}

be two sets of mutually non adjacent vertices. Join each bi with u and v, for 1 ≤ i ≤ r − q + 1.

Join another p− 2 pendent vertices with u and one pendent vertex with d1. This is the graph G

given in Figure 3.

The set M1 = {a0, a1, a2..., ap−2} is the set of all extreme vertices and belongs to every

monophonic dominating set and DMD set (Theorem 1.1). Clearly M1 is not monophonic. But

M1 ∪{v} is a monophonic set and is minimum. Therefore m(G) = p. Take M2 = {e1, e2, ..., eq−p}.

Then M1 ∪M2 ∪ {v} is a DMD set and is minimum. Therefore γdm(G) = p− 1 + q− p+ 1 = q.
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Figure 3: Graph G with m(G) = p, γdm(G) = q and γ+

dm(G) = r.

Let M3 = {b1, b2, ..., br−q+1}. Then M = M1 ∪M2 ∪M3 is a DMD set. Now M is a minimal

DMD set. On the contrary, suppose N is any proper DMD subset of M so that there exists at

least one vertex in M which does not belong to N . Let u ∈ M and u /∈ N . Clearly u /∈ M1

since M1 is the set of all extreme vertices. If u = ei for some i, then the vertex ei does not

belong to any detour monophonic path induced by N . Therefore u /∈ M2. Similarly u /∈ M3.

This is a contradiction. Hence M is a minimal DMD set with maximum cardinality. Therefore

γ+

dm(G) = |M1|+ |M2|+ |M3| = (p− 1) + (q − p) + (r − q + 1) = r.

Theorem 4.3. Let p and q be two positive integers with 2 < p < q such that γdm(G) = p and

γ+

dm(G) = q. Then there is a minimal DMD set whose cardinality lies between p and q.

Proof. Consider three sets of mutually disjoint vertices M1 = {a1, a2, ..., aq−n+1}, M2 = {b1, b2, ..., bn−p+1}

and M3 = {x, y, z}. Join each vertex ai with x and z and each vertex bj with y and z. Add p− 2

pendent vertices M4 = {c1, c2, ..., cp−2} with the vertex y. This is the graph G given in Figure 4.

Since M4 is the set of all extreme vertices, it belongs to every DMD set. But M4 is not a DMD

set. The set M = M4 ∪ {x, z} is a minimum DMD set. Therefore γdm(G) = p.

Consider the set N = M1 ∪ M2 ∪ M4. We claim N is a minimal DMD set with maximum

cardinality. On the contrary, suppose there is a set N ′ ⊂ N which is a DMD set of G. Then there

exists at least one vertex, say u in N which does not belong to N ′. Clearly u /∈ M4 since it is the set

of all extreme vertices. If u ∈ M1, then u = ai for some i. Then the vertex ai does not lie on any

detour monophonic path, which is a contradiction. Similarly, if u ∈ M2, we get a contradiction.

Thus N is a minimal DMD set. Therefore γ+

dm(G) ≥ q.
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Figure 4: Graph G with γdm(G) = p and γ+

dm(G) = q

Next, we claim that N has the maximum cardinality of any minimal DMD set. If γ+

dm(G) > q,

there is at least one vertex v ∈ V (G), v /∈ N and belongs to a minimal DMD set. Therefore v ∈ M3.

If v = x, then the set M2 ∪M4 ∪ {v} is a minimal DMD set having less than q vertices. Similarly

if v = z, then the set M1 ∪M4 ∪ {v} is a minimal DMD set. For v = y, the set N ∪ {y} is not a

minimal DMD set. Therefore γ+

dm(G) ≤ q.

Let n be any number which lies between p and q. Then there is a minimal DMD set of

cardinality n. For the proof, consider the set T = M2 ∪M4 ∪ {x}. T is a minimal DMD set. If T

is not a minimal DMD set, there is a proper subset T ′ of T such that T ′ is a minimal DMD set.

Let u ∈ T and u /∈ T ′. Since each vertex in M4 is an extreme vertex, v /∈ M4. If u = x, then

the vertex u is not an internal vertex of any detour monophonic path in T ′. A similar argument

may be made if u ∈ M2. This leads to a contradiction. Therefore T is a minimal DMD set with

cardinality (n− p+ 1) + (p− 2) + 1 = n.

Theorem 4.4. Let p , q and r be any three positive integers with 2 ≤ p ≤ q ≤ r. Then, there

exists a connected graph G such that γdm(G) = p, γ+

dm(G) = q and |V (G)| = r.

Proof. Let K1,p is a star graph with leaves set M1 = {u1, u2, ..., up} and let u be the support

vertex of K1,p. Insert r − q − 1 vertices M2 = {v1, v2, ..., vr−q−1} in the edges uui respectively for

1 ≤ i ≤ r− q− 1. Add q− p vertices M3 = {x1, x2, ..., xq−p} with this graph and join each xi with

u and u1. This is the graph G as shown in Figure 5. Here |V (G)| = (q−p)+p+(r− q−1)+1= r.

The length of a detour monophonic path is 4.
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Figure 5: Graph G with γdm(G) = p and γ+

dm(G) = q

Let T = M1−{u1}. All the vertices in T are extreme vertices and belong to all DMD sets and

minimal DMD sets. Clearly M1 is a DMD set with minimum cardinality. Therefore γdm(G) = p.

Let N = T ∪ M3 ∪ {v1}. Then |N | = (p − 1) + (q − p) + 1 = q. We claim that N is a minimal

DMD set with maximum cardinality.

On the contrary, suppose there is a proper subset N ′ of N which is a minimal DMD set of G.

Then there exists at least one vertex x ∈ N, x /∈ N ′. Clearly x /∈ T . If x ∈ M3, then x = xi for

some i, 1 ≤ i ≤ q − p. Then the vertex xi does not lie on any u − v detour monophonic path for

u, v ∈ N ′. If x = v1 then v1 does not lies on any detour monophonic path in N ′. Thus no such

vertex x exists. This is a contradiction. Therefore γ+

dm(G) ≥ q.

To prove maximum cardinality of N , suppose there exists a minimal DMD set S with |S| > q.

Since S contains T , the set of all extreme vertices, the vertex x lies on some u−v detour monophonic

path for all x ∈ {u, v2, v3, .., vr−q−1}. Now S is a minimal DMD set having more than q vertices

and u, v2, v3, ..., vr−q−1 /∈ S. Therefore S = {v1} ∪M3 ∪ {u1} ∪ T . Then N is properly contained

in S. This is a contradiction. Therefore γ+

dm(G) = q. Hence the proof.
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ABSTRACT

In this paper, we establish the existence and a global attractivity results for a nonlinear

mixed quadratic and linearly perturbed hybrid fractional integrodifferential equation

of second type involving the Caputo fractional derivative on unbounded intervals of

real line with the mixed arguments of anticipations and retardation. The hybrid fixed

point theorem of Dhage is used in the analysis of our nonlinear fractional integrod-

ifferential problem. A positivity result is also obtained under certain usual natural

conditions. Our hypotheses and claims have also been explained with the help of a

natural realization.

RESUMEN

En este art́ıculo, se establecen resultados de existencia y de atractividad global para una

ecuación no lineal cuadrática mixta e h́ıbrida fraccionaria integrodiferencial linealmente

perturbada de segundo tipo involucrando la derivada fraccional de Caputo en intervalos

no acotados de la recta real con argumentos mixtos de anticipación y retardo. El

teorema de punto fijo h́ıbrido de Dhage es usado en el análisis de nuestro problema no

lineal fraccionario integrodiferencial. También se obtiene un resultado de positividad

bajo ciertas condiciones naturales usuales. Nuestras hipótesis y afirmaciones también

se explican con la ayuda de una realización natural.
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1 Introduction

Let t0 ∈ R be a fixed real number and let J∞ = [t0,∞) be a closed but unbounded interval in

R. Let CRB(J∞) denote the class of pulling functions a : J∞ → (0,∞) satisfying the following

properties:

(i) a is continuous, and

(ii) lim
t→∞

a(t) = ∞.

The notion of the pulling function is introduced in Dhage [15, 17] and Dhage et al. [21]. There

do exist functions a : J∞ → (0,∞) satisfying the above two conditions. In fact, if a1(t) = |t|+ 1,

a2(t) = e|t|, then a1, a2 ∈ CRB(J∞). Again, the class of continuous and strictly monotone functions

a : J∞ → (0,∞) going to ∞ satisfy the above criteria. Note that if a ∈ CRB(J∞), then the

reciprocal function a : J∞ → R+ defined by a(t) = 1
a(t) is continuous and lim

t→∞
a(t) = 0. It has

been shown in Dhage [16, 18, 19, 20] and Dhage et. al [21] that the pulling functions are useful in

proving different asymptotic characterizations of the solutions of nonlinear differential and integral

equations. In this paper we employ the pulling functions for characterizing the solutions of a

nonlinear hybrid fractional differential equation when the value of independent variable is large.

It is now well-known that several anomalous real world problems in sciences and engineering

are adequately modelled on fractional differential equations (see Hilfer [25] and Kilbas et. al [27]).

Sometimes one may be interested in the behaviour of the anomalous dynamic system in the long

duration of time which depend upon both past history as well as the future data of the process

in question. In such cases, we take help of fractional differential equations with retardatory and

anticipatory arguments on the unbounded intervals of real line. Motivated by this reason, in this

paper we discuss asymptotic behaviour of a nonlinear hybrid fractional integrodifferential equation

with retardation and anticipation on the unbounded intervals via hybrid fixed point theory of

Dhage [8, 9, 16].

We need the following fundamental definitions from fractional calculus (see Podlubny [28],

Kilbas et al. [27] and references therein) in what follows.

Definition 1.1. If J∞ = [t0,∞) be an interval of the real line R for some t0 ∈ R with t0 ≥ 0,

then for any x ∈ L1(J∞,R), the Riemann-Liouville fractional integral of fractional order q > 0 is

defined as

Iqt0x(t) =
1

Γ(q)

∫ t

t0

x(s)

(t− s)1−q
ds, t ∈ J∞,

provided the right hand side is pointwise defined on (t0,∞), where Γ is the Euler’s gamma function

defined by Γ(q) =

∫ ∞

0

e−ttq−1 dt.
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Definition 1.2. If x ∈ Cn(J∞,R), then the Caputo fractional derivative CDq
t0x of x of fractional

order q is defined as

CDq
t0x(t) =

1

Γ(n− q)

∫ t

t0

(t− s)n−q−1x(n)(s) ds, t ∈ J∞,

where n− 1 < q ≤ n, n = [q] + 1, [q] denotes the integer part of the real number q, and Γ is the

Euler’s gamma function. Here Cn(J∞,R) denotes the space of real valued functions x(t) which are

n times continuously differentiable on J∞.

Given a pulling function a ∈ CRB(J∞)
⋂

C1(J∞,R), we consider the following nonlinear

hybrid fractional integrofractional differential equation (in short HFRIGDE) involving the Caputo

fractional derivative,

CDq
t0













a(t)x(t) −

m
∑

j=1

Iαjhj(t, x(t), x(η(t)))

f(t, x(t), x(θ(t)))













= g(t, x(t), x(γ(t))), t ∈ J∞,

x(t0) = x0,































(1.1)

where CDq
t0 is the Caputo fractional derivative of fractional order 0 < q ≤ 1, Iαj are the Riemann-

Louville fractional integration of fractional order αj ≥ 0 for j = 1, . . . ,m, f : J∞×R×R → R\{0},

hj : J∞×R×R → R are continuous, g : J∞×R×R → R is Carathéodory and η, θ, γ : J∞ → J∞

are the continuous functions such that η and θ are anticipatory and γ is retardatory, that is, η(t) ≥ t,

θ(t) ≥ t and γ(t) ≤ t for all t ∈ J∞ with η(t0) = t0 = θ(t0).

Definition 1.3. By a solution for the hybrid fractional differential equation (1.1) we mean a

function x ∈ C1(J∞,R) such that

(i) the map (x, y, z) 7→
a(t)x − Σm

j=1I
αjhj(t, x, z)

f(t, x, y)
is well defined for each t ∈ J∞,

(ii) the map t 7→
a(t)x(t) − Σm

j=1I
αjhj(t, x(t), x(θ(t)))

f(t, x(t), x(θ(t)))
= z(t) is differentiable on J∞ and z′ ∈

C(J∞,R), and

(iii) x satisfies the equations in (1.1) on J∞,

where C1(J∞,R) is the space of continuous real-valued functions defined on J∞ whose first deriva-

tive x′ exists and x′ ∈ C(J∞,R).

As the functions θ and γ in the HFRIGDE (1.1) are respectively anticipatory and retardatory,

the arguments in the problem (1.1) are deviating over the unbounded interval J∞. Therefore,

the behaviour of the dynamic system modelled on the HFRIGDE (1.1) depends upon both back
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history as well as future data. As a result the existence analysis of the HFRIGDE (1.1) involves

both anticipation and retardation information of the state variable. In a nutshell, the HFRIGDE

(1.1) is a nonlinear problem with anticipation and retardation.

The HFRIGDE (1.1) is a mixed linear and quadratic perturbation of second type obtained

by multiplying the unknown function under Caputo derivative with a scalar function a together

with a subtraction of the term containing unknown function and dividing by a nonlinearity f . The

classification of the different types of perturbations of a differential equation is given in Dhage [6].

When hj ≡ h on J∞ × R × R, the HFRIGDE (1.1) reduces to the nonlinear ordinary quadratic

Caputo fractional differential equation,

CDq
t0

[

a(t)x(t) − h(t, x(t), x(η(t)))

f(t, x(t), x(θ(t)))

]

= g(t, x(t), x(γ(t))), t ∈ J∞,

x(t0) = x0,











(1.2)

which again, when hj ≡ 0, includes the class of the nonlinear quadratic Caputo fractional differ-

ential equations

CDq
t0

[

a(t)x(t)

f(t, x(t), x(θ(t)))

]

= g(t, x(t), x(γ(t))), t ∈ J∞,

x(t0) = x0,











(1.3)

as a special case. The HFRIGDE (1.2) is new to the literature whereas the HFRIGDE (1.3) is

studied in Dhage [18] for existence and attractivity of the solutions on unbounded interval J∞.

When f(t, x, y) = 1 and g(t, x, y) = g(t, x) for all (t, x, y) ∈ J∞ × R × R, we obtain the following

Caputo fractional differential equation,

CDq
t0 [a(t)x(t)] = g(t, x(t)), t ∈ J∞,

x(t0) = x0 ∈ R.

}

(1.4)

The equation (1.4) is studied in Dhage [17] for existence, uniqueness and asymptotic attrac-

tivity and stability of solutions via classical fixed point theory.

We note that when q = 1, the hybrid fractional differential equations (in short HFRDEs)

(1.2), (1.3) and (1.4) reduce to the ordinary nonlinear hybrid differential equations,

d

dt

[

a(t)x(t) − h(t, x(t), x(η(t)))

f(t, x(t), x(θ(t)))

]

= g(t, x(t), x(γ(t))), t ∈ J∞,

x(t0) = x0,











, (1.5)

d

dt

[

a(t)x(t)

f(t, x(t), x(θ(t)))

]

= g(t, x(t), x(γ(t))), t ∈ J∞,

x(t0) = x0,











(1.6)
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and
d

dt
[a(t)x(t)] = g(t, x(t)), t ∈ J∞,

x(t0) = x0 ∈ R,







(1.7)

which are discussed in Dhage [17], Dhage [18] and [15] respectively. The hybrid differential equation

(1.7) also includes the nonlinear differential equation treated in Burton and Furumochi [4] as the

special case. Therefore the existence and attractivity results of this paper include the similar results

for the ordinary nonlinear hybrid classical and fractional differential equations (1.2) through (1.7)

as special cases.

Now we state a couple of well-known results fractional calculus which are helpful in transform-

ing the Caputo fractional differential equations into Riemann-Louville fractional integral equations

and vice versa.

Lemma 1.1 (Kilbas et al. [27]). Suppose that x ∈ Cn(J,R) and q ∈ (n− 1, n), n ∈ N. Then, the

general solution of the fractional differential equation

cDq
t0x(t) = 0

is given by

x(t) = c0 + c1(t− t0) + c2(t− t0)
2 + · · ·+ cn−1(t− t0)

n−1

for all t ∈ J , where ci, i = 0, 1, . . . , n − 1 are constants and Cn(J,R) is the space of n times

continuously differentiable real-valued functions defined on J = [a, b].

Lemma 1.2. (Kilbas et al. [27, page 96]) Let x ∈ Cn(J,R) and q > 0. Then, we have

Iqt0

(

CDq
t0x(t)

)

= x(t)−

n−1
∑

k=0

x(k)(t0)

k !
(t− t0)

k = x(t) +

n−1
∑

k=0

ck(t− t0)
k

for all t ∈ J = [a, b], where n− 1 < q ≤ n, n = [q] + 1 and c0, . . . , cn−1 are constants.

The converse of the above lemma is not true. It is mentioned in Kilbas et al. [27, page 95]

that if q > 0 and x ∈ C(J,R), then CDq
t0

(

Iqt0x(t)
)

= x(t) for all t ∈ J = [a, b], however it has been

proved recently in Cohen and Salem [1, 2] that it is not true for any continuous function on J .

Remark 1.1. The conclusion of the above Lemmas 1.1 and 1.2 also remains true if we replace the

function spaces Cn([a, b],R) and C([a, b],R) with the function spaces BCn(J∞,R) and BC(J∞,R)

respectively.

2 Auxiliary Results

Let X be a non-empty set and let T : X → X . An invariant point under T in X is called a

fixed point of T , that is, the fixed points are the solutions of the functional equation T x = x. Any
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statement asserting the existence of fixed point of the mapping T is called a fixed point theorem

for the mapping T in X . The fixed point theorems are obtained by imposing the conditions on T

or on X or on both T and X . By experience, better the mapping T or X , we have better fixed

point principles. As we go on adding richer structure to the non-empty set X , we derive richer

fixed point theorems useful for applications to different areas of mathematics and particularly

to nonlinear differential and integral equations. Below we give some fixed point theorems useful

in establishing the attractivity and ultimate positivity of the solutions for HFRIGDE (1.1) on

unbounded intervals. Before stating these results we give some preliminaries.

Definition 2.1 (Dhage [8, 9, 10]). An upper semi-continuous and nondecreasing function ψ :

R+ → R+ satisfying ψ(0) = 0 is called a D-function on R+. Let X be an infinite dimensional

Banach space with the norm ‖ · ‖. A mapping T : X → X is called D-Lipschitz if there is a

D-function ψT : R+ → R+ satisfying

‖T x− T y‖ ≤ ψT (‖x− y‖) (2.1)

for all x, y ∈ X.

If ψT (r) = k r, k > 0, then T is called Lipschitz with the Lipschitz constant k. In particular, if

k < 1, then T is called a contraction on X with the contraction constant k. Further, if ψT (r) < r

for r > 0, then T is called nonlinear D-contraction and the function ψT is called D-function

of T on X . There do exist D-functions and the commonly used D-functions are ψT (r) = k r and

φ(r) =
r

1 + r
, etc. (see Banas and Dhage [3] and the references therein).

Definition 2.2. An operator T on a Banach space X into itself is called totally bounded if for any

bounded subset S of X, T (S) is a relatively compact subset of X. If T is continuous and totally

bounded, then it is called completely continuous on X.

The operator theoretic technique is a powerful method often times used in the analysis of

different types of nonlinear equations. Our essential tool used in the chapter is the following hybrid

fixed point theorem of Dhage [9, 16] for a quadratic operator equation involving three operators in

a Banach algebra X which uses arguments from analysis and topology. See also Dhage [6, 7, 9, 16]

and Dhage and O’Regan [22] for some related results and applications.

Theorem 2.1 (Dhage fixed point theorem [9, 16]). Let S be a non-empty, closed convex and

bounded subset of the Banach algebra X and let A, C : X → X and B : S → X be three

operators such that

(a) A and C are D-Lipschitz with D-functions ψA and ψC respectively,

(b) B is completely continuous,
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(c) MB ψA(r) + ψC(r) < r, where MB = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}, and

(d) x = AxBy + Cx =⇒ x ∈ S for all y ∈ S.

Then the operator equation AxBx+ Cx = x has a solution in S.

The above hybrid fixed point theorem of Dhage is a fifth important operator theoretic tech-

nique or tool that used in the subject of nonlinear analysis in line with Banach, Schauder, Kras-

noselskii and Dhage (see [23],[5]). The nonlinear alternatives related to Dhage fixed point theorem,

Theorem 2.1 on the lines of Leray-Schauder and Schafer are also available in the literature (see

Dhage [7, 8, 9, 10] and references therein), however the present version is more convenient to apply

in the theory of nonlinear hybrid differential equations. A collection of a good number of applicable

fixed point theorems may be found in the monographs of Granas and Dugundji [23], Deimling [5],

Dhage [16] and the references therein. In the following section we give different types of char-

acterizations of the solutions for nonlinear fractional integrodifferential equations on unbounded

intervals of the real line.

3 Characterizations of Solutions

We seek solutions of the HFRIGDE (1.1) in the function space BC(J∞,R) of continuous and

bounded real-valued functions defined on J∞. Define a standard supremum norm ‖ · ‖ and a

multiplication “ · ” in BC(J∞,R) by

‖x‖ = sup
t∈J∞

|x(t)|

and

(x · y)(t) = (xy)(t) = x(t)y(t), t ∈ J∞.

Clearly, BC(J∞,R) becomes a Banach algebra w.r.t. the above norm and the multiplication.

Let A,B, C : BC(J∞,R) → BC(J∞,R) be three continuous operators and consider the following

operator equation in the Banach algebra BC(J∞,R),

Ax(t)Bx(t) + Cx(t) = x(t) (3.1)

for all t ∈ J∞. Below we give different characterizations of the solutions for the operator equation

(3.1) in the function space BC(J∞,R).

Definition 3.1. We say that solutions of the operator equation (3.1) are locally attractive if

there exists a closed ball Br(x0) in the space BC(J∞,R) for some x0 ∈ BC(J∞,R) such that for

arbitrary solutions x = x(t) and y = y(t) of equation (3.1) belonging to Br(x0) we have that

lim
t→∞

(x(t) − y(t)) = 0. (3.2)
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In the case when the limit (3.2) is uniform with respect to the set Br(x0), i.e., when for each

ε > 0 there exists T > 0 such that

|x(t)− y(t)| ≤ ǫ (3.3)

for all x, y ∈ Br(x0) being solutions of ((3.1) and for t ≥ T , we will say that solutions of equation

(3.1) are uniformly locally attractive on J∞.

Definition 3.2. A solution x = x(t) of equation (3.1) is said to be globally attractive if (3.2)

holds for each solution y = y(t) of (3.1) in BC(J∞,R). In other words, we may say that solu-

tions of the equation (3.1) are globally attractive if for arbitrary solutions x(t) and y(t) of (3.1)

in BC(J∞,R), the condition (3.2) is satisfied. In the case when the condition (3.2) is satisfied

uniformly with respect to the space BC(J∞,R), i.e., if for every ǫ > 0 there exists T > 0 such that

the inequality (3.2) is satisfied for all x, y ∈ BC(J∞,R) being the solutions of (3.1) and for t ≥ T ,

we will say that solutions of the equation (3.1) are uniformly globally attractive on J∞.

Remark 3.1. Let us mention that the details of the global attractivity of solutions may be found

in a recent paper of Hu and Yan [26] while the concepts of uniform local and global attractivity (in

the above sense) may be found in Banas and Dhage [3], Dhage [10, 12, 13] and references therein.

Now we introduce the new concept of local and global ultimate positivity of the solutions for

the operator equation (3.1) in the space BC(J∞,R).

Definition 3.3 (Dhage [11]). A solution x of the equation (3.1) is called locally ultimately

positive if there exists a closed ball Br(x0) in the space BC(J∞,R) for some x0 ∈ BC(J∞,R)

such that x ∈ Br(0) and

lim
t→∞

[

|x(t)| − x(t)
]

= 0. (3.4)

In the case when the limit (3.4) is uniform with respect to the solution set of the operator

equation (3.1) in BC(J∞,R), i.e., when for each ε > 0 there exists T > 0 such that

| |x(t)| − x(t)| ≤ ǫ (3.5)

for all x being solutions of (3.1) in BC(J∞,R) and for t ≥ T , we will say that solutions of equation

(3.1) are uniformly locally ultimately positive on J∞.

Definition 3.4 (Dhage [13]). A solution x ∈ BC(J∞,R) of the equation (3.1) is called globally

ultimately positive if (3.4) is satisfied. In the case when the limit (3.5) is uniform with respect

to the solution set of the operator equation (3.1) in BC(J∞,R), i.e., when for each ε > 0 there

exists T > 0 such that (3.5) is satisfied for all x being solutions of (3.1) in in BC(J∞,R) and for

t ≥ T , we will say that solutions of equation (3.1) are uniformly globally ultimately positive

on J∞.
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Finally, we have the the following characterization of the asymptotic stability of the solution

of the equation (3.1) on J∞.

Definition 3.5. A solution of the equation (3.1) is called asymptotically stable to t-axis or zero

if limt→ x(t) = 0. Again, x is called uniformly asymptotically stable to zero if for ǫ > 0 there

exists a real number T ≥ t0 such that |x(t)| ≤ ǫ for all t ≥ T .

Remark 3.2. We note that global attractivity implies the local attractivity and uniform global

attractivity implies the uniform local attractivity of the solutions for the operator equation (3.1)

on J∞. Similarly, global ultimate positivity implies local ultimate positivity of the solutions for

the operator equation (3.1) on an unbounded interval J∞. However, the converse of the above two

statements may not be true.

4 Attractivity and Positivity Results

Now, in this section, we discuss the attractivity results for the ordinary hybrid functional fractional

integrodifferential equation (1.1) on J∞. We need the following definition in the sequel.

Definition 4.1. A function β : J∞ × R× R → R is called Carathéodory if

(i) the map t 7→ β(t, x, y) is measurable for each x, y ∈ R, and

(ii) the map (x, y) 7→ β(t, x, y) is jointly continuous for each t ∈ J∞.

The following lemma is often used in the study of nonlinear differential equations (see Granas

et al. [24] and references therein).

Lemma 4.1 (Carathéodory). Let β : J∞×R×R → R be a Carathéodory function. Then the map

(t, x, y) 7→ β(t, x, y) is jointly measurable. In particular the map t 7→ β(t, x(t), y(t)) is measurable

on J∞ for all x, y ∈ C(J∞,R).

We need the following hypotheses in the sequel.

(A1) The function f is continuous and there exists a function ℓ ∈ BC(J∞,R+) and a constant

K > 0 such that

∣

∣f(t, x1, x2)− f(t, x1, x2)
∣

∣ ≤
ℓ(t) max{|x1 − x2|, |x2 − y2|}

K +max{|x1 − x2|, |x2 − y2|}

for all t ∈ J∞ and x1, x2, y1, y2 ∈ R. Moreover, sup
t∈J∞

ℓ(t) = L.

(A2) The function t 7→ |f(t, 0, 0)| is bounded with bound F .
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(B1) The function g is Carathéodory and bounded on J∞ × R× R with bound Mg.

(C1) The functions hj are continuous and there exist a functions ℓj ∈ BC(J∞,R+) and a constants

Kj > 0 such that

∣

∣hj(t, x1, x2)− hj(t, x1, x2)
∣

∣ ≤
ℓj(t)max{|x1 − x2|, |x2 − y2|}

Kj +max{|x1 − x2|, |x2 − y2|}

for all t ∈ J∞ and x1, x2, y1, y2 ∈ R, where j = 1, . . . ,m. Moreover, sup
t∈J∞

ℓj(t) = Lj.

(C2) The function t 7→ |hj(t, 0, 0)| is bounded with bound Hj .

(D1) The pulling function a satisfies lim
t→∞

a(t) tq = 0 = lim
t→∞

a(t) tαj for each j = 1, . . . ,m.

Remark 4.1. If a ∈ CRB(J∞), then a ∈ BC(J∞,R+) and so the number ‖a‖ = supt∈J∞

a(t)

exists. Again, since the hypothesis (D1) holds, the function w : R+ → R+ defined by the expression

w(t) = a(t) tq is continuous on J∞ and satisfies the relation lim
t→∞

w(t) = 0. So the number W =

supt≥t0 w(t) exists. Similarly, the function wj : R+ → R+ defined by the expression wj(t) = a(t) tαj

is continuous on J∞ and satisfies the relation lim
t→∞

wj(t) = 0 for each j = 1, . . . ,m. Hence, the

number Wj = supt≥t0 wj(t) exists for each j = 1, . . . ,m.

The following lemma is useful in the sequel.

Lemma 4.2. If for any function h ∈ L1(J∞,R), the function x ∈ BC(J∞,R) is a solution of the

HFRIGDE

CDq
t0

[

a(t)x(t) −
∑m

j=1 I
αjhj(t, x(t), x(η(t))

f(t, x(t), x(θ(t)))

]

= h(t), t ∈ J∞, (4.1)

and

x(0) = x0, (4.2)

then x satisfies the hybrid fractional integral equation (in short HFRIE)

x(t) =
[

f(t, x(t), x(θ(t)))
]

(

c0 a(t) +
a(t)

Γq

∫ t

t0

(t− s)q−1h(s) ds

)

+ a(t)

m
∑

j=1

Iαjhj(t, x(t), x(η(t))

(4.3)

for all t ∈ J∞, where c0 =
a(t0)x0

f(t0, x0, x0)
and x0 6= 0.

Proof. Let h ∈ L1(J∞,R). Assume first that x is a solution of the HFRIGDE (4.1)-(4.2) defined

on J∞ and x0 6= 0. We apply the Riemann-Liouville fractional integration Iqt0 of fractional order

q from t0 to t on both sides of the HFRIGDE (4.1). Then, by an application Lemma 1.2, the

HFRIGDE (4.1)-(4.2) is transformed into the HFRIE (4.3) on J∞.
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Definition 4.2. A solution x ∈ BC(J∞,R) of the FRIE (4.3) is called a mild solution of the

HFRIGDE (4.1)-(4.2) defined on J∞.

In the following we shall deal with the mild solution of the HFRIGDE (1.1) on unbounded

interval J∞ of the real line R. Our main existence and global attractivity result is as follows.

Theorem 4.1. Assume that the hypotheses (A1) - (A2), (B1), (C1) - (C2) and (D1) hold. Further,

assume that

(m+ 1)·max

{

L
(∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

,
L1W1

Γ(α1)
, . . . ,

LmWm

Γ(αm)

}

≤ min{K,K1, . . . ,Km}.

(4.4)

Then the HFRIGDE (1.1) has a mild solution and mild solutions are uniformly globally attractive

defined on J∞.

Proof. Now, using Lemma 4.2, it can be shown that the mild solution x of the HFRIGDE (1.1) is

equivalent to the nonlinear hybrid fractional integral equation (in short HFRIE)

x(t) =
[

f(t, x(t), x(θ(t)))
]

(

c0 a(t) +
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

)

+ a(t)

m
∑

j=1

Iαjhj(t, x(t), x(η(t))

(4.5)

for all t ∈ J∞, where c0 =
a(t0)x0

f(t0, x0, x0)
. Set X = BC(J∞,R) and define a closed ball Br(0) in X

centered at origin of radius r given by

r =
(

L+ F
)

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

+

m
∑

j=1

Lj +Hj

Γ(αj)
Wj .

Define three operators A and C on X and B on Br(0) by

Ax(t) = f(t, x(t), x(θ(t))), t ∈ J∞, (4.6)

Bx(t) = c0a(t) +
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds, t ∈ J∞ (4.7)

and

Cx(t) = a(t)

m
∑

j=1

Iαjhj(t, x(t), x(η(t)), t ∈ J∞. (4.8)

Then the HFRIE (4.5) is transformed into the operator equation as

Ax(t)Bx(t) + Cx(t) = x(t), t ∈ J∞. (4.9)
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We show that the operatorsA, B and C satisfy all the conditions of Theorem 2.1 onBC(J∞,R).

First we we show that the operators A, B and C define the mappings A, C : X → X and

B : Br(0) → X . Let x ∈ X be arbitrary. Obviously, Ax is a continuous function on J∞. We

show that Ax is bounded on J∞. Thus, if t ∈ J∞, then we obtain:

|Ax(t)| = |f(t, x(t), x(θ(t)))|

≤ |f(t, x(t), x(θ(t))) − f(t, 0, 0)|+ |f(t, 0, 0)|

≤ ℓ(t)
max{|x(t)|, |x(θ(t))|}

K +max{|x(t)|, |x(θ(t))|}
+ F

≤ L+ F.

Therefore, taking the supremum over t,

‖Ax‖ ≤ L+ F = N.

Thus Ax is continuous and bounded on J∞. As a result Ax ∈ X . Again, we have

∣

∣Cx(t)
∣

∣ ≤

∣

∣

∣

∣

∣

∣

a(t)

m
∑

j=1

Iαjhj(t, x(t), x(η(t))) − a(t)

m
∑

j=1

Iαjhj(t, 0, 0)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a(t)
m
∑

j=1

Iαjhj(t, 0, 0)

∣

∣

∣

∣

∣

∣

≤ a(t)
m
∑

j=1

Iαj
∣

∣h(t, x(t), x(η(t))) − h(t, 0, 0)
∣

∣+ a(t)
m
∑

j=1

Iαj
∣

∣hj(t, 0, 0)
∣

∣

≤ a(t)

m
∑

j=1

Iαj
ℓj(t) max{|x(t)| , |x(η(t))|}

Kj +max{|x(t)| , |x(η(t))|}
+ a(t)

m
∑

j=1

IαjHj

≤ a(t)

m
∑

j=1

Iαj
ℓj(t) ‖x‖

Kj + ‖x‖
+ a(t)

m
∑

j=1

IαjHj

≤ a(t)

m
∑

j=1

IαjLj + a(t)

m
∑

j=1

IαjHj

≤

m
∑

j=1

Lj

Γ(αj)
Wj +

m
∑

j=1

Hj

Γ(αj)
Wj

≤

m
∑

j=1

Lj +Hj

Γ(αj)
Wj

for all t ∈ t∞. Taking the supremum over t as t→ ∞, we obtain

‖Cx‖ ≤

m
∑

j=1

Lj +Hj

Γ(αj)
Wj .

As a result (Cx) is continuous and bounded on J∞. Hence, Cx ∈ X . Similarly, it can be shown

that Bx ∈ X and in particular, A, C : X → X and B : Br(0) → X . We show that A is a Lipschitz
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on X . Let x, y ∈ X be arbitrary. Then, by hypothesis (A1),

‖Ax−Ay‖ = sup
t∈J∞

|Ax(t)−Ay(t)|

≤ sup
t∈J∞

ℓ(t)
max{|x(t)− y(t)|, |x(θ(t)) − y(θ(t))|}

K +max{|x(t)− y(t)|, |x(θ(t)) − y(θ(t))|}

≤
L‖x− y‖

K + ‖x− y‖

= ψA(‖x− y‖)

for all x, y ∈ X . This shows that A is a D-Lipschitz on X with D-function ψA(r) =
Lr

K + r
.

Similarly, by hypothesis (C1). we have

‖Cx− Cy‖ = sup
t∈J∞

|Cx(t)− Cy(t)|

≤ sup
t∈J∞

a(t)

m
∑

j=1

Iαj
∣

∣hj(t, x(t), x(η(t))) − hj(t, y(t), y(η(t))
∣

∣

≤ sup
t∈J∞

a(t)

m
∑

j=1

Iαj
ℓj(t) max{|x(t)− y(t)|, |x(θ(t)) − y(θ(t))|}

Kj +max{|x(t)− y(t)|, |x(θ(t)) − y(θ(t))|}

≤ sup
t∈J∞

a(t)

m
∑

j=1

Iαj
Lj ‖x− y‖

Kj + ‖x− y‖

≤

m
∑

j=1

Lj Wj

Γ(αj)
‖x− y‖

Kj + ‖x− y‖

≤

m
∑

j=1

Wj

Γ(αj)
·
Lj ‖x− y‖

Kj + ‖x− y‖

≤ m ·
max

{

L1 W1

Γ(α1)
, . . . , Lm Wm

Γ(αm)

}

‖x− y‖

min{K1, . . . ,Km}+ ‖x− y‖

This shows that C is a D-Lipschitz on X with D-function ψC(r) given by

ψC(r) = m ·
max

{

L1 W1

Γ(α1)
, . . . , Lm Wm

Γ(αm)

}

r

min{K1, . . . ,Km}+ r
.

Next, we shows that B is a completely continuous operator on Br(0). First, we show that B

is continuous on Br(0). To do this, let us fix arbitrarily ǫ > 0 and let {xn} be a sequence of points
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in Br(0) converging to a point x ∈ Br(0). Then we get:

|(Bxn)(t)− (Bx)(t)|

≤
a(t)

Γq

∫ t

t0

(t− s)q−1|g(s, xn(s), xn(γ(s)))− g(s, x(s), x(γ(s)))|ds

≤
a(t)

Γq

∫ t

t0

(t− s)q−1[|g(s, xn(s), xn(γ(s)))|+ |g(s, x(s), x(γ(s)))|]ds

≤ 2Mg
a(t)

Γq

∫ t

t0

(t− s)q−1 ds

=
2Mg

Γq
· w(t),

where, w(t) = a(t) tq.

Hence, by virtue of hypothesis (D1), we infer that there exists a T > 0 such that w(t) ≤ ǫ for

t ≥ T . Thus, for t ≥ T , from the estimate (3.3) we derive that

|(Bxn)(t)− (Bx)(t)| ≤
2Mg

Γq
ǫ as n→ ∞.

Furthermore, let us assume that t ∈ [t0, T ]. Then, by dominated convergence theorem, we

obtain the estimate:

lim
n→∞

Bxn(t) = lim
n→∞

[

c0a(t) +
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, xn(s), xn(γ(s))) ds

]

= c0a(t) +
a(t)

Γq

∫ t

t0

(t− s)q−1
[

lim
n→∞

g(s, xn(s), xn(γ(s)))
]

ds

= c0a(t) +
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

= Bx(t)

for all t ∈ [t0, T ]. Moreover, it can be shown as below that {Bxn} is an equicontinuous sequence

of functions in X . Now, following the arguments similar to that given in Granas et al. [23], it is

proved that B is a a continuous operator on Br(0).

Next, we show that B is a compact operator on Br(0). To finish, it is enough to show that

every sequence {Bxn} in B(Br(0)) has a Cauchy subsequence. Now, proceeding with the earlier

arguments it is proved that

‖Bxn‖ ≤ |c0| ‖a‖+
MfW

Γq
= r

for all n ∈ N. This shows that {Bxn} is a uniformly bounded sequence in B(Br(0)).

Next, we show that {Bxn} is also a equicontinuous sequence in B(Br(0)). Let ǫ > 0 be given.

Since limt→∞ w(t) = 0, there is a real number T1 > t0 ≥ 0 such that |w(t)| <
ǫ

8Mf/Γ(q)
for all
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t ≥ T1. Similarly, since lim
t→∞

a(t) = 0, for above ǫ > 0, there is a real number T2 > t0 ≥ 0 such

that |a(t)| <
ǫ

8|c0|
for all t ≥ T2. Thus, if T = max{T1, T2}, then

|w(t)| <
ǫ

8Mf/Γ(q)
and |a(t)| <

ǫ

8|c0|
(4.10)

for all t ≥ T . Let t, τ ∈ J∞ be arbitrary. If t, τ ∈ [t0, T ], then we have

|Bxn(t)− Bxn(τ)|

≤ |c0| |a(t)− a(τ)|

+

∣

∣

∣

∣

a(t)

Γq

∫ t

t0

(t− s)q−1f(s, x(s)) ds−
a(τ)

Γq

∫ τ

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

≤ |c0| |a(t)− a(τ)|

+

∣

∣

∣

∣

a(t)

Γq

∫ t

t0

(t− s)q−1f(s, x(s)) ds−
a(τ)

Γq

∫ t

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

a(τ)

Γq

∫ t

t0

(τ − s)q−1f(s, x(s)) ds−
a(τ)

Γq

∫ τ

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

≤ |c0| |a(t)− a(τ)|

+
Mf

Γq

∫ t

t0

∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ ds

+
Mf

Γq

∣

∣

∣

∣

∫ t

τ

∣

∣

∣
a(τ)(τ − s)q−1

∣

∣

∣
ds

∣

∣

∣

∣

≤ |c0| |a(t)− a(τ)|

+
Mf

Γq

∫ T

t0

∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ ds

+
Mf ‖a‖

Γq
|(τ − t)q| .

Since the functions t 7→ a(t) and t 7→ a(t)(t − s)q−1 are continuous on compact [t0, T ], they

are uniformly continuous there. Therefore, by the uniform continuity, for above ǫ we have the real

numbers δ1 > 0 and δ2 > 0 depending only on ǫ such that

|t− τ | < δ1 =⇒ |a(t)− a(τ)| <
ǫ

9|c0|

and

|t− τ | < δ2 =⇒
∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ <
ǫ

9MfT
/

Γq
.

Similarly, choose the real number δ3 =

(

ǫ

9Mf‖a‖
/

Γ(q)

)1/q

> 0 so that

|t− τ | < δ3 =⇒ |(t− τ)q| <
ǫ

9Mf‖a‖
/

Γ(q)
.
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Let δ4 = min{δ1, δ2, δ3}. Then

|t− τ | < δ4 =⇒ |Bxn(t)− Bxn(τ)| <
ǫ

3

for all n ∈ N. Again, if t, τ > T , then we have a δ5 > 0 depending only on ǫ such that

|Bxn(t)− Bxn(τ)|

≤ |c0| |a(t)− a(τ)| +
a(t)

Γq

∣

∣

∣

∣

∫ t

t0

(t− s)q−1f(s, xn(s)) ds

∣

∣

∣

∣

+
a(τ)

Γq

∣

∣

∣

∣

∫ τ

t0

(τ − s)q−1f(s, xn(s)) ds

∣

∣

∣

∣

≤
∣

∣c0
[

|a(t)|+ |a(τ)|
]

+
Mf

Γ(q)

[

w(t) + w(τ)
]

<
ǫ

2
< ǫ

for all n ∈ N whenever |t− τ | < δ5. Similarly, if t, τ ∈ R+ with t < T < τ , then we have

|Bxn(t)− Bxn(τ)| ≤ |Bxn(t)− Bxn(T )|+ |Bxn(T )− Bxn(τ)|.

Take δ = min{δ4, δ5} > 0 depending only on ǫ. Therefore, from the above obtained estimates,

it follows that

|Bxn(t)− Bxn(T )| <
ǫ

2
and |Bxn(T )− Bxn(τ)| <

ǫ

2

for all n ∈ N whenever |t− τ | < δ. As a result, |Bxn(t)− Bxn(τ)| < ǫ for all t, τ ∈ J∞ and for all

n ∈ N whenever |t − τ | < δ. This shows that {Bxn} is a equicontinuous sequence in X . Now an

application of Arzelà-Ascoli theorem yields that {Bxn} has a uniformly convergent subsequence

on the compact subset [t0, T ] of J∞. Without loss of generality, call the subsequence to be the

sequence itself. We show that {Bxn} is Cauchy in X . Now |Bxn(t)−Bx(t)| → 0 as n→ ∞ for all

t ∈ [t0, T ]. Then for given ǫ > 0 there exists an n0 ∈ N such that

sup
t0≤t≤T

a(t)

Γq

∫ t

t0

(t− s)q−1
∣

∣f(s, xm(s))− f(s, xn(s))
∣

∣ ds <
ǫ

2

for all m,n ≥ n0. Therefore, if m,n ≥ n0, then we have

‖Bxm − Bxn‖

= sup
t0≤t<∞

∣

∣

∣

∣

a(t)

Γq

∫ t

t0

(t− s)q−1
∣

∣f(s, xm(s))− f(s, xn(s))
∣

∣ ds

∣

∣

∣

∣

≤ sup
t0≤t≤T

∣

∣

∣

∣

a(t)

Γq

∫ t

t0

(t− s)q−1
∣

∣f(s, xm(s))− f(s, xn(s))
∣

∣ ds

∣

∣

∣

∣

+ sup
t≥T

∣

∣

∣

∣

a(t)

Γq

∫ t

t0

(t− s)q−1
[

∣

∣f(s, xm(s))
∣

∣ +
∣

∣f(s, xn(s))
∣

∣

]

ds

∣

∣

∣

∣

< ǫ.
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This shows that {Bxn} ⊂ B(Br(0)) ⊂ X is Cauchy. Since X is complete, {Bxn} converges to

a point in X . As B(Br(0)) is closed, we have that {Bxn} converges to a point in B(Br(0)). Hence

B(Br(0)) is relatively compact and consequently B is a continuous and compact operator on Br(0)

into itself.

Next, we estimate the value of the constant MB of the hypothesis (c) of the Theorem 2.1. By

definition of MB, one has

‖B(Br(0))‖ = sup{‖Bx‖ : x ∈ Br(0)}

= sup

{

sup
t∈J∞

|Bx(t)| : x ∈ Br(0)

}

≤ sup
x∈Br(0)

{

sup
t∈J∞

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
|a(t)|

+
1

Γq
· sup
t∈J∞

|a(t)|

∫ t

t0

(t− s)q−1|g(s, x(s), x(γ(s)))| ds

}

≤
∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

Mg

Γq
· sup
t∈J∞

a(t)

∫ t

t0

(t− s)q−1 ds

≤
∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

Mg

Γq
· sup
t∈J∞

a(t) tq

≤
∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq
=MB.

Thus,

‖Bx‖ ≤
∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq
=MB

for all x ∈ Br(0). Hence, we have

MBψA(r) + ψC(r)

≤

L

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

r

K + r

+m ·
max

{

L1 W1

Γ(α1)
, . . . , Lm Wm

Γ(αm)

}

r

min{K1, . . . ,Km}+ r

≤ (m+ 1) ·
max

{

L
(∣

∣

a(t0)x0

f(t0,x0,x0)

∣

∣ ‖a‖+
MgW
Γq

)

, L1 W1

Γ(α1)
, . . . , Lm Wm

Γ(αm)

}

r

min{K,K1, . . . ,Km}+ r

< r

for r > 0, because

(m+ 1)·max

{

L
(
∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

,
L1W1

Γ(α1)
, . . . ,

LmWm

Γ(αm)

}

≤ min{K,K1, . . . ,Km}

Therefore, hypothesis (c) of Theorem 2.1 is satisfied.
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Next, let y ∈ Br(0) be arbitrary and let x = AxBy + Cx. Then,

|x(t)| ≤ |Ax(t)| |By(t)|+ |Cx(t)|

≤ ‖Ax‖ ‖By‖+ ‖Cx‖

≤ ‖A(X)‖ ‖B(Br(0))‖+ ‖C(X)‖

≤
(

L+ F
)

MB +
m
∑

j=1

Lj +Hj

Γ(αj)
Wj

≤
(

L+ F
)

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

+

m
∑

j=1

Lj +Hj

Γ(αj)
Wj

for all t ∈ J∞. Therefore, we have:

‖x‖ ≤
(

L+ F
)

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

+

m
∑

j=1

Lj +Hj

Γ(αj)
Wj = r.

This shows that x ∈ Br(0) and hypothesis (c) of Theorem 2.1 is satisfied. Now we apply

Theorem 2.1 to the operator equation AxBx + Cx = x to yield that the HFRIGDE (1.1 ) has a

mild solution on J∞. Moreover, the mild solutions of the HFRIGDE (1.1) are in Br(0). Hence,

mild solutions are global in nature.

Finally, let x, y ∈ Br(0) be any two mild solutions of the HFRIGDE (1.1) on J∞. Then, from
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(4.5) we obtain

|x(t) − y(t)| ≤

∣

∣

∣

∣

∣

[

f(t, x(t), x(θ(t)))
]

×

×

(

a(t0)x0a(t)

f(t0, x0, x0)
+
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

)

−
[

f(t, y(t), y(θ(t)))
]

×

×

(

a(t0)x0a(t)

f(t0, x0, x0)
+
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, y(s), y(γ(s))) ds

)

∣

∣

∣

∣

∣

+ sup
t∈J∞

a(t)

m
∑

j=1

Iαj
∣

∣hj(t, x(t), x(η(t))) − hj(t, y(t), y(η(t))
∣

∣

≤

∣

∣

∣

∣

∣

[

f(t, x(t), x(θ(t))) − f(t, y(t), y(θ(t)))
]

×

(

a(t0)x0a(t)

f(t0, x0, x0)
+
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

)

∣

∣

∣

∣

∣

+
∣

∣ f(t, y(t), y(θ(t)))
∣

∣ ×

×

∣

∣

∣

∣

(

a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds − g(s, y(s), y(γ(s))) ds

) ∣

∣

∣

∣

+ sup
t∈J∞

a(t)
m
∑

j=1

Iαj
Lj ‖x− y‖

Kj + ‖x− y‖

≤
∣

∣f(t, x(t), x(θ(t))) − f(t, y(t), y(θ(t)))
∣

∣ ×

×

∣

∣

∣

∣

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
|a(t)|+

MgW

Γq
w(t)

) ∣

∣

∣

∣

+ 2
[

|f(t, x(t), x(θ(t))) − f(t, 0, 0)|+ |f(t, 0, 0)|
]MgW

Γq
w(t)

+

m
∑

j=1

wj(t)

Γ(αj)
·
Lj ‖x− y‖

Kj + ‖x− y‖

≤ ℓ(t)
|x(t) − y(t)|

K + |x(t) − y(t)|

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

+
2MgW

Γq

[

ℓ(t)max
{

|x(t)| , |x(θ(t))|
}

K +max
{

|x(t)| , |x(θ(t))|
} + F

]

w(t)

+

m
∑

j=1

Lj wj(t)

Γ(αj)

≤

L

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

|x(t) − y(t)|

K + |x(t)− y(t)|

+
2MgW

Γq
(L+ F )w(t) +

m
∑

j=1

Lj wj(t)

Γ(αj)
. (4.11)
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Taking the limit superior as t→ ∞ in the above inequality (4.11) yields, limt→∞ |x(t)−y(t)| =

0. Therefore, there is a real number T > 0 such that |x(t)− y(t)| < ǫ for all t ≥ T . Consequently,

the mild solutions of HFRIGDE (1.1) are uniformly globally attractive on J∞. This completes the

proof.

Remark 4.2. The conclusion of Theorem 4.1 also remains true under if we replace the hypotheses

(A1), (A2), (C1) and (C2) with the following modified conditions:

(A′
1) The function f is continuous and there exists a D-function ψf ∈ D such that

∣

∣f(t, x1, x2)− f(t, y1, y2)
∣

∣ ≤ ψf

(

max{|x1 − y1|, |x2 − y2|}
)

for all t ∈ J∞ and x1, x2, y1, y2 ∈ R.

(A′
2) The function f is bounded on J∞ × R× R with bound Mf .

(C′
1) The functions h′js are continuous and there exist D-functions ψhj

∈ D such that

∣

∣hj(t, x1, x2)− hj(t, y1, y2)
∣

∣ ≤ ψhj

(

max{|x1 − y1|, |x2 − y2|}
)

for all t ∈ J∞ and x1, x2, y1, y2 ∈ R, where j = 1, . . . ,m.

(C′
2) The functions hj are bounded on J∞ × R× R with bound Mhj

.

Theorem 4.2. Assume that the hypotheses (A′
1) - (A′

2), (B1), (C
′
1) - (C′

2) and (D1) hold. Fur-

thermore, assume that

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
‖a‖+

MgW

Γq

)

ψf (r) +

m
∑

j=1

Wj

Γ(αj)
ψhj

(r) < r, r > 0. (4.12)

Then the HFRIGDE (1.1) has a mild solution and mild solutions are uniformly globally attractive

defined on J∞.

Proof. The proof is similar to Theorem 4.1 and hence we omit the details.

Theorem 4.3. Assume that the hypotheses (A1) - (A2), (B1), (C1) - (C2) and (D1) hold. Then

the HFRIGDE (1.1) has a mild solution and mild solutions are uniformly globally attractive and

ultimately positive defined on J∞.

Proof. By Theorem 4.1, the HFRIGDE (1.1) has a global mild solution in the closed ball Br(0),

where the radius r is given as in the proof of Theorem 4.1, and the mild solutions are uniformly

globally attractive on J∞. We know that for any x, y ∈ R, one has the inequality,

|x| |y| = |xy| ≥ xy,
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and therefore,
∣

∣|xy| − (xy)
∣

∣ ≤ |x|
∣

∣|y| − y
∣

∣+
∣

∣|x| − x
∣

∣ |y| (4.13)

for all x, y ∈ R. Now, for any mild solution x of the HFRIGDE (1.1) in Br(0), one has

∣

∣|x(t)| − x(t)
∣

∣

=

∣

∣

∣

∣

∣

∣

∣
f(t, x(t), x(θ(t)))

∣

∣

∣
×

×
∣

∣

∣

(

a(t0)x0a(t)

f(t0, x0, x0)
+
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

)

∣

∣

∣

−
[

f(t, x(t), x(θ(t)))
]

×

×

(

a(t0)x0a(t)

f(t0, x0, x0)
+
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

) ∣

∣

∣

∣

+

∣

∣

∣

∣

m
∑

j=1

Iαj
∣

∣hj(t, x(t), x(η(t)))
∣

∣ −

m
∑

j=1

Iαjhj(t, x(t), x(η(t)))

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣
f(t, x(t), x(θ(t)))

∣

∣

∣

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
−

a(t0)x0
f(t0, x0, x0)

)

a(t)

∣

∣

∣

∣

∣

+
∣

∣

∣
f(t, x(t), x(θ(t)))

∣

∣

∣
×

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

∣

∣

∣

∣

−
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

∣

∣

∣

∣

∣

+
∣

∣

∣
|f(t, x(t), x(θ(t)))

∣

∣ − f(t, x(t), x(θ(t)))
∣

∣

∣

×

∣

∣

∣

∣

a(t0)x0a(t)

f(t0, x0, x0)
+
a(t)

Γq

∫ t

t0

(t− s)q−1g(s, x(s), x(γ(s))) ds

∣

∣

∣

∣

+

m
∑

j=1

Iαj

∣

∣

∣

∣

∣hj(t, x(t), x(η(t)))
∣

∣ − hj(t, x(t), x(η(t)))
∣

∣

∣

≤

[

4(L+ F )
∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣

]

a(t) +

[

4(L+ F )
Mg

Γq

]

w(t)

+ 2

m
∑

j=1

Hj

Γ(αj)
wj(t) (4.14)

for all t ∈ J∞.

Taking the limit superior as t→ ∞ in the above inequality (4.14), we obtain the estimate that

lim
t→∞

∣

∣|x(t)| − x(t)
∣

∣ = 0. Therefore, there is a real number T > 0 such that
∣

∣ |x(t)| − x(t)
∣

∣ ≤ ǫ for

all t ≥ T . Hence, mild solutions of the HFRIGDE (1.1) are uniformly globally attractive as well

as ultimately positive defined on J∞. This completes the proof.
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Theorem 4.4. Assume that the hypotheses (A1) - (A2) and (B1) hold. Then the HFRDE (1.1) has

a mild solution and mild solutions are uniformly globally attractive, uniformly ultimately positive

and uniformly asymptotically stable to zero defined on J∞.

Proof. By Theorems 4.1 and 4.2, the HFRIGDE (1.1) has a global mild solution in the closed

ball Br(0), where the radius r is given as in the proof of Theorem 4.1, and the mild solutions are

uniformly globally attractive and uniformly ultimately positive on J∞. Now, for any mild solution

x ∈ Br(0), we have from (4.10),

|x(t)| ≤ (L+ F )

(

∣

∣

∣

a(t0)x0
f(t0, x0, x0)

∣

∣

∣
a(t) +

Mg

Γq
w(t)

)

+
m
∑

j=1

Lj +Hj

Γ(αj)
wj(t).

Taking the limit superior as t → ∞ in the above inequality yields that limt→∞ |x(t)| = 0.

Therefore, for ǫ > 0 there exists a real number T ≥ t0 such that |x(t)| < ǫ whenever t ≥ T .

Consequently, the mild solution x is a uniformly asymptotically stable to zero defined on J∞. This

completes the proof.

Example 4.1 Let J∞ = R+ = [0,∞) ⊂ R. Given a pulling function a(t) = et ∈ CRB(R+),

consider the following nonlinear hybrid fractional Caputo differential equation with the mixed

arguments of anticipation and retardation,

CDq
0









etx(t)−
t

t2 + 1
I3/2

(

|x(t)| + |x(3t)|

4 + |x(t)|+ |x(3t)|

)

1 +
1

t2 + 1

(

|x(t)| + |x(2t)|

2 + |x(t)|+ |x(2t)|

)









=
e−t log

(

1 + |x(t)|+ |x(t/2)|
)

2 + |x(t)| + |x(t/2)|
, t ∈ R+,

x(0) = 0,



























(4.15)

for all t ∈ R+, where
CDq

0 is the Caputo fractional derivative of fractional order 0 < q ≤ 1.

Here, a(t) = et, θ(t) = 2t, η(t) = 3t, γ(t) =
t

2
for t ∈ R+ and hence θ(0) = 0 = η(0). Next,

α = 3/2 and the functions f : R+ × R× R → R+ \ {0} and g, h : R+ × R× R → R are defined by

f(t, x, y) = 1 +
1

t2 + 1

[

|x|+ |y|

2 + |x|+ |y|

]

,

h(t, x, y) =
t

t2 + 1

[

|x|+ |x|

4 + |x|+ |x|

]

and

g(t, x, y) =
e−t log(|x|+ |y|)

1 + |x|+ |y|
.

Clearly, the function f is continuous and bounded real function on R+ × R × R with bound

Mf = 2 and in particular, F = 1. Now, it can be shown as in Banas and Dhage [3] that the function

f satisfies the hypothesis (A1) with ℓ(t) =
1

t2 + 1
and K = 1. So we have L = 1. Furthermore,
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the function h is also continuous and bounded on J∞ × R × R with bound Mh = 1. Next, the

function h satisfies the hypothesis (C1) with the function ℓh(t) =
t

t2 + 1
so that we have Lh =

1

2
and Kh = 4. Again, the function g is continuous and bounded on J∞ × R × R and therefore,

satisfies the hypotheses (B1) with Mg = 1. Next, we have

lim
t→∞

w(t) = lim
t→∞

e−ttq = 0 = lim
t→∞

e−tt3/2 = lim
t→∞

wh(t)

and so the hypothesis (D1) is satisfied. Now, ‖a‖ = supt∈R+
e−t = 1,W = supt∈R+

e−t tq = 1 and

Wh = 1. Finally, it is verified that the the functions a, f , g and h satisfy the condition (4.4)

of Theorem 4.1. Consequently, the HFRIGDE (4.15) has a mild solution and mild solutions are

globally uniformly attractive, uniformly ultimately positive and uniformly asymptotically stable

to zero defined on R+. In particular, the HFRIGDE

CD
2/3
0









etx(t)−
t

t2 + 1
I3/2

(

|x(t)| + |x(3t)|

4 + |x(t)| + |x(3t)|

)

1 +
1

t2 + 1

(

|x(t)| + |x(2t)|

2 + |x(t)|+ |x(2t)|

)









=
e−t log

(

1 + |x(t)| + |x(t/2)|
)

2 + |x(t)| + |x(t/2)|
, t ∈ R+,

x(0) = 0,



























has a mild solution and mild solutions are globally uniformly attractive, uniformly ultimately

positive and uniformly asymptotically stable to zero defined on R+.

Remark 4.3. Finally, we remark that the ideas of this paper may be extended with appropriate

modifications to a more general hybrid fractional integrdifferential equation with Caputo fractional

derivative,

CDq
t0













a(t)x(t) −

m
∑

j=1

Iαjhj(t, x(t), x(η1(t)), . . . , x(ηn))

f(t, x(θ1(t)), · · · , x(θn(t)))













= g(t, x(γ1(t)), · · · , x(γn(t))), t ∈ J∞,

x(t0) = x0 ∈ R,















































(4.16)

where CDq
t0 is the Caputo fractional derivative of fractional order 0 < q ≤ 1, Γ is a Euler’s gamma

function, f : J∞ × R× ...(n times) × R → R \ {0}, g, hj : J∞ × R× ...(n times) × R → R are

continuous and θi, γi : J∞ → J∞ are continuous functions which are respectively anticipatory and

retardatory, that is, θi(t) ≥ t and γi(t) ≤ t for all t ∈ J∞ with θi(t0) = t0 = ηi(t0) for i = 1, . . . , n.

Remark 4.4. If g is assumed to be continuous function on J∞ × R × R, then the attractivity

and existence results for the HFRIGDE (1.1) may be obtained via another approach of using

measure of noncompactness. In that case we need to construct a handy tool for the measure of

noncompactness which is not the case with the present approach in the qualitative study of such

nonlinear fractional integrodifferential equations. See the details of this procedure that appears in

Banas and Dhage [3], Hu and Yan [26], Dhage [11, 14] and the references therein.
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5 The Conclusion

From the foregoing discussion, it is clear that the pulling functions and the hybrid fixed point

theorems are very much useful for proving the existence theorems as well as characterizing the

mild solutions of different types of nonlinear fractional integrodifferential equations on unbounded

intervals of the real line when the nonlinearity is not necessarily continuous. The choices of the

pulling function and the fixed point theorem depends upon the situations and the circumstances

of the nonlinearities involved in the nonlinear problem. The clever selection of the fixed point

theorems yields very powerful existence results as well as different characterizations of the nonlinear

fractional differential equations. In this article, we have been able to prove in Theorems 4.1, 4.2,

4.3 and 4.4 the existence as well as global attractivity, ultimate positivity and asymptotic stability

of the mild solutions for a quadratic type of nonlinear hybrid fractional differential equation (1.1)

on the unbounded interval J∞ = [t0,∞) of right half of the real line R+, however, other nonlinear

fractional integrodifferential equations can be treated in the similar way for these and some other

characterizations such as monotonic global attractivity, monotonic asymptotic attractivity and

monotonic ultimate positivity etc. of the mild solutions on unbounded intervals of the real line. It

is known that several real world phenomena in physics and chemistry such as growth and decay

of the radioactive elements continue for a very long period of time and the existence results of

the type proved in this paper may be applicable for the situation to understand the behavior of

the process after a sufficient lapse of time. In a forthcoming paper, it is proposed to discuss the

global asymptotic and monotonic attractivity of the mild solutions for nonlinear hybrid fractional

integrodifferential equations involving three nonlinearities via classical and applicable hybrid fixed

point theory.
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1 Introduction

The Aleph-function is among very significant special functions and its closely related ones are widely

used in physics and engineering. Therefore they are of high interest to physicists and engineers

as well as mathematicians. In recent years, many integral formulas involving a diversity of special

functions have been presented by many authors (see e.g., [3, 9, 12, 13, 14, 15, 16]). Motivated by

these recent papers, three generalized integral formulae involving product of two hypergeometric

functions and multivariable Aleph-function are established in the form of three theorems:

For our study, we recall the following three integral formulas (see [5], p. 77, Equations (3.1),

(3.2) and (3.3)):

∫ ∞

0

[

(

αx +
β

x

)2

+ γ

]−ρ−1

dx =

√
π Γ

(

ρ+ 1
2

)

2α (4αβ + γ)
ρ+ 1

2 Γ (ρ+ 1)
(1.1)

(

α > 0; β ≥ 0; γ + 4αβ > 0; ℜ(ρ) + 1

2
> 0

)

.

∫ ∞

0

1

x2

[

(

αx +
β

x

)2

+ γ

]−ρ−1

dx =

√
π Γ

(

ρ+ 1
2

)

2β (4αβ + γ)
ρ+ 1

2 Γ (ρ+ 1)
(1.2)

(

α ≥ 0; β > 0; γ + 4αβ > 0; ℜ(ρ) + 1

2
> 0

)

.

∫ ∞

0

[

(

α+
β

x2

)(

αx +
β

x

)2

+ γ

]−ρ−1

dx =

√
π Γ

(

ρ+ 1
2

)

(4αβ + γ)
ρ+ 1

2 Γ (ρ+ 1)
(1.3)

(

α > 0; β ≥ 0; γ + 4αβ > 0; ℜ(ρ) + 1

2
> 0

)

.

We also recall the following identity involving the hypergeometric series 2F1(.) ([8] p. 75,

Theorem 1): If

(1− y)α+β−γ
2F1 (2α, 2β; 2γ; y) =

∞
∑

k=1

aky
k, (1.4)

then

2F1

(

a, b; c+
1

2
; y

)

2F1

(

c− a, c− b; c+
1

2
; y

)

=

∞
∑

k=0

(c)k
(

c+ 1
2

)

k

aky
k. (1.5)

The multivariable Aleph-function defined by Sharma and Ahmad [6] as:

ℵ (z1, z2, ..., zr)

= ℵ0, n:m1n1; m2n2; ....;mrnr

pi, qi, τi;R; p
i(1)

, q
i(1)

, τ
i(1)

;R(1) , ..., p
i(r)

, q
i(r)

, τ
i(r)

;R(r)











z1
...
zr

∣

∣

∣

∣

∣

∣

∣

B1 : B2

B3 : B4
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=
1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(φi (ςi) (zi)
ςi) dς1 · · · dςr (1.6)

where, ω =
√
−1,

B1 =

(

(

aj ;α
(1)
j , · · · , α(r)

j

)

1, n

)

,

(

τi

(

aji;α
(1)
ji , · · · , α

(r)
ji

)

n+1, pi

)

B2 =

(

(

c
(1)
j , γ

(r)
j

)

1, n1

)

,

(

τi(1)
(

c
(1)

ji(1)
, γ

(1)

ji(1)

)

n1+1, p
i(1)

)

; · · · ;
(

(

c
(r)
j , γ

(r)
j

)

1, nr

)

,

(

τi(r)
(

c
(r)

ji(r)
, γ

(r)

ji(r)

)

nr+1, p
i(r)

)

B3 =

(

τi

(

bji;β
(1)
ji , · · · , β

(r)
ji

)

m+1,qi

)

B4 =

(

(

d
(1)
j , δ

(1)
j

)

1,m1

)

,

(

τi(1)
(

d
(1)

ji(1)
, δ

(1)

ji(1)

)

m1+1, q
i(1)

)

; · · · ;
(

(

d
(r)
j , δ

(r)
j

)

1,mr

)

,

(

τi(r)
(

d
(r)

ji(r)
, δ

(r)

ji(r)

)

mr+1, q
i(r)

)

and

ψ (ς1, · · · , ςr) =
∏n

j=1 Γ
(

1− aj +
∑r

k=1 α
(k)
j ςk

)

∑R
i=1

[

τi
∏pi

j=n+1 Γ
(

aji −
∑r

k=1 α
(k)
ji ςk

)

∏qi
j=1 Γ

(

1− bji +
∑r

k=1 β
(k)
ji ςk

)] ,

(1.7)

φk ( ςk) =

∏mk

j=1 Γ
(

d
(k)
j − δ

(k)
j ςk

)

∏nk

j=1 Γ
(

1− c
(k)
j + γ

(k)
j ςk

)

∑R(k)

i(k)=1

[

τi(k)

∏q
i(k)

j=mk+1 Γ
(

1− d
(k)

ji(k) + δ
(k)

ji(k) ςk

)

∏p
i(k)

j=nk+1 Γ
(

c
(k)

ji(k) − γ
(k)

ji(k) ςk

)] , (1.8)

The parameters d
(k)

ji(k) (j = mk + 1, · · · , qi(k)), (k = 1, · · · , r; i = 1, · · · , R & i(k) =

1, · · · , R(k) are complex numbers. Also positive real numbers α’s, β’s, γ’ sand δ’s for standardiza-

tion purpose such that

U
(k)
i =

n
∑

j=1

α
(k)
j + τi

pi
∑

j=n+1

α
(k)
ji +

nk
∑

j=1

γ
(k)
j + τi(k)

p
i(k)
∑

j=nk+1

γ
(k)

ji(k)

− τi

qi
∑

j=1

β
(k)
ji −

mk
∑

j=1

δ
(k)
j − τi(k)

q
i(k)
∑

j=mk+1

δ
(k)

ji(k) ≤ 0 (1.9)



354 A. Oli, K. Tilahun, G. V. Reddy CUBO
22, 3 (2020)

The real numbers τi > 0 (i = 1, ..., R) and τi(k) > 0 (i = 1, · · · , R). The contour is in

the sk−plane and run from σ − ω∞toσ + ω∞, where σ is real number with loop, if neces-

sary, ensure that the poles of Γ
(

d
(k)
j − δ

(k)
j ςk

)

with j = 1, . . . , mk are separated from those of

Γ
(

1− aj +
∑r

k=1 α
(k)
j ςk

)

with j = 1, . . . , n and Γ
(

1− c
(k)
j + γ

(k)
j ςk

)

with j = 1, . . . , nk to the

left of the contour Lk. The condition for absolute convergence of multiple Mellin-Barnes type con-

tours (1.6) can be obtained by extension of corresponding conditions for multi variable H-function

as: |arg zk| < 1
2A

(k)
i π where.

A
(k)
i =

n
∑

j=1

α
(k)
j − τi

pi
∑

j=n+1

α
(k)
ji − τi

qi
∑

j=1

β
(k)
ji +

nk
∑

j=1

γ
(k)
j − τi(k)

p
i(k)
∑

j=nk+1

γ
(k)

ji(k)

+

mk
∑

j=1

δ
(k)
j − τi(k)

q
i(k)
∑

j=mk+1

δ
(k)

ji(k) > 0 (1.10)

with k = 1, · · · , r; i = 1, · · · , R and i(k) = 1, · · · , R(k).

Remark 1: By setting τi = τi (k) = 1, the multivariable Aleph function reduces to multivari-

able I-function (see [4, 7]).

Remark 2: By setting τi = τi (k) = 1 (k = 1, ..., r) and R = R(1) =, ..., R(r) = 1, the

multivariable Aleph-function reduces to multivariable H-function defined by Srivastava and Panda

[10].

Remark 3: When we set r = 1, the multivariable Aleph function reduces to Aleph-function

of one variable defined by Sudland [11].

2 Main Results

Theorem 2.1. Let α > 0, β ≥ 0, γ +4αβ > 0, µi > 0, η ≥ 0, ℜ(ρ) + 1
2 > 0; − 1

2 < α− β − γ < 1
2 ;

ℜ
(

λ+ µi min
1≤j≤mi

{

Re
(

d
(i)
j

)

δ
(i)
j

})

> 0 (i = 1, · · · , r) , and σ =

[

(

αx+ β
x

)2

+ γ

]

then the following

formula holds:

∫ ∞

0

σ−ρ−1
2F1

(

α, β; γ +
1

2
; σ

)

2F1

(

γ − α, γ − β; γ +
1

2
; σ

)

×ℵ
(

z1σ
−η1 , ..., zrσ

−ηr
)

dx

=

√
π

2α (4αβ + γ)
ρ+ 1

2

∞
∑

h=0

1

(4αβ + γ)−h

(γ)h
(

γ + 1
2

)

h

ah

×ℵ0, n+1:m1n1;m2n2; ....;mrnr

pi+1, qi+1, τi;R; p
i(1)

, q
i(1)

, τ
i(1)

;R(1) , ..., p
i(r)

, q
i(r)

, τ
i(r)

;R(r)
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z1
(4αβ+γ)η1

...
zr

(4αβ+γ)ηr

∣

∣

∣

∣

∣

∣

∣

(

− 1
2 − ρ+ h; η1, · · · , ηr

)

, B1 : B2

(−ρ+ h; η1, · · · , ηr) , B3 : B4











. (2.1)

Proof. Assume that Ω in L.H.S. of (2.1), then by virtue of equation (1.5) and (1.6), we have the

following

Ω =

∫ ∞

0

σ−ρ−1
∞
∑

h=0

(γ)h
(

γ + 1
2

)

h

ahσ
h ℵ0, n:m1n1, m2n2, ....,mrnr

pi, qi, τi;R; p
i(1)

, q
i(1)

, τ
i(1)

;R(1) , ..., p
i(r)

, q
i(r)

, τ
i(r)

;R(r)











z1σ
−η1

...
zrσ

−ηr

∣

∣

∣

∣

∣

∣

∣

B1 : B2

B3 : B4











dx

=

∫ ∞

0

σ−ρ−1
∞
∑

h=0

(γ)h
(

γ + 1
2

)

h

ahσ
h

×
{

1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(

φi (ςi)
(

ziσ
−ηi

)ςi)

dς1 · · · dςr
}

dx

=

∞
∑

h=0

(γ)h
(

γ + 1
2

)

h

ah

{

1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(φi (ςi) (zi)
ςi) dς1 · · · dςr

}

×
∫ ∞

0

σ−ρ−1+h−
∑s

k=1 ηkςkdx

By using equation (1.1), we can obtain the following equation

Ω =

∞
∑

h=0

(γ)h
(

γ + 1
2

)

h

ah

{

1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(ϕi (ςi) (zi)
ςi) dς1 · · · dςr

}

×
√
π Γ

(

ρ− h+
∑s

k=1 ηkςk +
1
2

)

2α (4αβ + γ)
ρ+ 1

2−h+
∑

s
k=1 ηkςk Γ (ρ− h+

∑s
k=1 ηkςk + 1)

=

∞
∑

h=0

(γ)h ah
(

γ + 1
2

)

h

√
π Γ

(

ρ− h+
∑s

k=1 ηkςk +
1
2

)

2α (4αβ + γ)
ρ+ 1

2−h+
∑

s
k=1 ηkςk Γ (ρ− h+

∑s
k=1 ηkςk + 1)

× 1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(ϕi (ςi) (zi)
ςi) dς1 · · · dςr

=

√
π

2α (4αβ + γ)
ρ+ 1

2

∞
∑

h=0

(γ)h
(

γ + 1
2

)

h

ah

(4αβ + γ)−h
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× Γ
(

ρ− h+
∑s

k=1 ηkςk + 1
2

)

(4αβ + γ)
∑

s
k=1 ηkςk Γ (ρ− h+

∑s
k=1 ηkςk + 1)

× 1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(ϕi (ςi) (zi)
ςi) dς1 · · · dςr

=

√
π

2α (4αβ + γ)
ρ+ 1

2

∞
∑

h=0

1

(4αβ + γ)−h

(γ)h
(

γ + 1
2

)

h

ahx

{

Γ
(

ρ− h+
∑s

k=1 ηkςk + 1
2

)

Γ (ρ− h+
∑s

k=1 ηkςk + 1)

}

× 1

(2πω)r

∫

L1

· · ·
∫

Lr

ψ (ς1, · · · , ςr)
r
∏

i=1

(

φi (ςi)

[

zi

(4αβ + γ)
ηi

]ςi)

dς1 · · · dςr

we readily arrive at the right hand side of (2.1) in view of the presentation of Aleph function

in Mellin Barnes contour integral.

Theorem 2.2. Let α ≥ 0, β > 0, γ+4αβ > 0, µi > 0, η ≥ 0, ℜ(ρ)+ 1
2 > 0; − 1

2 < α−β−γ < 1
2

ℜ
(

λ+ µi min
1≤j≤mi

{

Re
(

d
(i)
j

)

δ
(i)
j

})

> 0 (i = 1, · · · , r) , and σ =

[

(

αx+ β
x

)2

+ γ

]

then the following

formula holds:

∫ ∞

0

1

x2
σ−ρ−1

2F1

(

α, β; γ +
1

2
; σ

)

2F1

(

γ − α, γ − β; γ +
1

2
; σ

)

×ℵ
(

z1σ
−η1 , ..., zrσ

−ηr
)

dx

=

√
π

2β (4αβ + γ)
ρ+ 1

2

∞
∑

h=0

1

(4αβ + γ)
−h

(γ)h
(

γ + 1
2

)

h

ah

×ℵ0, n+1:m1n1; m2n2; ....;mrnr

pi+1, qi+1, τi;R; p
i(1)

, q
i(1)

, τ
i(1)

;R(1) , ..., p
i(r)

, q
i(r)

, τ
i(r)

;R(r)

×











z1
(4αβ+γ)η1

...
zr

(4αβ+γ)ηr

∣

∣

∣

∣

∣

∣

∣

(

− 1
2 − ρ+ h; η1, · · · , ηr

)

, B1 : B2

(−ρ+ h; η1, · · · , ηr) , B3 : B4











. (2.2)

Proof. In the similar manner of Theorem 2.1 and using (1.2) we easily arrive at the result (2.2).

Theorem 2.3. Let α > 0, β > 0, γ+4αβ > 0, µi > 0, η ≥ 0, ℜ(ρ)+ 1
2 > 0; − 1

2 < α−β−γ < 1
2 ;

ℜ
(

λ+ µi min
1≤j≤mi

{

Re
(

d
(i)
j

)

δ
(i)
j

})

> 0 (i = 1, · · · , r) , and σ =

[

(

αx+ β
x

)2

+ γ

]

then the following

formula holds:

∫ ∞

0

(

α+
β

x2

)

σ−ρ−1
2F1

(

α, β; γ +
1

2
; σ

)

2F1

(

γ − α, γ − β; γ +
1

2
; σ

)

×ℵ
(

z1σ
−η1 , ..., zrσ

−ηr
)

dx
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=

√
π

(4αβ + γ)ρ+
1
2

∞
∑

h=0

1

(4αβ + γ)
−h

(γ)h
(

γ + 1
2

)

h

ah

× ℵ0, n+1:m1n1; m2n2; ....;mrnr

pi+1, qi+1, τi;R; p
i(1)

, q
i(1)

, τ
i(1)

;R(1) , ..., p
i(r)

, q
i(r)

, τ
i(r)

;R(r)











z1
(4αβ+γ)η1

...
zr

(4αβ+γ)ηr

∣

∣

∣

∣

∣

∣

∣

(

− 1
2 − ρ+ h; η1, · · · , ηr

)

, B1 : B2

(−ρ+ h; η1, · · · , ηr) , B3 : B4











. (2.3)

Proof. In the similar way of Theorem 2.1 and using (1.3) we easily arrive at the result (2.3).

3 Special Cases

(1) If we put τi = 1, in (2.1), (2.2) and (2.3), we get the results in terms of multivariable

I-function [4, 7].

(2) Some suitable parametric changes in (1.1), we obtain single variable I-function, then we arrive

at the results due to Chand [1].

(3) Also, multivariable Aleph function reduces to multivariable H-function with some suitable

parameters;we get the known result due to Daiya et al. [2].

4 Conclusion

In this article, we analyze the generalized fractional calculus involving definite integrals of Gradshteyn-

Ryzhik of the Multivariable Aleph-function. As the special cases of our main results, which are

related to I-function, H-function and G-function, we can also get the number of special functions.
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ABSTRACT

In this paper, we prove the existence of mild solutions of a class of fractional semilinear

integro-differential equations of order β ∈ (1, 2] subjected to noncompact initial nonlo-

cal conditions. We assume that the linear part generates an arbitrarily strongly continu-

ous β-order fractional cosine family, while the nonlinear forcing term is of Carathéodory

type and satisfies some fairly general growth conditions. Our approach combines the

Monch fixed point theorem with some recent results regarding the measure of noncom-

pactness of integral operators. Our conclusions improve and generalize many earlier

related works. An example is provided to illustrate the main results.
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RESUMEN

En este art́ıculo, probamos la existencia de soluciones leves de una clase de ecuaciones

integro-diferenciales fraccionales semilineales de orden β ∈ (1, 2] con condiciones no-

compactas iniciales no-locales. Asumimos que la parte lineal genera una familia coseno

de orden fraccional β arbitrariamente fuertemente continua , mientras que el término

no-lineal de forzamiento es de tipo Carathéodory y satisface algunas condiciones de

crecimiento bastante generales. Nuestro enfoque combina el teorema de punto fijo de

Monch con algunos resultados recientes sobre la medida de no-compacidad de oper-

adores integrales. Nuestras conclusiones mejoran y generalizan muchos trabajos ante-

riores relacionados . Se provee un ejemplo para ilustrar los resultados principales.

Keywords and Phrases: Cosine operator, fractional integro-differential operator, abstract dif-

ferential equation, noncompact nonlocal condition.

2020 AMS Mathematics Subject Classification: 34A08, 34G20, 35F25, 47D09, 47D60,

47H08, 47H10, 47G20.

1 Introduction

In recent years, the investigation of fractional differential equations in Banach spaces has attracted

many research works due to its applications in various areas of engineering, physics, bio-engineering,

and other applied sciences. Notable contributions have been made to both theory and applications

of fractional differential equations; we refer, e.g., to [1, 6, 13, 14, 15, 16, 18, 19, 25] and the refer-

ences therein. Actually, it has been found that differential equations involving fractional derivatives

in time are more realistic to describe many phenomena in practical situations than those of integer

order. The most significant advantage of fractional derivatives compared with integer derivatives

is that it can be used to describe the property of memory and heredity of various materials and

processes [5, 8, 22]. For more details about fractional calculus and fractional differential equations,

we refer the reader to [2, 4, 10].

In this paper, we are concerned with the existence of mild solutions of the following class of

fractional semilinear integro-differential equations:







cDβ
t u(t) = Au(t) + f(t, u(t), Gu(t), Su(t)), t ∈ [0, a],
u(0) = u0 + q(u),
u′(0) = v0 + p(u),

(1.1)

where β ∈ (1, 2] and cDβ
t is the standard Caputo fractional derivative of order β. The operator A is

the infinitesimal generator of a strongly continuous β-order fractional cosine family {Cβ(t) : t ≥ 0}
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in a Banach space E, f , q, p are suitably defined functions satisfying certain conditions to be

specified later, x0, y0 are given elements of E and G,S are two linear operators defined by

Gu(t) =

∫ t

0

K(t, s)u(s)ds and Su(t) =

∫ a

0

H(t, s)u(s)ds, t ∈ [0, a], (1.2)

where H ∈ C [[0, a]× [0, a],R+] , K ∈ C [U,R+] , and

U =
{

(t, s) ∈ R
2 : 0 ≤ s ≤ t ≤ a

}

.

Here R
+ refers to the set of nonnegative real numbers. The problem of the existence of mild

solutions to (1.1) has been addressed by many investigators in the case where β ∈ (0, 1]. We quote

for instance the contributions by Shu and Wang [21], Qin et al. [20], and the pioneering works of

Travis and Webb [23, 24]. However, only a few papers have been up to now devoted to the case

β ∈ (1, 2]. We quote the paper [25], where the authors proved the existence of mild solutions to

(1.1) with β ∈ (1, 2] when p and q are compact. In many applications, nonlocal conditions are

not compact. Specifically, periodic p(u) = u(a), anti-periodic p(u) = −u(a), or multipoint discrete

nonlocal conditions p(u) =
∑m

i=1 ciu(ti), 0 < t1 < · · · < tm are not compact.

As a matter of fact, the first and major aim of this paper is to address the problem of existence

of mild solutions to (1.1) in the case where p and q are not necessarily compact. Moreover, we

merely assume that the operator A generates an arbitrarily strongly continuous β-order fractional

cosine family, which is an extra interesting feature. Our approach combines the Monch fixed point

theorem with some recent results concerning the measure of noncompactness of integral operators.

The outline of the paper is as follows: In Section 2, we present the main technical tools which

will be used in this work. In Section 3, we investigate the existence of mild solution to problem

(1.1) by means of a fixed point method. Finally, in Section 4, we include an example to illustrate

our results.

2 Preliminaries and auxiliary results

In this section, we recall some background and collect several useful results which are crucial for

our further work. To do this, let (E, ‖ · ‖) be a Banach space and C([0, a], E) be the space of all

continuous functions defined on [0, a] with values in E, equipped with the standard sup-norm. Let

L(E) denote the space of all bounded linear operators on E endowed with the classical operator

norm. We first list some basic definitions and properties of the fractional calculus theory which

are used further in this paper.

Definition 2.1. [4] For 0 < γ < 1, consider the function of Wright type defined by

Φγ(z) =
∞
∑

n=0

(−z)n

n!Γ(−γn+ 1− γ)
=

1

2πi

∫

Γ

µγ−1 exp (µ− zµγ) dµ, (2.1)
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where Γ is a contour which starts and ends at −∞ and encircles the origin once counterclockwise.

Φγ(t) is a probability density function:

Φγ(t) ≥ 0 for t > 0 and

∫ ∞

0

Φγ(t)dt = 1. (2.2)

Definition 2.2. [4] The Riemann-Liouville fractional integral of order β > 0 of a function

f ∈ L1([0, a];E) is defined by

Iβt f(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds, t > 0, (2.3)

where Γ(·) stands for the Gamma function.

Definition 2.3. [4] The Riemann-Liouville fractional derivative of order 1 < β ≤ 2 is defined by

Dβ
t f(t) =

d2

dt2
I2−β
t f(t), (2.4)

where f ∈ L1([0, a];E) and Dβ
t f ∈ L1([0, a];E).

Definition 2.4. [4] The Caputo fractional derivative of order β ∈ (1, 2] is defined by

cDβ
t f(t) = Dβ

t (f(t)− f(0)− f ′(0)t) , (2.5)

where f ∈ L1([0, a];E) ∩ C1([0, a];E) and Dβ
t f ∈ L1([0, a];E).

Consider the following problem

cDβ
t x(t) = Ax(t), x(0) = η, x′(0) = 0, (2.6)

where β ∈ (1, 2], A : D(A) ⊂ E → E is a closed densely defined linear operator in Banach space

E.

Definition 2.5. [4] Let β ∈ (1, 2]. A family {Cβ}β≥0 ⊂ L(E) is called a solution operator

(or a strongly continuous β-order fractional cosine family) for the problem (2.6) if the following

conditions are satisfied:

(a) Cβ(t) is strongly continuous for t ≥ 0 and Cβ(0) = I,

(b) Cβ(t)D(A) ⊂ D(A) and ACβ(t)η = Cβ(t)Aη for all η ∈ D(A), t ≥ 0,

(c) Cβ(t)η is a solution of x(t) = η +
∫ t

0
(t−s)β−1

Γ(β) Ax(s)ds for all η ∈ D(A), t ≥ 0.

In this case, A is called the infinitesimal generator of Cβ(t).

Definition 2.6. [15] The fractional sine family Sβ : R+ → L(E) associated with Cβ is defined by

Sβ(t) =

∫ t

0

Cβ(s)ds, t ≥ 0. (2.7)
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Definition 2.7. [15] The fractional Riemann-Liouville family Pβ : R+ → L(E) associated with

Cβ is defined by

Pβ(t) = Iβ−1
t Cβ(t) =

1

Γ(β − 1)

∫ t

0

(t− s)β−2Cβ(s)ds, t ≥ 0. (2.8)

Definition 2.8. [4] The strongly continuous β-order fractional cosine family Cβ(t) is called expo-

nentially bounded if there are constants M ≥ 1 and ω ≥ 0 such that

‖Cβ(t)‖ ≤Meωt, t ≥ 0. (2.9)

An operator A is said to belong to Cβ(M,ω), if the problem (2.6) has a strongly continuous β-order

fractional cosine family Cβ(t) satisfying (2.9). Denote Cβ(ω) =
⋃

{Cβ(M,ω);M ≥ 1}.

Theorem 2.1. [4, Theorem 3.1] Let 0 < β′ < β ≤ 2, γ = β′

β
, ω ≥ 0. If A ∈ Cβ(ω) then

A ∈ Cβ′

(ω
1

γ ) and the following representation holds

Cβ′(t) =

∫ ∞

0

ϕt,γ(s)Cβ(s)ds, t > 0, (2.10)

where ϕt,γ(s) := t−γΦγ (st
−γ) and Φγ(z) is defined by (2.1).

For more details regarding β-order fractional cosine families, we refer the reader to [4].

Definition 2.9. A function ψ defined on the set of all bounded subsets of a Banach space E with

values in R
+ is called a measure of noncompactness (MNC in short) on E if for any bounded subset

M of E we have ψ(coM) = ψ(M), where coM stands for the closed convex hull of M. An MNC is

said to be

(i) Full: ψ(M) = 0 if and only if M is a relatively compact set.

(ii) Monotone: for all bounded subsets M1 and M2 of E, we have

M1 ⊂M2 =⇒ ψ(M1) ≤ ψ(M2).

(iii) Nonsingular: ψ(M ∪ {x}) = ψ(M), for every bounded subset M of E and for all x ∈ E.

One of most important measures of noncompactness is the Hausdorff measure of noncompact-

ness defined by

χ(M) = inf{r > 0;M can be covered by finitely many balls with radii ≤ r},

for each bounded subset M of E. The Hausdorff measure of noncompactness is full, monotone

and nonsingular. Moreover, it enjoys the following additional properties.



366 Abdeldjalil Aouane, Smäıl Djebali, Mohamed Aziz Taoudi CUBO
22, 3 (2020)

Lemma 2.1. [3]

(i) χ(M1 +M2) ≤ χ(M1) + χ(M2).

(ii) χ(λM) = |λ|χ(M), for all λ ∈ R.

(iii) χ(co(M)) = χ(M).

(iv) χ(A+ x) = χ(A), ∀x ∈ E.

(v) if B : E −→ E is a Lipschitz continuous map with constant k, then χ(B(M)) ≤ kχ(M) for

all bounded subset M of E.

Lemma 2.2. [17, 9] If {un}n∈N ⊂ L1([0, a];E) is uniformly integrable, then the function t 7→

χ({un(t)}n∈N) for t ∈ [0, a] is measurable and

χ

({
∫ t

0

un(s)ds

}∞

n=1

)

≤

∫ t

0

χ
(

{un(s)}
∞
n=1

)

ds.

In the sequel, we use a measure of noncompactness in the space C(I;E) which was investigated

in [11, 12]. In order to define this measure, let us fix a nonempty bounded subset Ω of the space

C(I;E). Let

modC(Ω) = sup {modC(Ω(t)) : t ∈ I} ,

where

modC(Ω(t)) = lim
δ→0

sup
x∈Ω

{sup {|x (t2)− x (t1)| : t1, t2 ∈ (t− δ, t+ δ)}} ,

and

χ∞(Ω) = sup {χ(Ω(t)) : t ∈ I} ,

where χ denotes the Hausdorff measure of noncompactness in E. It is worth noticing that χ∞ and

modC are monotone nonsingular MNCs on C(I;E) (see [3, 12]). From an application view point,

one of the main disadvantages of these MNCs is the lack of fullness. To overcome this problem,

we can define the function ψC on the family of bounded subsets in C(I;E) by taking

ψC(Ω) = χ∞(Ω) + modC(Ω)

Lemma 2.3. [11, Lemma 3.1] ψC is a full monotone and nonsingular MNC on the space C(I;E).

Finally, we will make use of Monch’s fixed point theorem.

Theorem 2.2. [17] Let C be a closed, convex subset of a Banach space E with x0 ∈ C. Suppose

there is a continuous map T : C → C with the following property:
{

D ⊆ C countable and D ⊆ co ({x0} ∪ T (D))
imply that D is relatively compact.

Then, T has at least one fixed point in C.
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Let F be a function from [0,+∞) into L(E). Suppose that F is continuous for the strong

operator topology, namely

The mapping [0,+∞) ∋ t→ F(t)x ∈ E is continuous for every x ∈ E. (2.11)

Notice that from the uniform boundedness principle, we know that F is uniformly bounded on any

interval [0, a], i.e., Ma := supt∈[0,a] ‖F(t)‖L(E) < +∞. For later use, let us define the quantity

ω(F(t)) = lim
δ→0

sup
‖x‖≤1

{‖F (t2) x− F (t1)x‖E : t1, t2 ∈ (t− δ, t+ δ)} .

Recall that a family (F(t))t≥0 is said to be equicontinuous if {F(·)x : x ∈ Ω} is equicontinuous at

any t > 0 for any bounded subset Ω ⊂ X. It is easily seen that a family (F(t))t≥0 is equicontinuous

if and only if ω(F(t)) = 0 for any t > 0.

Theorem 2.3. [7] Let F be a function from [0,+∞) into L(E). Suppose that F is continuous for

the strong operator topology. Then, for any bounded set Ω ⊂ E and for any t ≥ 0, we have

modC(F(t)Ω) ≤ ω(F(t))χ(Ω).

In particular, for any t ∈ [0, a] we have

modC(F(t)Ω) ≤ 2Maχ(Ω).

Now, we present two crucial results concerning the integral operator:

(S0f) (t) =

∫ t

0

F(t− s)f(s)ds for t ∈ [0, a]

where f ∈ L1([0, a];E) and F : [0,+∞) → L(E) verifies (2.11).

Theorem 2.4. [7] Let {fn}
∞
n=1 ⊂ L1([0, a];E) be integrably bounded, that is,

‖fn(t)‖ ≤ ν(t) for all n = 1, 2, · · · and a.e. t ∈ [0, a], (2.12)

where ν ∈ L1([0, a]). Assume that

χ ({fn(t)}
∞
n=1) ≤ q(t) (2.13)

for a.e. t ∈ [0, a] where q ∈ L1([0, a]). Then, for every t ∈ [0, a] we have:

mod C ({S0fn(t)}
∞
n=1) ≤ 4Ma

∫ t

0

q(s)ds. (2.14)

Theorem 2.5. [7] Let {fn}
∞
n=1 ⊂ L1([0, a];E) be as in (2.12) Assume that (2.13) holds. Then

χ ({S0fn(t)}
∞
n=1) ≤ 2Ma

∫ t

0

q(s)ds, for all t ∈ [0, a]
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3 Existence results

In this section, we discuss the existence of mild solutions to the semilinear fractional integro-

differential equation (1.1). Before doing so, it is appropriate to clarify the definition of solution we

will consider.

Definition 3.1. Assume A ∈ Cβ(M,ω) and Cβ(t) is the solution operator. We say that

u ∈ C[I, E] is a mild solution of (1.1) if u satisfies

u(t) = Cβ(t) (u0 + q(u)) + Sβ(t) (v0 + p(u))

+
∫ t

0 Pβ(t− s)f(s, u(s), Gu(s), Su(s))ds, t ∈ I.
(3.1)

To allow the abstract formulation of our problem, we define the operator T : C([0, a];E) →

C([0, a];E) by
Tu(t) = Cβ(t) (u0 + q(u)) + Sβ(t) (v0 + p(u))

+

∫ t

0

Pβ(t− s)f(s, u(s), Gu(s), Su(s))ds, t ∈ [0, a]
(3.2)

for all t ∈ [0, a]. It is clear that u is a mild solution of (1.1) if and only if it is a fixed point of T .

Our problem will be investigated under the following assumptions:

(C1) p, q : C([0, a];E) → E are continuous functions and there exist nonnegative constants kp

and kq, such that for all bounded subset D ⊂ C([0, a];E), we have

Maχ(q(D)) + aMaχ(p(D)) ≤ (Makq + aMakp)χ∞(D),

where Ma = supt∈[0,a] ‖Cβ(t)‖L(E).

(C2) There exist nondecreasing continuous functions σ1, σ2 : R+ → R
+ such that

{

‖q(u)‖E ≤ σ1 (‖u‖∞) , for all u ∈ C([0, a];E),

‖p(u)‖E ≤ σ2 (‖u‖∞) , for all u ∈ C([0, a];E).

(C3)






























f : [0, a]× E × E × E → E is a Carathéodory function, i.e.,

(i) the map t 7→ f(t, u1, u2, u3) is measurable for all

(u1, u2, u3) ∈ E × E × E,

(ii) the functions u1 7→ f(t, u1, u2, u3), u2 7→ f(t, u1, u2, u3) and

u3 7→ f(t, u1, u2, u3) are continuous for almost t ∈ [0, a],

(C4) There exist functions ρ1, ρ2, ρ3 ∈ L1((0, a);R+) and nondecreasing continuous functions

Ω1,Ω2,Ω3 : R+ → R
+ such that

‖f(t, u1, u2, u3)‖E ≤
3
∑

i=1

ρi(t)Ωi(‖ui‖E), for all t ∈ [0, a] and ui ∈ E.
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(C5) There exist functions m1,m2,m3 ∈ L1([0, a];R+) such that for all bounded subset

D1, D2, D3 ⊂ E

χ(f(t,D1, D2, D3)) ≤

3
∑

i=1

mi(t)χ(Di), for almost every t ∈ [0, a].

(C6) Makq + aMakp + 2
Maa

β−1

Γ(β)
‖m‖1 < 1,

where
m(s) = m1(s) + ak0m2(s) + ah0m3(s), k0 = sup{K(t, s); (t, s) ∈ U},
h0 = sup{H(t, s); (t, s) ∈ U}, and U =

{

(t, s) ∈ R
2 : 0 ≤ s ≤ t ≤ a

}

.

Remark 3.1. It is easy to prove that for every t ≥ 0, we have

sup
t∈[0,a]

‖Sβ(t)‖L(E) ≤ aMa and sup
t∈[0,a]

‖Pβ(t)‖L(E) ≤
Maa

β−1

Γ(β)
. (3.3)

In light of this, we shall show that operator T fulfills all conditions of Theorem 2.2. This will

be done in a series of lemmas.

Lemma 3.1. T : C([0, a];E) → C([0, a];E) is continuous.

Proof. Let (un) ⊂ C([0, a];E) be a sequence which converges to u ∈ C([0, a];E). Then

‖Tun − Tu‖∞ ≤ Ma‖q(un)− q(u)‖E + aMa‖p(un)− p(u)‖E

+Maa
β−1

Γ(β)

∫ a

0 ‖f(s, un(s), Gun(s), Sun(s))

−f(s, u(s), Gu(s), Su(s))‖Eds.

With assumptions (C1) and (C3) in mind, the continuity of G and S entails

lim
n→∞

f(s, un(s), Gun(s), Sun(s)) = f(s, u(s), Gu(s), Su(s)).

Since (un) is convergent then there exists r > 0 such that ‖un‖∞ ≤ r, for all n ∈ N and ‖u‖∞ ≤ r.

So by (C4) we have

‖f(s, un(s), Gun(s), Sun(s))− f(s, u(s), Gu(s), Su(s))‖∞

≤ 2 (ρ1(s)Ω1(r) + ρ2(s)Ω2(ak0r) + ρ3(s)Ω3(ah0r)) .

Using the dominated convergence theorem, we deduce that T is continuous.

Lemma 3.2. Assume that

Ma lim inf
r→∞

(

σ(r)

r
+
aβ−1

Γ(β)

Ω(r)

r

)

< 1, (3.4)

where σ(r) = σ1(r) + aσ2(r) and

Ω(r) = Ω1(r)‖ρ1‖L1 +Ω2(ak0r)‖ρ2‖L1 +Ω3(ah0r)‖ρ3‖L1.

Then, there is a r0 > 0 such that T selfmaps the closed ball

Br0 = {u ∈ C([0, a];E) : ‖u‖∞ ≤ r0} .
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Proof. For u ∈ Br and t ∈ [0, a], we have

‖(Tu)(t)‖E ≤ ‖Cβ(t) (u0 + q(u))‖
E
+ ‖Sβ(t) (v0 + p(u))‖

E

+
∥

∥

∥

∫ t

0
Pβ(t− s)f(s, u(s), Gu(s), Su(s))ds

∥

∥

∥

E

≤ Ma (‖u0‖E + σ1(r)) + aMa (‖v0‖E + σ2(r))

+Maa
β−1

Γ(β)

∫ a

0 Ω1(r)ρ1(s)

+Ω2(ak0r)ρ2(s) + Ω3(ah0r)ρ3(s)ds.

We claim that there exists r0 > 0 such that Tu ∈ Br0 whenever u ∈ Br0 . If is not the case, then

for each r > 0 there exists u ∈ Br such that Tu /∈ Br, that is

r < ‖Tu‖∞ ≤Ma (‖u0‖E + σ1(r)) + aMa (‖v0‖E + σ2(r)) +
Maa

β−1

Γ(β)
Ω(r),

which implies when dividing by r that

1 <
Ma ‖u0‖E + aMa‖v0‖E

r
+Ma

σ(r)

r
+
Maa

β−1

Γ(β)

Ω(r)

r
.

Taking the lim inf as r → ∞, we obtain

1 ≤Ma lim inf
r→∞

(

σ(r)

r
+
aβ−1

Γ(β)

Ω(r)

r

)

,

which contradicts the assumption (3.4) Therefore, there exists r0 > 0 such that

‖Tu‖∞ ≤ r0, for all ‖u‖ ≤ r0.

Thus, Tu ∈ Br0 for all u ∈ Br0 .

Lemma 3.3. Let r0 be as in Lemma 3.2 and let x0 ∈ Br0 . Let D be a countable subset of Br0 .

Then D ⊆ co ({x0} ∪ T (D)) implies that D is relatively compact.

Proof. Let D = {un}
∞
n=1 be any countable subset of Br0 such that

D ⊆ co ({x0} ∪ T (D)) . (3.5)

We show that D is relatively compact. Notice first that for each t ∈ [0, a], we have

χ(T (D)(t)) ≤ χ(Cβ(t)(u0 + q(D))) + χ(Sβ(t)(v0 + p(D)))

+ χ

(

{
∫ t

0

Pβ(t− s)f(s, un(s), Gun(s), Sun(s))ds

}∞

n=1

)

.

Since

‖f(s, un(s), Gun(s), Sun(s))‖E ≤ Ω1(r0)ρ1(s) + Ω2(ak0r0)ρ2(s) + Ω3(ah0r0)ρ3(s)
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and ρ1, ρ2, ρ3 ∈ L1([0, a];R+), then, in view of Theorem 2.5 and Lemma 2.2, we obtain the following

estimates:

χ(T (D)(t))
≤ Maχ(q(D)) + aMaχ(p(D))

+2Maa
β−1

Γ(β)

∫ t

0
m1(s)χ(D(s)) +m2(s)χ(G(D(s))) +m3(s)χ(S(D(s)))ds

≤ (Makq + aMakp)χ∞(D)

+2Maa
β−1

Γ(β)

∫ t

0 m1(s)χ(D(s)) + ak0m2(s)χ(D(s)) + ah0m3(s)χ(D(s))ds

≤
(

Makq + aMakp + 2Maa
β−1

Γ(β) ‖m‖1

)

χ∞(D).

Thus,

χ∞(T (D)) ≤

[

Makq + aMakp + 2
Maa

β−1

Γ(β)
‖m‖1

]

χ∞(D). (3.6)

On the other hand, referring to Theorem 2.3, Theorem 2.4, and Lemma 2.2, we can see that

modC(T (D)(t)) ≤ modC(Cβ(t)q(D)) + modC(Sβ(t)p(D))

+4Maa
β−1

Γ(β)

∫ t

0 m(s)χ(D(s))ds

≤ 2(Makq + aMakp)χ∞(D) + 4Maa
β−1

Γ(β) ‖m‖1χ∞(D).

Thus,

mod C(T (D)) ≤

[

2(Makq + aMakp) + 4
Maa

β−1

Γ(β)
‖m‖1

]

χ∞(D). (3.7)

Combining (3.5) and (3.6), we arrive at χ∞(TD) = χ∞(D) = 0. By (3.7) we get modC(T (D)) = 0

and therefore T (D) is equicontinuous. Going back to (3.5) we deduce that D is equicontinuous

and so relatively compact in C([0, a];E). This achieves the proof.

Theorem 3.1. Assume that (C1)−−(C6) hold. Then, the nonlocal problem (1.1) has at least one

mild solution in C([0, a];E), provided that (3.4) holds.

Proof. Invoking Theorem 2.2 together with Lemmas 3.1, 3.2, and 3.3, we infer that T has at least

one fixed point in Br0 which is, in turn, a mild solution of (1.1).
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4 Application

To illustrate the application of the theoretical results of this work, we consider the following

integro-differential equation:



































































cDβ
t w(t, x) =

∂2w(t, x)

∂2x
+ ρ1(t)f1(w(t, x)) + ρ2(t)f2

(

∫ t

0
ts
2 w(s, x)ds

)

+ρ3(t)f3

(

∫ 1

0
t2s2

2 w(s, x)ds
)

, t ∈ I = [0, 1], x ∈ [0, π],

w(t, 0) = w(t, π) = 0, t ∈ I,

w(0, x) = w0(x) +
m
∑

i=1

ciw(si, x), x ∈ [0, π],

s1 < s2 < . . . < sm, ti ∈ I, ci ∈ R,
∂w(t, x)

∂t

∣

∣

t=0
= y0(x) +

n
∑

i=1

diw(ti, x), x ∈ [0, π],

t1 < t2 < . . . < tn, ti ∈ I, di ∈ R,

(4.1)

where β ∈ (1, 2], the functions ρi : I → R and fi : E → E for i ∈ {1, 2, 3} satisfy appropriate

conditions which are specified later.

To allow the abstract formulation of (4.1), let E = L2([0, π];R) be the Banach space of square

integrable functions from [0, π] into R. Define the operator A : D(A) ⊂ E → E by Aw = w′′ with

domain

D(A) = {w ∈ E : w,w′ are absolutely continuous , w′′ ∈ E,w(0) = w(π) = 0}.

It is well known that A is the generator of strongly continuous cosine functions {C(t) : t ∈ R}

on E. Moreover A has a discrete spectrum whose eigenvalues are −n2, n ∈ N with corresponding

normalized eigenvectors

zn(τ) =

√

2

π
sin(nτ),

and the following properties hold:

(a) {zn : n ∈ N} is an orthonormal basis of E.

(b) If z ∈ E, then Az = −
∑∞

n=1 n
2 < z, zn > zn.

(c) For z ∈ E, C(t)z =
∑∞

n=1 cos(nt) < z, zn > zn, and the associated sine family

is S(t)z =
∑∞

n=1
sin(nt)

n
< z, zn > zn. S(t) is compact for every t ∈ I and ‖C(t)‖L(E) =

‖S(t)‖L(E) ≤ 1, for every t ∈ R.

For β ∈ (1, 2], since A is the infinitesimal generator of a strongly continuous cosine family

C(t), from the subordinate principle (Theorem 2.1), it follows that A is the infinitesimal generator

of a strongly continuous exponentially bounded fractional cosine family Cβ(t).
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With u(t) = w(t, ·), Equation (4.1) may be written in the abstract form:







cDβ
t u(t) = Au(t) + f(t, u(t), Gu(t), Su(t)), t ∈ I,

u(0) = u0 + q(u),
u′(0) = v0 + p(u),

(4.2)

where the function f : I × E × E × E → E is given by

f(t, x, y, z) = ρ1(t)f1(x) + ρ2(t)f2(y) + ρ3(t)f3(z).

Here ρi : I → R is integrable on I, fi : E → E is a Lipschitz continuous function with a Lipschitz

constant Li, the functions p, q : C(I, E) → E are given by

q(u) =

m
∑

i=1

ciu(si), 0 < s1 < s2 < · · · < sm ≤ 1,

and

p(u) =
n
∑

i=1

diu(ti), 0 < t1 < t2 < · · · < tn ≤ 1,

and the functions G,S : C(I, E) → C(I, E) are defined by

Gu(t) =

∫ t

0

ts

2
u(s)ds, Su(t) =

∫ 1

0

t2s2

2
u(s)ds,

where h0 = k0 =
1

2
.

In order to obtain a mild solution, our strategy is to apply Theorem 3.1. First, by (c) we have

‖C(t)‖L(E) ≤ 1, for every t ∈ R
+. In view of Theorem 2.1 and (2.2) we see that there exists a real

number Ma = 1 > 0 such that ‖Cβ(t)‖L(E) ≤ Ma for t ≥ 0. Observe further that the function

f : I × E × E × E → E is given by

f(t, x, y, z) = ρ1(t)f1(x) + ρ2(t)f2(y) + ρ3(t)f3(z),

where ρi : I → R is integrable on I and fi : E → E is a Lipschitz continuous function with a

Lipschitz constant Li (i = 1, 2, 3). This shows that (C3) is satisfied. On one hand,

‖q(u)‖E ≤

(

m
∑

i=1

|ci|

)

‖u‖∞ = σ1(‖u‖∞) (4.3)

and

‖p(u)‖E ≤

(

n
∑

i=1

|di|

)

‖u‖∞ = σ2(‖u‖∞), (4.4)

where σ1(r) = (
∑m

i=1 |ci|) r and σ2(r) = (
∑n

i=1 |di|) r. In addition, it is easily seen that for any

bounded subset D of C([0, 1], E) we have

χ(q(D)) ≤
m
∑

i=1

|ci|χ (D (si)) ≤

(

m
∑

i=1

|ci|

)

χ∞(D) = kqχ∞(D) (4.5)
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and

χ(p(D)) ≤

n
∑

i=1

|di|χ (D (ti)) ≤

(

n
∑

i=1

|di|

)

χ∞(D) = kpχ∞(D). (4.6)

Thus

Maχ(q(D)) + aMaχ(p(D)) ≤ (Makq + aMakp)χ∞(D), (4.7)

for any bounded subset D of C([0, 1];E). This shows that (C1) and (C2) are satisfied. Moreover

the function f satisfies

‖f(t, u1, u2, u3)‖E ≤ |ρ1(t)|‖f1(u1)‖E + |ρ2(t)|‖f2(u2)‖E + |ρ3(t)|‖f3(u3)‖E

≤ |ρ1(t)|(‖f1(0)‖E + L1‖u1‖E) + |ρ2(t)|(‖f2(0)‖E + L2‖u2‖E)

+ |ρ3(t)|(‖f3(0)‖E + L3‖u3‖E)

≤ |ρ1(t)|Ω1(‖u1‖E) + |ρ2(t)|Ω2(‖u2‖E) + |ρ3(t)|Ω3(‖u3‖E)

≤
3
∑

i=1

|ρi(t)|Ωi(‖ui‖E),

where Ωi(‖ui‖E) = ‖fi(0)‖E + Li‖ui‖E . By virtue of Lemma 2.1, (v) we have

χ(f(t,D1, D2, D3)) ≤ |ρ1(t)|χ(f1(D1)) + |ρ2(t)|χ(f2(D2)) + |ρ3(t)|χ(f3(D3))

≤ |ρ1(t)|L1χ(D1) + |ρ2(t)|L2χ(D2) + |ρ3(t)|L3χ(D3)

≤

3
∑

i=1

mi(t)χ(Di),

for any t ∈ [0, a] and for any bounded subsets D1, D2, D3 of E. Thus, (C4) and (C5) are satisfied.

Now the condition (C6) is given by taking

2
aβ−1Ma

Γ(β)

(

L1‖ρ1‖L1 +
1

2
L2‖ρ2‖L1 +

1

2
L3‖ρ3‖L1

)

+ (Makq + aMakp) < 1,

because, we have

m(s) = m1(s) + ak0m2(s) + ah0m3(s)

= L1|ρ1(s)|+
1

2
L2|ρ2(s)|+

1

2
L3|ρ3(s)|.

Then

‖m‖1 = L1‖ρ1‖L1 +
1

2
L2‖ρ2‖L1 +

1

2
L3‖ρ3‖L1 .

Finally, for
Ω(r) = Ω1(r)‖ρ1‖L1 +Ω2(ak0r)‖ρ2‖L1 +Ω3(ah0r)‖ρ3‖L1

= Ω1(r)‖ρ1‖L1 +Ω2(
1
2r)‖ρ2‖L1 +Ω3(

1
2r)‖ρ3‖L1 ,

we have

lim
r→∞

Ω(r)

r
= L1‖ρ1‖L1 +

1

2
L2‖ρ2‖L1 +

1

2
L3‖ρ3‖L1 ,
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and for σ(r) = σ1(r) + aσ2(r) = (kq + akp)r, notice that

lim
r→∞

σ(r)

r
= kq + akp.

Then

Ma lim infr→∞

(

σ(r)
r

+aβ−1

Γ(β)
Ω(r)
r

)

= aβ−1Ma

Γ(β)

(

L1‖ρ1‖L1 + 1
2L2‖ρ2‖L1 + 1

2L3‖ρ3‖L1

)

+ (Makq + aMakp)

≤ 2aβ−1Ma

Γ(β)

(

L1‖ρ1‖L1 + 1
2L2‖ρ2‖L1 + 1

2L3‖ρ3‖L1

)

+ (Makq + aMakp)

< 1.

Thus, all conditions of Theorem 3.1 are fulfilled. Therefore Equation (4.1) has a mild solution.
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ABSTRACT

Let X ⊂ Pr be an integral and non-degenerate curve. For each q ∈ Pr the X-rank

rX(q) of q is the minimal number of points of X spanning q. A general point of Pr has

X-rank ⌈(r + 1)/2⌉. For r = 3 (resp. r = 4) we construct many smooth curves such

that rX(q) ≤ 2 (resp. rX(q) ≤ 3) for all q ∈ Pr (the best possible upper bound). We

also construct nodal curves with the same properties and almost all geometric genera

allowed by Castelnuovo’s upper bound for the arithmetic genus.

RESUMEN

Sea X ⊂ Pr una curva integral y no-degenerada. Para cada q ∈ Pr el X-rango rX(q)

de q es el mı́nimo número de puntos de X que generan q. Un punto general de Pr

tiene X-rango ⌈(r + 1)/2⌉. Para r = 3 (resp. r = 4) construimos muchas curvas

suaves tales que rX(q) ≤ 2 (resp. rX(q) ≤ 3) para todo q ∈ Pr (la mejor cota superior

posible). También construimos curvas nodales con las mismas propiedades y casi todos

los géneros geométricos permitidos por la cota superior de Castelnuovo para el género

aritmético.
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1 Introduction

Let X ⊂ Pr be an integral and non-degenerate variety defined over an algebraically closed field

with characteristic 0. For each q ∈ Pr the X-rank rX(q) of q is the minimal cardinality of a finite

set S ⊂ X such that q ∈ 〈S〉, where 〈 〉 denotes the linear span. An interesting problem is the

maximum of all integers rX(q), q ∈ Pr ([2, 8]). An obvious lower bound for this integer is the generic

X-rank rgen(X), i.e. the only integer such there is a non-empty Zariski open subset U ⊂ Pr such

that rX(q) = rgen(X) for all q ∈ U . For each positive integer t set W 0
t (X) := {q ∈ Pr | rX(q) = t}.

Let Wt(X) denote the closure of W 0
t (X) in Pr. If t ≤ rgen(X) the algebraic set Wt(X) is the

t-secant variety σt(X) of X . Hence if 1 ≤ t ≤ rgen(X) the algebraic set Wt(X) is non-empty,

irreducible and dimWt(X) ≤ min{r, t(dimX + 1) − 1} with equality if dimX = 1 ([1, Remark

1.6]). Thus rgen(X) = ⌈(r + 1)/2⌉ if dimX = 1. For t > rgen(X) the geometry of Wt(X) is

described in [3, Theorem 3.1], assuming of course Wt(X) 6= ∅, i.e. W 0
t (X) 6= ∅.

We prove the following results.

Theorem 1.1. Fix integers b ≥ a > 0 such that a+ b ≥ 5. Set d := a+ b and γ := ab− a− b+ 1.

Then there exists an integral and non-degenerate nodal curve X ⊂ P3 with geometric genus g,

deg(X) = d, exactly γ − g ordinary nodes and W 0
3 (X) = ∅.

Theorem 1.2. Fix integers a, b such that a ≥ 2 and b ≥ 2a + 3. Set d := a + b and γ :=

1+ab−a(a+1)/2− b. Fix an integer g such that 0 ≤ g ≤ γ. Then there is an integral nodal curve

X ⊂ P4 with degree d, geometric genus g, exactly γ − g ordinary nodes and with W 0
4 (X) = ∅.

Question 1.1. Is there an integral and non-degenerate curve X ⊂ P5 with W 0
4 (X) = ∅ ? Take an

odd integer r > 5. Is there an integral and non-degenerate curve X ⊂ Pr with W 0
(r+3)/2(X) = ∅ ?

By [9, Theorem 1] W 0
3 (X) 6= ∅ for X as in Theorem 1.1, but with (a, b) ∈ {(1, 2), (1, 3), (2, 2)}.

The case (a, b) = (3, 3) of Theorem 1.1 is [9, Theorem 2]. When a ≤ b ≤ a + 1 the integer γ

appearing in Theorem 1.1 is the maximal arithmetic genus of all non-degenerate space curves ([6,

Ch. III]).

Many thanks are due to the referees for useful remarks.

2 Preliminaries

Notation 2.1. For any q ∈ Pr let ℓq : Pr \ {q} −→ Pr−1 denote the linear projection from q.

Let M be a projective scheme. Let D ⊂ M be an effective Cartier divisor of M . For any

zero-dimensional scheme Z ⊂ M the residual scheme ResD(Z) of Z with respect to D is the closed

subscheme of M with IZ : ID as its ideal sheaf. We have ResD(Z) ⊆ Z and hence ResD(Z) is a
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zero-dimensional scheme. We have deg(Z) = deg(Z ∩D) + deg(ResD(Z)) and for any line bundle

L on M we have an exact sequence of coherent sheaves on M :

0 −→ IResD(Z) ⊗ L(−D) −→ IZ ⊗ L −→ IZ∩D,D ⊗ L|D −→ 0 (2.1)

We will call (2.1) the residual exact sequence of D or the residual exact sequence of D in M .

Remark 2.1. Let M be a smooth, projective and rational surface. Thus h1(OM ) = 0. Assume

that ω∨
M is ample. This will be true in the cases in which we apply this remark, i.e. the case in

which M is the smooth quadric surface and the case in which M is the Hirzebruch surface F1. Fix

an integer e ≥ 2, a very ample line bundle L on M and a nodal curve D = D1 ∪ · · · ∪ De ∈ |L|

with each Di a smooth and connected curve. Note that pa(D) =
∑e

i=1 pa(Di)+ ♯(Sing(D))+ 1− e.

Since L is very ample, D is connected. Since ω∨
M is ample, we have Di · ωM < 0 (intersection

number) for all i. A subset A ⊆ Sing(D) is said to be a disconnecting set of nodes if D \A is not

connected. Fix a set A ⊂ Sing(D) which is not disconnecting and set g := pa(D)− ♯(A). With the

terminology of [10] we will say that A is the set of assigned nodes, while the set Sing(D) \A is the

set of unassigned nodes. By [10, Corollary 2.14] there are an affine smooth and connected curve

∆, o ∈ ∆, and a flat family {Yt}t∈∆ of elements of |L| such that Yo = D and Yt is integral, nodal

and with geometric genus g for all t ∈ ∆ \ {o}. Moreover, the sets {Sing(Yt)}t∈∆\{o} have A as

a limit. Thus pa(D) = ♯(Sing(D)) + 1 − e. We do not impose (or claim) that all Yt are singular

at the points of A, because it would require very strong restrictions on the integer ♯(A), only that

the nodes of the curves Yt near D are near A and that Yt has only ♯(A) nodes. The quoted result

[10, Corollary 2.14] with movable assigned nodes is optimal, as shown by following particular case,

the only one we will use. Assume that each Di is rational. In this case for each integer g with

0 ≤ g ≤ pa(D) there is a set of assigned nodes A ⊂ Sing(D) such that the corresponding family of

nodal curves has as a general member an integral nodal curve with geometric genus g.

Remark 2.2. Let X be a smooth projective curve, L a line bundle on X and V ⊆ H0(L) a

linear subspace. Set g := pa(X), d := deg(L) and n := dim V − 1. Assume n ≥ 1. For each

p ∈ X and each integer t > 0 set V (−tp) := V ∩H0(Itp ⊗ L). We get n+ 1 integers dimV (−tp),

1 ≤ t ≤ n + 1 ([5, pp. 264–277]). This is also done in details in [9]. The point p is said to be

an osculating point of the pair (L, V ) (or of the linear system PV ) if dim(V (−(n + 1)p)) > 0.

Since we are in characteristic zero, there are only finitely many osculating points of (L, V ), say

p1, . . . , ps, and at each point pi one can associate a positive integer w(pi) (the weight of pi), only

depending on the n + 1 integers dimV (−tp), 1 ≤ t ≤ n + 1. Moreover, there is an integer δ only

depending on g, d and n such that w(p1) + · · · + w(ps) = δ. We have w(pi) = 1 if and only if

dim V (−npi) = dimV (−(n+ 1)pi) = 1. Suppose for instance that PV induces an embedding of X

into Pn and see X has a curve of Pn. Since V ⊆ H0(L), X is non-degenerate. The point p ∈ X is

an osculating point if and only if there is a hyperplane H ⊂ Pn such that the connected component

Z of the scheme H ∩ X with p has its reduction has degree ≥ n + 1, i.e. H contains the divisor
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(n + 1)p. The integer deg(Z) is the order of contact of the osculating hyperplane H with X at p.

The integer deg(Z)−n is a lower bound for the weight of p. All non-osculating points have weight

0.

3 Proof of Theorem 1.1

In this section we fix a smooth quadric surface Q ⊂ P3. For any irreducible curve Y ⊂ P3, Y not a

line, let τ(Y ) denote the tangential surface of Y , i.e. the closure in P3 of the union of all tangent

lines of Y at its smooth points. τ(Y ) is a plane if and only if 〈Y 〉 is a plane.

Notation 3.1. For any reduced curve X ⊂ P3 with no irreducible component contained in a plane

let T (X) be the set of all pairs (H, p), where H ⊂ P3 is a plane, p ∈ H ∩ X and the connected

component of the scheme H ∩X with p as its reduction has degree at least 5.

Remark 3.1. Let ∆ a quasi-projective variety and X ⊂ P3 ×∆ a closed algebraic set such that

the restriction u : X −→ ∆ to X of the projection P3 ×∆ −→ ∆ is proper and flat. Assume that

all fibers of u are reduced curves with no irreducible component contained in a plane. Let T (X )

or T (u) denote the set of all triples (s,H, p), where s ∈ ∆ and (H, p) ∈ T (u−1(s)). The map

uT (X ) : T (X ) −→ ∆ is proper. Thus if ∆ is irreducible and if T (u−1(s0)) = ∅ for some s0 ∈ ∆,

then T (u−1(s)) = ∅ for a general s ∈ ∆.

Let X ⊂ P3 be an integral and non-degenerate curve. Fix p ∈ Xreg. We say that p is a flex

point of X or a flex of X or that the tangent line TpX is a flex tangent of X if the connected

component of the zero-dimensional scheme TpX ∩X with p as its reduction has degree at least 3.

We say that p is a stall point of X or that TpX is a stall of X if TpX is not a flex tangent, but the

osculating plane Op(X) of X at p has order of contact at least 4 with X at p. Thus a stall point

is an osculating point which is not a flex point.

Remark 3.2. Fix a smooth element Y either of |OQ(1, 1)| or of |OQ(2, 1)| or of |OQ(1, 2)|. Since

Y is a rational normal curve in its linear span, it is easy to check that T (Y ) = ∅ and that each

q ∈ τ(Y ) \ Y is contained in at most 2 tangent lines of Y .

We collect in the next remark some standard tools and ideas which are used in the proofs of

Lemmas 3.1, 3.2 and 3.3 and which may be used in several other cases. In section 4 we will use

this set-up for the Hirzebruch surface F1 and the line bundle OF1
(ah+ bf).

Remark 3.3. Fix positive integers a, b and an integral quasi-projective family F of zero-dimensional

subschemes of the smooth quadric Q. Suppose you want to compute the dimension of the fam-

ily Ψ of all C ∈ |OQ(a, b)| containing at least one Z ∈ F or of the family Φ of all smooth

C ∈ |OQ(a, b)| containing at least one Z ∈ F . In most lemmas we will need to check that
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dimΦ < dim |OQ(a, b)|, i.e. that a general C ∈ |OQ(a, b)| contains no Z ∈ F . Consider the

incidence variety I := {(Z,C) ∈ F × |OQ(a, b)| : Z ∈ C}. Let π1 : I −→ F and π2 : I −→ |OQ(a, b)|

denote the restriction to I of the projections of F×|OQ(a, b)| onto its factors. Note that Ψ = π2(I).

The algebraic set I is a closed subset of F × |OQ(a, b)|. Thus by Chevalley’s theorem Ψ is a con-

structible set ([7, ex. II.3.18 and II.3.19]). If I is irreducible, then Ψ is irreducible. Obviously

Φ = ∅, unless at least some Z ∈ F is curvilinear. Call U the set of all smooth C ∈ |OQ(a, b)|.

Assume that at least some Z ∈ F is curvilinear and let G denote the set of all curvilinear Z ∈ F .

The set G is an open subset of F . Since F is assumed to be irreducible, G is irreducible. Set

J := I ∩ G × U . Usually, if we are only interested in smooth curves C ∈ |OQ(a, b)| it is better to

start with G, i.e. take an irreducible family of curvilinear schemes. Thus from now on we assume

F = G, but we use I, i.e. we also consider singular curves, to quote below [7, III.9.3, III.9.6,

III.9.7]. Suppose there is an integer z > 0 such that h0(Q, IZ(a, b)) = z for all Z ∈ G. With this

assumption all fibers of π1 are projective spaces of dimension z− 1. Hence π1 is a proper flat map.

Since G is assumed to be irreducible, I is irreducible and dim I = dimG + z ([7, III.9.3, III.9.6,

III.9.7]). Since J is a non-empty open subset of I, J is irreducible and dim J = dim I = dimG + z.

Thus Φ is irreducible and dimΦ ≤ dimG + z. If this inequality is not sufficient to conclude, one

should look at a general C ∈ Φ and try to compute dim(J∩π−1
2 (C)). Suppose dim(J∩π−1

2 (C)) = x

for a general C ∈ |OQ(a, b)|. Then dimΦ = dimG + z − x. Since C is smooth and dimC = 1,

dim(J ∩ π−1
2 (C)) ≤ x if ♯(Zred) ≤ x for all Z ∈ J ∩ π−1

2 (C). Moreover, dim(J ∩ π−1
2 (C)) = x if

varying Z ∈ J∩π−1
2 (C) the sets Zred form an x-dimensional family of x distinct points of C. This

set-up is classically summarized by the words “ A dimensional count shows that Φ has dimension

dim G+ z−x ”. If our family G is not irreducible, we try to study separately each of its irreducible

components. Now we drop the assumption that all integers h0(Q, IZ(a, b)) are the same. There

are a non-empty open subset G′ of G and an integer z such that h0(Q, IZ(a, b)) = z for all Z ∈ G′.

Moreover, there are a positive integer s and integers zi ≥ z, 1 ≤ i ≤ s, such that G \ G′ is the

union of finitely many irreducible quasi-projective varieties, say G \ G′ = G1 ∪ · · · ∪ Gs, such that

h0(Q, IZ(a, b)) = zi for all Z ∈ Gi. Then we use the irreducible families G′,G1, . . . ,Gs of curvilinear

schemes.

We will need only the case a = 1 of the next lemma, but its proof when a ≥ 2 requires no

modification.

Lemma 3.1. Fix integers a > 0, b > 0 such that a + b ≥ 4. Let D be a general element of

|OQ(a, b)|. Then D has no flex and T (D) = ∅.

Proof. We follow the classical approach outlined in Remark 3.3. The key step in the proof of the

lemma is the computation of the integer h0(Q, IZ(a, b)) for two types of zero-dimensional schemes

Z.
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With no loss of generality we may assume b ≥ a and hence b ≥ 2. By Bertini’s theorem D is

smooth. Since D ⊂ Q, Bezout theorem implies that each flex tangent line of D is contained in Q

and hence it is either an element of |OQ(1, 0)| or an element of |OQ(0, 1)|.

(a) Take L ∈ |OQ(1, 0)| and any connected zero-dimensional scheme F ⊂ L such that

deg(F ) = 3. Since deg(OL(a, b)) = b ≥ 2, we have h1(L, IF,L(a, b)) = 0. Since h1(OQ(0, b)) = 0,

the residual exact sequence of L gives h1(IF (a, b)) = 0, i.e. h0(IF (a, b)) = h0(OQ(a, b))− 3. Since

dim |OQ(1, 0)| = 1 and each L ∈ |OQ(1, 0)| contains ∞1 connected degree 3 subschemes, a general

D ∈ |OQ(a, b)| contains no F (for any L), i.e. no L ∈ |OQ(1, 0)| is a flex tangent of D.

(b) If a ≥ 2 step (a) shows that no R ∈ |OQ(0, 1)| is a flex tangent of D. Now assume

a = 1. Since D ∈ |OQ(a, b)|, we have deg(R ∩ D) = 1 for all R ∈ |OQ(0, 1)|. Thus no element of

|OQ(0, 1)| is a flex tangent line of D.

By steps (a) and (b) D has no flex. Thus it is sufficient to prove that each osculating plane

of D has order of contact 4 with D at the osculating point. Fix a smooth element A ∈ |OQ(1, 1)|

and p ∈ A. Let E be the connected zero-dimensional subscheme of A such that Ered = {p} and

deg(E) = 5.

Claim 1: We have h1(Q, IE(a, b)) = 0.

Proof of Claim 1: We have h1(A, IE,A(a, b)) = 0, because A ∼= P1 and deg(OA(1, b)) =

b+1 ≥ 4. Since E ⊂ A, ResA(E) = ∅. Thus it is sufficient to use the residual exact sequence of A

in Q and that h1(OQ(0, b− 1)) = 0.

By Claim 1 we have h0(IE(a, b)) = (a+ 1)(b + 1)− 5 for all E. Since dim |OQ(1, 1)| = 3 and

each smooth A ∈ |OQ(1, 1)| has ∞1 points and hence ∞1 schemes E’s. Use Claim 1.

Notation 3.2. Let D ⊂ Q be a reduced curve with no irreducible component of D being an element

of |OQ(1, 0)| or |OQ(1, 0)| or |OQ(1, 1)|. Let F (D) be denote the set of all C ∈ |OQ(1, 1)| such that

the scheme C ∩D contains at least two connected components, both of them of degree at least 4.

Lemma 3.2. Fix integers a > 0 and b > 0 such that a + b ≥ 3. Take a general D ∈ |OQ(a, b)|.

Then F (D) = ∅.

Proof. The curve D is smooth and for each line L ⊂ Q every connected component of the scheme

L ∩ D has connected components of degree 1 or 2, with at most one having degree 2. Thus

it is sufficient to test the smooth C ∈ |OQ(1, 1)|. Since deg(D ∩ C) = a + b, we may assume

a + b ≥ 8. Call G the set of all zero-dimensional schemes Z with 2 connected components, both

of degree 4 and with Z contained in some smooth C ∈ |OQ(1, 1)|. Each C contains ∞2 elements

of G. Fix Z ∈ G and take C containing it. As in the proof of Lemma 3.1 it is sufficient to

observe that h1(IZ(a, b)) = 0, because C ∼= P1 and deg(OC(a, b)) = a+ b ≥ deg(Z)− 1 and hence
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h1(C,OC(a, b)(−Z)) = 0. Since ResC(Z) = ∅ and h1(Q,OQ(a − 1, b− 1)) = 0, the residual exact

sequence of C gives h1(Q, IZ,Q(a, b)) = 0.

Lemma 3.3. Fix positive integers a, b, a′, b′ such that (a, b) 6= (1, 1) and (a′, b′) 6= (1, 1). Take a

general (D,D′) ∈ |OQ(a, b)| × |OQ(a
′, b′)|. Set Y := D ∪D′. Then there is no C ∈ |OQ(1, 1)| such

that the scheme C ∩ Y has two connected components of degree at least 4.

Proof. By Bertini’s theorem D and D′ are smooth and Y is nodal. For a general pair (D,D′) for

each line L ⊂ Q the scheme L ∩D has connected components of degree 1 or 2, with at most one

being of degree 2. Thus it is sufficient to test all smooth C ∈ |OQ(1, 1)|. Since (D,D′) is general,

each C contains at most 2 points of D ∩ D′. Thus every smooth C ∈ |OQ(1, 1)| containing some

p ∈ D ∩D′ satisfies the property that the connected component of C ∩ Y with p as its reduction

has degree ≤ 3. Thus we only need to consider the schemes C ∩ (Y \D ∩D′) with C smooth. By

Lemma 3.2 it is sufficient to exclude the smooth C such that C ∩D has a connected component

Z1 of degree at least 4 and C ∩ (D′ \ D ∩ D′) has a connected component Z2 of degree at least

4. We may assume a + b ≥ 4 and a′ + b′ ≥ 4. As in the proof of Lemma 3.1 we find only finitely

many smooth Ci ∈ |OQ(1, 1)|, say Ci, 1 ≤ i ≤ t, such that C ∩D has a connected component of

degree at least 4. For a general D′, the curve D′ is transversal to all Ci, 1 ≤ i ≤ t.

Lemma 3.4. Fix positive integers e ≥ 2, ai, bi, 1 ≤ i ≤ e, such that for each i ∈ {1, . . . , e} exactly

one among ai and bi is 1. Let D = D1 ∪ · · · ∪Ds ⊂ Q be a general union with each Di general in

|OQ(ai, bi)|. Then D is nodal, no two of the nodes of D are contained in the same line of Q, each

line of Q passing through a singular point of D is transversal to each Di, T (D) = ∅ and there is

no line J ⊂ Q such that J ∩D has a connected component of degree at least 3.

Proof. D is nodal by Bertini’s theorem. Lemma 3.1 gives T (D) ⊆ Sing(D). Fix p ∈ Sing(D). Call

Di and Dj the irreducible components of D containing p. Since D is general, neither Di nor Dj

have a osculating plane at p with weight ≥ 2 and the tangent plane to one component, does not

contain the tangent line to the other component. Thus p /∈ T (D).

For a general (D1, . . . , De) no two of the nodes of D are on the same line of Q, because aibi 6= 0

for all i. We also see by induction on e that each line of Q passing through a singular point of D

is transversal to each Di.

Fix any line J ⊂ P3. Since D ⊂ Q, we have deg(D ∩ J) ≤ 2 if J * Q. Now assume

L ∈ |OQ(1, 0)| (resp. R ∈ |OQ(1, 0)|). We have deg(L ∩ D) = b (resp. deg(R ∩ D) = a). By

Lemma 3.1 each connected component of the zero-dimensional schemes L ∩ D and R ∩ D has

degree ≤ 2.

Lemma 3.5. Fix positive integers a, b and q ∈ P3\Q. Then q /∈ τ(Y ) for a general Y ∈ |OQ(a, b)|.
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Proof. The polar surface of Q with respect to Q is a plane, H , intersecting transversally Q and

q ∈ TpQ if and only if p ∈ H ∩Q. Take Y intersecting transversally H ∩Q and not containing the

degree 2 subscheme of 〈{p, q}〉 with p as its reduction at all p ∈ H ∩Q ∩ Y .

Lemma 3.6. Fix positive integers s ≥ 4, ai, bi, 1 ≤ i ≤ s. Take a general (D1, . . . , Ds) ∈
∏s

i=1 |OQ(ai, bi)|. Then for every q ∈ P3 \ Q there is Sq ⊂ {1, . . . , s} such that ♯(Sq) ≤ 3 and

q /∈ τ(Di) for all i ∈ {1, . . . , s} \ Sq.

Proof. By Lemma 3.5 and the generality of (D1, . . . , Ds) we have dim((P3 \ Q) ∩ τ(D1)) = 2,

dim((P3 \ Q) ∩ τ(D1) ∩ τ(D2)) ≤ 1, dim((P3 \ Q) ∩ τ(D1) ∩ τ(D2) ∩ τ(D3)) ≤ 0 and (P3 \ Q) ∩

τ(D1) ∩ τ(D2) ∩ τ(D3) ∩ τ(D4) = ∅. Using all subsets of {1, . . . , s} with cardinality 4 we get the

lemma.

Lemma 3.7. Fix positive integers a, b. Take a general Y ∈ |OQ(a, b)|. Then for every q ∈ P3 \Q

there are at most 3 points p ∈ Y such that q ∈ TpY .

Proof. With no loss of generality we may assume b ≥ a. Y is smooth. If a + b ≤ 3, then Y is a

rational normal curve in its linear span and the lemma is trivial in this case. Thus we may assume

a + b ≥ 4. The lemma is also easy to check using the linear projection ℓq and the genus formula

for plane curves if (a, b) ∈ {(2, 2), (1, 3), (2, 3)} (all these cases are discussed in [9]).

For any q ∈ P3 \ Q the polar plane Hq of Q with respect to q has the following properties.

The curve Cq := Hq ∩ Q is a smooth conic and q ∈ TpQ, p ∈ Q, if and only if p ∈ Cq. For

any p ∈ Cq let zp denote the degree 2 connected zero-dimensional subscheme of the line 〈{p, q}〉

with p as its reduction. For any curve E ⊂ Q such that p ∈ Ereg we have q ∈ TpE if and only

if zp ⊂ E. Let U denote the set of quadruples (Z1, Z2, Z3, Z4) with each Zi a connected degree 2

zero-dimensional subscheme of Q such that there is q ∈ P3 \Q and (p1, p2, p3, p4) ∈ C4
q such that

pi 6= pj for all i 6= j and Zi = zpi
. The lemma is equivalent to proving that a general Y contains

no scheme Z1 ∪ Z2 ∪ Z3 ∪ Z4 with (Z1, Z2, Z3, Z4) ∈ U . For each smooth C ∈ |OQ(1, 1)| there is a

unique q ∈ P3 \Q such that C = Cq. Each smooth C ∈ |OQ(1, 1)| has ∞4 quadruples of distinct

points. Since dim |OQ(1, 1)| = 3, we get dimU = 7. Thus to prove the lemma it is sufficient to

prove that dim |IZ1∪Z2∪Z3∪Z4
(a, b)| = dim |OQ(a, b)| − 8. Fix (Z1, Z2, Z3, Z4) ∈ U , say Zi = zpi

with p1, p2, p3, p4 distinct points of a smooth C ∈ |OQ(1, 1)|. Set Z := Z1 ∪ Z2 ∪ Z3 ∪ Z4. Since

deg(Z) = 8, it is sufficient to prove that h1(IZ(a, b)) = 0. We have C∩Z = {p1, p2, p3, p4} (scheme-

theoretically), because each tangent line of C is contained in the plane 〈C〉 and if C = Cq, then

q /∈ 〈C〉. Hence ResC(Z) = {p1, p2, p3, p4}. We have h1(C, IZ∩C(a, b)) = 0, because C ∼= P1 and

deg(OC(a, b)) = a+ b. We have h1(C, IResC(Z)(a− 1, b− 1)) = 0, because deg(OC(a− 1, b− 1)) =

a+ b− 2 ≥ 3. We have h1(OQ(a− 2, b− 2)) = 0. Use twice the residual exact sequence of C, first

with IZ(a, b) as its middle term and then with IResC(Z)(a− 1, b− 1) as its middle term.
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Lemma 3.8. Fix positive integers a, b such that (a, b) 6= (1, 1). Take a general Y ∈ |OQ(a, b)|.

The set of all q ∈ P3 \Q such that there are 2 (resp. 3) points p ∈ Y with q ∈ TpY has dimension

≤ 1 (resp. ≤ 0).

Proof. Adapt the proof of Lemma 3.7 using Z1 ∪Z2 ∪Z3 (resp. Z1 ∪Z2) instead of Z1 ∪Z2 ∪Z3 ∪

Z4.

Lemma 3.9. Fix positive integers a1, b1, a2, b2. Take a general pair (D1, D2) ∈ |OQ(a1, b1)| ×

|OQ(a2, b2)|. For each q ∈ P3 \Q the following properties are true:.

(a) there is no (p1, p2, p3, p4) ∈ D1 × D1 × D2 × D2 such that p1 6= p2, p3 6= p4 and

q ∈ Tp1
D1 ∩ Tp2

D1 ∩ Tp3
D2 ∩ Tp4

D2;

(b) there is no (p1, p2, p3, p4) ∈ D1 × D1 × D1 × D2 such that ♯({p1, p2, p3}) = 3 and

q ∈ Tp1
D1 ∩ Tp2

D1 ∩ Tp3
D1 ∩ Tp4

D2.

Proof. Part (b) follows from Lemmas 3.5 and 3.8.

Now we prove part (a). This is trivial if (a2, b2) ∈ {(2, 1), (1, 2)}, i.e. if D2 is a rational normal

curve. Thus we may assume a2 + b2 ≥ 4. As in the proof of Lemma 3.7 let Hq be the polar

hyperplane of Q with respect to q and Cq := Hq ∩ Q. For any p ∈ Cq let zp denote the degree 2

connected zero-dimensional subscheme of the line 〈{p, q}〉 with p as its reduction. Let U denote the

set of all quadruples Z1, Z2, Z3, Z4 such that there is a smooth C ∈ |OQ(1, 1)| and 4 distinct points

pi ∈ C, 1 ≤ i ≤ 4, such that zpi
= Zi for all i. For a fixed D1 Lemma 3.8 shows that we have at

most ∞1 pairs (p1, p2) which may be prolonged to be the reduction of some (Z1, Z2, Z3, Z4). For a

fixed p1, p2 we have h0(Q, Ip1,p2
(1, 1)) = 2 and hence there are only ∞1 C ∈ |OQ(1, 1)| containing

{p1, p2}. For a fixed C we have ∞2 pairs (p3, p4) ∈ C ×C. We fix the general D1. To prove that a

generalD2 satisfies part (a) of the lemma it is sufficient to prove that h1(IZ1∪Z2∪Z3∪Z4
(a2, b2)) ≤ 2.

We prove this inequality in the following way. Recall that C ∩ (Z∪Z2 ∪ Z3 ∪ Z4) = {p1, p2, p3, p4}

(scheme-theoretically), because each tangent line of C is contained in the plane 〈C〉 and if C =

Cq, then q /∈ 〈C〉. Thus ResC(Z1 ∪ Z2 ∪ Z3 ∪ Z4) = {p1, p2, p3, p4}. Since a2 + b2 ≥ 4, we

have h1(C, I{p1,p2,p3,p4}(a2, b2)) = 0 and h1(C, I{p1,p2,p3,p4}(a2 − 1, b2 − 1)) ≤ 1. Use twice the

residual exact sequence of C, first with IZ1∪Z2∪Z3∪Z4
(a2, b2) as its middle term and then with

I{p1,p2,p3,p4}(a2 − 1, b2 − 1) as its middle term.

Lemma 3.10. Fix positive integers a1, b1, a2, b2, a3, b3 such that (ai, bi) 6= (1, 1), 1 ≤ i ≤ 3. Take

a general (D1, D2, D3) ∈ |OQ(a1, b1)|× |OQ(a2, b2)|× |OQ(a3, b3)|. Take any q ∈ P3 \Q. There are

no (p1, p2, p3, p4) ∈ D1×D1×D2×D3 such that p1 6= p2 and q ∈ Tp1
D1∩Tp2

D1 ∩Tp3
D2∩Tp4

D3.

Proof. The proof of part (a) of Lemma 3.9 shows that there are only finitely many triples (p1, p2, p3) ∈

D1 ×D1 ×D2 such that p1 6= p2 and Tp1
D1 ∩ Tp2

D1 ∩ Tp3
D2 is a point of P3 \Q. Apply Lemma
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3.5 to D3.

Proof of Theorem 1.1: Any Y ∈ |OQ(a, b)| has arithmetic genus γ.

Claim 1: There are integers e ≥ 2, ai, bi, 1 ≤ i ≤ e, such that for each i ∈ {1, . . . , e} exactly

one among ai and bi is 1, a1 + · · ·+ ae = a and b1 + · · ·+ be = b.

Proof of Claim 1: If d ≡ 0 (mod 6) we take e = d/3, (ai, bi) = (1, 2) for odd i and

(ai, bi) = (2, 1) for even i. If d ≡ i (mod 6), 1 ≤ i ≤ 5, we take e = (d− i)/3, (a1, b1) = (1, 2 + i),

(ai, bi) = (1, 2) for odd i ≥ 3 and (ai, bi) = (2, 1) for even i.

Take a nodal curve D = D1 ∪ · · · ∪ De ⊂ Q satisfying the thesis of Lemma 3.4. Since each

Di is smooth and rational and pa(D) = γ, we have ♯(Sing(D)) = γ + e − 1. Since 0 ≤ g ≤ γ and

each Di is irreducible, there is a set A ⊂ Sing(D) such that ♯(A) = γ − g and D \A is connected.

We fix one such set A and call it the set of all assigned nodes. The set Sing(D) is called the set

of all unassigned nodes (we are using the terminology of A. Tannenbaum ([10]) who extended to

other rational surfaces the classical theory of nodal plane curves due to Severi). Since D \ A is

connected, [10, Lemma 2.2 and Theorem 2.13] gives the existence of a flat family {Dt}t∈∆, ∆

an integral affine curve, and o ∈ ∆ such that Dt ∈ |OQ(a, b)| for all t ∈ ∆, Do = D, each Dt,

t ∈ ∆ \ {o}, is integral, nodal and with geometric genus g, and the nodes of Dt, t ∈ ∆ \ {o}, go to

the set of assigned nodes. By Remark 3.1 we have T (Dt) = ∅ for a general t ∈ ∆. Fix c ∈ ∆ \ {o}

such that T (Dc) = ∅ and set X := Dc. X is an integral and nodal curve with geometric genus g.

To conclude the proof of the theorem it is sufficient to prove that rX(q) = 2 for all q ∈ P3 \X .

(a) Fix q ∈ Q. Let L be the element of |OQ(1, 0)| containing q. We have deg(L ∩X) = b.

By Lemma 3.1 each connected component of L∩X has degree ≤ 2. Thus ♯((L ∩X)red) ≥ ⌈ba/2⌉.

Since b ≥ 3, we get rX(q) = 2.

(b) Fix q ∈ P3 \ Q. Assume rX(q) > 2, i.e. assume ℓq|X is injective. Since ℓq(X) has

degree d = a + b, it has arithmetic genus (a + b − 1)(a + b − 2)/2, while X has arithmetic genus

γ = ab − a − b + 1. We silently use a small modification of Remark 3.1 to get F (X) = ∅ (for

a general partial smoothing X) knowing that F (D) = ∅. We use Lemmas 3.1, 3.2, 3.3 to get

T (D) = ∅ and hence (Remark 3.1) we get T (X) = ∅.

(b1) Assume for the moment that q is not in the tangent space of one of the nodes of X .

Call oi, 1 ≤ i ≤ s, the points of Xreg such that q ∈ ToiX .

The following observation summarize lemmas 3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.9, 3.10 first on D

and then on X .

Observation 1: X has no flex, its osculating planes have weight 1 and each point of P3 \Q

is contained in at most 3 tangent lines to smooth points of X .

A dimensional count similar to the one needed to prove Lemmas 3.2 and 3.7 gives the following
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observation.

Observation 2: At each q ∈ P3 \Q such that there are 3 different smooth points p1, p2, p3 of

Xreg with q ∈ Tpi
X , no Tpi

(X) is a stall. At each point of X at which there are 2 different smooth

points p1, p2 of Xreg with q ∈ Tpi
X at most one among Tp1

X and Tp2
X is a stall.

By Observations 1 and 2 we have pa(ℓq(X)) ≤ pa(X) + 3. Since ℓq(X) is a plane curve of

degree a + b and pa(X) = ab − a − b + 1, we get (a + b − 1)(a + b − 2)/2 ≤ ab − a − b + 4, i.e.

a2 + b2 ≤ a+ b+ 6, which is false if a = 1 and b ≥ 4 or a ≥ 2 and b ≥ 3.

(b2) Assume g < γ and that q is contained in at least one tangent plane at X at one of its

points.

First assume that q is contained in the tangent cone at one of the nodes, o, of X . For a general

D (and hence a general partial smoothingX) no line in the tangent cones ofX at its singular points

are stalls and tangent cones at different singular points are disjoints. At most another singular

point o′ of X has tangent plane containing q.

Now assume that q is not contained in any tangent cone at singular points. It is contained in

at most 3 tangent spaces of X at its singular points and if at 3 it is not contained in any tangent

line at a smooth point of X . We get a contradiction if (a + b − 1)(a + b − 2)/2 ≥ γ + 4, i.e. if

a2 + b2 ≥ a+ b+ 8, which is true (for positive a, b) if and only if a+ b ≥ 5.

4 Curves in P4

Let F1 ⊂ P4 be a smooth and non-degenerate surface such that deg(F1) = 3. All such surfaces are

projectively equivalent. The smooth or nodal curves we use to prove Theorem 1.2 are contained in

F1. The surface F1 is an embedding of the Hirzebruch surface with the same name ([7, §V.2]). We

have Pic(F1) ∼= Z2 and we take as free generators of it the class f , of a fiber of the ruling of F1 and

the section h of its ruling with negative self-intersection. We have h2 = −1, f2 = 0 and h · f = 1.

We have OF1
(1) ∼= OF1

(h+2f) and h and the elements of the ruling |f | are the only lines contained

in F1. Each OF1
(ah + bf), b ≥ a ≥ 0, is globally generated; it is ample (and very ample, too) if

and only if b > a > 0. Fix D ∈ |ah+ bf |, b ≥ a > 0. Since ωF1

∼= OF1
(−2h− 3f), the adjunction

formula gives ωD
∼= OD((a−2)h+(b−3)f). Thus pa(D) = 1+ab−a(a+1)/2−b. For all b ≥ a−1

we have h1(OF1
(ah+ bf)) = 0 and h0(OF1

(ah+ bf)) =
∑a

i=0(b + 1− i) = (2b+ 2− a)(a+ 1)/2.

Remark 4.1. Take any curve D ⊂ F1 and any line L ⊂ P4 such that deg(D ∩ L) ≥ 3. Since F1

is scheme-theoretically cut out by quadrics and D ⊂ F1, Bezout theorem gives L ⊂ F1.

Lemma 4.1. Fix an integer q ∈ P4 \ F1. Then there is C ∈ |h+ f | such that q ∈ 〈C〉.

Proof. Since 3 is a prime integer and q /∈ F1, ℓq(F1) is an irreducible degree 3 ruled surface. This
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surface has a double line L meeting all lines of the ruling of ℓq(F1) ([4, Theorem 9.2.1]). Thus

there is a plane conic C ⊂ F1 (a priori even a double line) mapped by ℓq onto L. All conics C ⊂ F1

are elements of |h+ f |.

Up to projective transformations there are exactly two degree 3 surfaces ℓq(F1), q ∈ P4 \ F1,

distinguished by the fact that the unique conic C ∈ |h+ f | given by Lemma 4.1 is smooth or not

([4, Theorem 9.2.1]).

Proposition 4.1. Let X ⊂ F1 ⊂ P4 be a reduced and non-degenerate curve whose irreducible

component have degrees at least 3. Assume the following conditions:

(1) ♯((L ∩X)red) ≥ 2 for all L ∈ |f |;

(2) ♯((h ∩X)red) ≥ 2;

(3) ♯((C ∩X)red) ≥ 3 for all smooth C ∈ |h+ f |.

Then rX(q) ≤ 3 for all q ∈ P4.

Proof. The assumptions on the irreducible components of X is equivalent to assuming that X ∩C

contains no curve for all C ∈ |h + f |. First assume q ∈ F1. Let L be the only element of |f |

containing q. Since L is a line and ♯((L ∩X)red) ≥ 2, we have rX(q) ≤ 2.

Now assume q /∈ F1. Take C ∈ |h + f | such that q ∈ 〈C〉. Note that 〈C〉 is a plane. If C is

smooth (and hence it is a smooth conic), we have rX(q) ≤ 3, because ♯((C ∩X)red) ≥ 3 and hence

(C ∩X)red spans 〈C〉. Now assume that C is singular, i.e. C = h+L for some L ∈ |f |. Both h and

L are lines and h ∩ L is a single point. By assumption there are p1, p2 ∈ (L ∩X)red with p1 6= p2

and hence L = 〈{p1, p2}〉. Since ♯((h ∩X)red) ≥ 2, there is p3 ∈ (h ∩X)red such that p3 6= h ∩ L.

Since h = 〈{p3, h ∩ L}〉, we have 〈C〉 = 〈{p1, p2, p3}〉 and hence rX(q) ≤ 3.

Lemma 4.2. Let ∆ a quasi-projective variety and X ⊂ F1 × ∆ a closed algebraic set such that

the restriction u : X −→ ∆ to X of the projection F1 ×∆ −→ ∆ is proper and flat. For each t ∈ ∆

set Xt := u−1(t). Assume that all fibers of u are reduced curves with no irreducible component of

degree ≤ 2. Fix o ∈ ∆ and assume ♯((C ∩ Xo)red) ≥ 3 for all C ∈ |h + f |. Then for a general

t ∈ ∆ we have ♯((C ∩Xt)red) ≥ 3 for all C ∈ |h+ f |.

Proof. Assume that the lemma is false. Taking a neighborhood Ω of o in ∆ and then a branch

covering of Ω we may assume that for each t ∈ Ω\{o} there is Ct ∈ |h+f | with ♯((Ct∩Xt)red) ≤ 2.

Since |h + f | is a projective set, the family {Ct}t∈Ω\{o} has at least one limit point, C′, and

♯((C′ ∩Xo)red) ≤ 2.
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Lemma 4.3. Fix integers a, b such that either a = 1 and b ≥ 5 or a ≥ 2 and b ≥ max{4, a}. Let

X be a general element of |ah+ bf |. Then ♯((C ∩X)red) ≥ 3 for all smooth C ∈ |h+ f |.

Proof. For each C ∈ |h + f | we have deg(X ∩ C) = b. For e ∈ {1, 2} let U(e) denote the set

of all degree zero-dimensional schemes Z ⊂ F1 such that deg(Z) = b, Z has exactly e connected

components and there is a smooth C ∈ |h+f | containing Z. Since each smooth C ∈ |h+f | has ∞e

elements of U(e), we have dimU(e) = 2 + e. Thus (since e ≤ 2) to prove the lemma it is sufficient

to prove that dim |IZ(ah + bf)| = dim |ah + bf | − 5 for all Z ∈ U(e), i = 1, 2. Fix Z ∈ U(e)

and take a smooth C ∈ |h + f | containing it. Since deg(Z) = b ≥ 5, it is sufficient to prove that

h1(IZ(ah + bf)) = 0. Since h1(OF1
((a − 1)h + (b − 1)f)) = 0, the residual exact sequence of C

shows that it is sufficient to prove that h1(C, IZ,C (ah + bf)) = 0. This is true, because C ∼= P1

and deg(OC(ah+ bf)) = b.

Lemma 4.4. Fix q ∈ F1. There is a smooth C ∈ |h+ f | such that q ∈ C if and only if q ∈ F1 \ h.

Proof. Since h · (h+ f) = 0, no irreducible C ∈ |h+ f | (i.e. no smooth C ∈ |h+ f |) meets h. Now

assume q ∈ |h + f |. Since dim |Iq(h + f)| = dim |h + f | − 1 = 1 and there is a unique singular

element of |h+ f | containing q, there is a smooth C ∈ |h+ f | such that q ∈ C.

Proposition 4.2. Fix integer a, b such that a ≥ 1 and b ≥ 2a+ 3.

(1) There is a nodal D ∈ |ah+bf | with exactly a smooth irreducible components, all of them

rational and neither lines nor conics, such that ♯((D ∩ C)red) ≥ 3 for all C ∈ |h+ f |.

(2) If a ≥ 2 we have rD(q) ≤ 3 for all q ∈ P4.

Proof. Set bi := 2 for 2 ≤ i ≤ a and b1 := b− 2a+2. Take a general (D1, . . . , Da) ∈
∏a

i=1 |h+ bif |

and set D := D1 ∪ · · · ∪ Da. By Bertini’s theorem each Di is smooth and connected and D is

nodal. Set S := Sing(D). Each Di is rational and pa(D) = 1 + ab − a(a + 1)/2 − b. Thus

♯(S) = pa(D) + a− 1 = ab− a(a− 1)/2− b. In the case a = 1 we have D = D1 with D1 a general

element of |h + bf |. For a general (D1, . . . , Da) the nodal curve D is transversal to h and hence

♯((h ∩D)red) = b− a ≥ 4. Hence part (1) is true for all singular C ∈ |h+ f |.

Now we check part (1) for all smooth C ∈ |h+ f |.

If a = 1 it is sufficient to quote Lemma 4.3.

Now assume a ≥ 2. Since ♯((D1 ∩ C)red) ≥ 3 by Lemma 4.3, we get part (1) for all smooth

C ∈ |h+ f |.

Now we prove part (2). By Lemma 4.4 we have rD(q) ≤ 3 for all q ∈ F1\h. Since ♯((h∩D)red) =

b− a ≥ 2, we have rD(q) ≤ 2 for all q ∈ h.
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Take q ∈ P4 \ F1. Take C ∈ |h + f | such that q ∈ 〈C〉 (Lemma 4.1). If C is smooth we get

rD(q) ≤ 3 by Proposition 4.1. Now assume C singular, say C = h ∪ L with L ∈ |f |. Since D

contains b − a points of D, it is sufficient to prove that L contains a point of D \D ∩ h. This is

true, because a ≥ 2 and D is transversal to h.

Proof of Theorem 1.2: Take the curve D given by Proposition 4.2. Use Remark 2.1 to get X as in

the proof of Theorem 1.1. Apply part (1) of Proposition 4.2 and Lemma 4.2.
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ABSTRACT

The LeBrun ansatz was designed for scalar-flat Kähler metrics with a continuous sym-

metry; here we show it is generalizable to much broader classes of metrics with a

symmetry. We state the conditions for a metric to be (locally) expressible in LeBrun

ansatz form, the conditions under which its natural complex structure is integrable, and

the conditions that produce a metric that is Kähler, scalar-flat, or extremal Kähler.

Second, toric Kähler metrics (such as the generalized Taub-NUTs) and U(2)-invariant

metrics (such as the Fubini-Study or Page metrics) are certainly expressible in the Le-

Brun ansatz. We give general formulas for such transitions. We close the paper with

examples, and find expressions for two examples—the exceptional half-plane metric and

the Page metric—in terms of the LeBrun ansatz.

RESUMEN

El ansatz de LeBrun fue diseñado para métricas Kähler escalares-planas con una

simetŕıa continua; acá mostramos que es generalizable a clases mucho más amplias

de métricas con una simetŕıa. Establecemos las condiciones para que una métrica sea

(localmente) expresable con la forma de ansatz de LeBrun, las condiciones bajo las

cuales su estructura compleja natural es integrable, y las condiciones que producen una

métrica que es Kähler, escalar-plana, o Kähler extremal. En segundo lugar, métricas

tóricas Kähler (tales como las Taub-NUT generalizadas) y métricas U(2)-invariantes

(tales como la métrica de Fubini-Study o la de Page) son ciertamente expresables en

el ansatz de LeBrun. Damos fórmulas generales para tales transiciones. Concluimos el

art́ıculo con ejemplos, y encontramos expresiones para dos ejemplos—la métrica excep-

cional del semiplano y la métrica de Page—en términos del ansatz de LeBrun.

Keywords and Phrases: Differential geometry, Kähler geometry, canonical metrics, ansatz.

2020 AMS Mathematics Subject Classification: 53B21, 53B35.

c©2020 by the author. This open access article is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.

http://dx.doi.org/10.4067/S0719-06462020000300395


396 Brian Weber CUBO
22, 3 (2020)

1 Introduction

LeBrun [19] created an ansatz for scalar-flat Kähler metrics with a continuous symmetry. This

was an expansion of the Gibbons-Hawking ansatz for Ricci-flat Kähler metrics with a symmetry,

itself a version of the Kaluza ansatz [18] [6]. In the original construction Kaluza showed that if

a Lorentzian 5-metric is endowed with a spacelike continuous symmetry, the Einstein equations

will partially linearize, with the linear part being the Maxwell equations. The Gibbons-Hawking

construction utilized this idea except in Euclidean signature and a dimension lower, where the

Maxwell equations reduce to just the Laplace equation on a potential, and the “gravity” equations

(the Ricci-flat equations) fully linearize.

LeBrun’s ansatz, which also works for 4-dimensional Riemannian metrics with a circle sym-

metry, partially linearizes the scalar-flat Kähler (SFK) equations. These SFK equations, normally

exceedingly complicated and nonlinear, were shown to reduce to a pair of second order equations,

one linear and the other quasilinear.

We show that LeBrun’s ansatz is much more general than this original use, and is suitable

for expressing interesting 4-metrics that are not scalar-flat, Kähler, or even have an integrable

complex structure. We show the conditions under which a metric is expressible in terms of the

LeBrun ansatz, and give the explicit transformations into the LeBrun ansatz from two toric Kähler

ansätze, and from the U(2)-invariant ansatz. In the last section we use these translations to express

several common metrics in the LeBrun ansatz. Finally we indicate how the LeBrun ansatz can

be used, at least in principle, to create new metrics of special kinds, a subject we shall take up

elsewhere.

2 The LeBrun ansatz

We lay out the basic definitions in the LeBrun ansatz and determine when the ansatz possesses

an integrable complex structure and when it possesses a closed Kähler 2-form. We end with some

expressions for curvature quantities of such metrics, and state when such a metric is extremal

Kähler. The reference for this section is [19].

2.1 The ansatz

The LeBrun ansatz is an S1-fibration π :M4 → N3 along with the metric

g = weu
(

dx2 + dy2
)

+ w dz2 + w−1 (dτ + π∗A)
2

(2.1)
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where (x, y, z) are local coordinates on N3, w = w(x, y, z) and u = u(x, y, z) are functions, and A

is a 1-form A = Ax(x, y, z)dx + Ay(x, y, z)dy + Az(x, y, z)dz on N3.1 The coordinate τ is defined

after a choice of a transversal: after setting τ = 0 on this transversal, τ is pushed forward via the

S1-action. The field d
dτ

is invariant under rechoosing the transversal so it is globally defined, and

it is Killing.

The exterior derivative of A will be important. Because dπ∗A = π∗dA, it is immaterial

whether we compute on M4 or N3. Letting B = dA we have

B = Bx dy ∧ dz − By dx ∧ dz + Bz dx ∧ dy, where

Bx = Ay,x −Ax,y, By = Ax,z −Az,x, Bz = Az,y −Ay,z.
(2.2)

In the spirit of Kaluza’s work, we may interpret A as a vector potential over 3-space and

B = dA as the corresponding Maxwell field strength. It so closely resembles a magnetostatic field

that we will sometimes call it the metric’s magnetic field. In all curvature computations A never

appears; only its field B appears.

A g-compatible almost-complex structure on (M4, g) is

J(dx) = −dy, J(dz) = −w−1(dτ + π∗A), (2.3)

which dualizes to

J(∇x) = ∇y, J(∇z) =
∂

∂τ
(2.4)

where the duality convention is J(η) , η ◦J for η ∈
∧1

. The corresponding antisymmetric form is

ω = g(J ·, ·) = weudx ∧ dy + dz ∧ (dτ + π∗A) . (2.5)

2.2 The complex and symplectic structures

As usual, the almost complex structure splits
∧1

C
=
∧1

(M4) ⊗ C into holomorphic and antiholo-

morphic bundles, where
∧1

C
=
∧1,0 ⊕∧0,1

are the respective ±
√
−1 eigenspaces of J . In bases,

∧

1,0 = spanC

{

dx+
√
−1dy, dz +

√
−1w−1(dτ + π∗A)

}

,
∧

0,1 = spanC

{

dx−
√
−1dy, dz −

√
−1w−1(dτ + π∗A)

}

.
(2.6)

Of the many ways to check the integrability of an almost-complex structure, the most conve-

nient will be verifying that d :
∧0,1 → ∧1

C
∧∧0,1.

Lemma 2.1. The complex structure (2.3) is integrable if and only if

wx = Bx and wy = By. (2.7)
1LeBrun denotes ω = dτ + π∗A, and interprets this as a connection. Following a different but very standard

convention, we shall prefer using the symbol ω for the 2-form ω = g(J ·, ·).
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Proof. This comes from out of the proof of Proposition 1 of [19]. We compute on bases.

Certainly d(dx −
√
−1dy) = 0. Then

d
(

dz −
√
−1w−1(dτ + π∗A)

)

= w−1
(

dw ∧
(

dz −
√
−1w−1(dτ + π∗A)

)

− dw ∧ dz −
√
−1B

)

.
(2.8)

From (2.6), the first term is in
∧1

C
∧∧0,1

. The second and third terms become

− dw ∧ dz −
√
−1B

= −(wx −
√
−1By)dx ∧ dz − (wy +

√
−1Bx)dy ∧ dz −

√
−1Bzdx ∧ dy

=
1

2

(

(wx −Bx)−
√
−1(wy −By)

)

dz ∧ (dx +
√
−1dy)

+
1

2

(

(wx +Bx)dz −
√
−1(By + wy)dz

−
√
−1Bz(dx+

√
−1dy)

)

∧ (dx −
√
−1dy).

(2.9)

Because dx−
√
−1dy ∈ ∧0,1 the second term on the right is in

∧

1
C
∧∧ 0,1. But the first term

is in
∧1

C
∧∧1,0

. We conclude J is integrable if and only if this term is zero, which is the same as

(wx −Bx)−
√
−1(wy −By) = 0.

Lemma 2.2. We have dω = (−Bz + (weu)z) dz ∧ dx ∧ dy. In particular, the antisymmetric form

ω of (2.5) is closed if and only if Bz = (weu)z.

Proof. Using ω = dz ∧ (dτ + π∗A) + weudx ∧ dy and dπ∗A = π∗dA = π∗B,

dω = −dz ∧ dπ∗A + (weu)zdz ∧ dx ∧ dy

= (−Bz + (weu)z) dz ∧ dx ∧ dy,
(2.10)

from which the assertion follows.

Theorem 2.1. The triple (g, J, ω) always has g(J ·, J ·) = g(·, ·). It is

i) Hermitian if and only if Bx = wx and By = wy,

ii) symplectic if and only if Bz = (weu)z, and

iii) Kähler if and only if Bx = wx, By = wy, and Bz = (weu)z.

Condition (iii) implies

wxx + wyy + (weu)zz = 0. (2.11)
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Proof. After Lemmas 2.2 and 2.1, we must only verify equation (2.11). But with B = dA,

after assuming the relations in (iii) then equation (2.11) is just dB = 0.

Remark. The metric is almost Kähler if (ii) holds but (i) does not.

Remark. The original approach of LeBrun [19] was essentially the reverse of this. LeBrun

solves (2.11) for w first, and then finds a 1-form A (which will have Dirac string singularities)

whose field B satisfies (iii). This contrasts with our method which starts with a metric of the form

(2.1), finds conditions on A and w that give it special traits, and from such traits derives equation

(2.11).

We have the following characterization of the LeBrun ansatz.

Theorem 2.2. Let g be a metric on M4. Then g can be expressed locally via the LeBrun ansatz

if and only if the following three conditions hold:

i) M4 has a vector field v and an almost-complex structure J compatible with g so that, letting

ω = g(J ·, ·) be the associated antisymmetric form, then ω, g, and J are all v-invariant,

ii) Given any simply connected domain Ω ⊂ M4, there is a function z : Ω → R with ivω = dz,

and

iii) The action of ∇z on J , when restricted to the rank-2 distribution P ⊂ ∧1M4 that is null on

span{v, Jv}, is zero.

Remark. Regarding condition (iii), P is specifically the distribution P = {η ∈ ∧1
M4 such that

η(v) = 0 and η(Jv) = 0}.

Remark. Condition (iii) is certainly the most technical; it exists so that the first two terms

in the ansatz can be written in the form f(x, y, z)(dx2+dy2), instead of f1dx
2+f2(dxdy+dydx)+

f3dy
2. Condition (iii) could also be written L∇z(J

∣

∣

P
) = 0 where L is the Lie derivative.

Proof. Supposing g can be expressed via the LeBrun ansatz, we simply set v = ∂
∂t

and let J

be as in (2.3) or equivalently (2.4). The work above shows J and ω are v-invariant and ivω = dz.

We compute L∇zJ
∣

∣

P
by

(L∇zJ)(dx) = L∇z(Jdx) − JL∇zdx = L∇z(dy)− JL∇zdx. (2.12)

The Cartan formula gives L∇zdx = di∇zdx = d 〈dz, dx〉. But this inner product is zero, as

is easily verified after computing the inverse matrix gij . Similarly L∇zdy = 0, so we have shown

L∇zJ(dx) = 0. The same argument works for L∇zJ(dy), so we have shown that L∇z(J
∣

∣

P
) = 0.

For the converse we assume g, J , ω are v-invariant, and that ivω = dz for some function z.

This allows us to perform a version of the Kähler reduction. Because z is itself v-invariant (due

to the fact that Lvz = ivivω = 0), the function z passes to the quotient manifold N3 = M4/v
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where the quotient is by the action of the Killing field v—this works if the orbits of v are closed;

if not then a second Killing field must exist, and we can take an appropriate linear combination

to find a Killing field with closed orbits. Pick a level-set Σ2
z = {z = const} on which to place

isothermal coordinates (x, y), and then extend (x, y) along trajectories of ∇z so the functions x,

y are now defined on some region of N3. We show that (x, y) remains isothermal on all other

nearby level-sets of z; this is a consequence of J |P being invariant under trajectories of ∇z. To see

this, note that J |P restricts to the Hodge-star ∗2 on any level-set of z, and x, y are isothermal if

and only if d ∗2 dx = d ∗2 dy = 0 and dx ∧ ∗dy = 0. By construction, d ∗2 dx = d ∗2 dy = 0 and

dx ∧ ∗dy = 0 holds on one level-set of z; to see it is true on all nearby level-sets we compute

L∇zd ∗2 dx = dL∇zJ |P dx = dJ |PL∇zdx = dJ |P dL∇zx = 0. (2.13)

where we used the facts that d always commutes with L∇z , that by hypothesis L∇zJ |P = 0, and

that by construction L∇zx = 0. Therefore d ∗2 dx remains zero on all level-sets. Similarly we

compute

L∇z (dx ∧ ∗2dy) = (L∇zdx) ∧ ∗2dy + dx ∧ (L∇z ∗2 dy)

= dx ∧ ∗2 (L∇zdy) = 0
(2.14)

where again we used L∇zdx = L∇zdy = 0 and L∇z∗2 = L∇zJ |P = 0.

Now, because the functions x, y remain an isothermal system on any level-set of z, we may express

the metric g3 on the quotient manifold N3 in the form g3 = f1(x, y, z)dz
2+ f2(x, y, z)

(

dx2 + dy2
)

.

We define the functions w, eu by

w , |dz|−2
g3

= f1

weu , |dx|−2
g3

= |dy|−2
g3

= f2.
(2.15)

The functions x and y pull back fromN3 toM4, where we now have three coordinate functions

x, y, and z. For the fourth coordinate τ , after choosing a transversal to v, we may set τ = 0 along

this transversal, and push τ along trajectories of v—incidentally, this establishes ∂
∂τ

= v and

J∇z = ∂
∂τ

. We now have coordinates (x, y, z, τ) on M4.

From (2.15) we have w−1 = |dz|2 = |∇z|2 = |J∇z|2 = |∂/∂τ |2. We define functions C, Ax,

Ay, and Az in terms of the complex structure J by

−C (dτ +Axdx+Aydy +Azdz) = Jdz. (2.16)

We can compute the value of C. Transvecting both sides of (2.16) with ∂
∂τ

gives

−C = Jdz
(

∂
∂τ

)

=
〈

∇z, J ∂
∂τ

〉

= −|∇z|2 = −|dz|2 = −w−1. (2.17)

Therefore C = w−1. Finally because the distribution {∇x,∇y} is perpendicular to the distri-

bution {∇z, ∂/∂τ}, we arrive at the expression
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g = weu
(

dx2 + dy2
)

+ wdz2 + w−1 (dτ +Axdz +Aydy +Azdz)
2
. (2.18)

2.3 Curvature quantities

Proposition 2.1. Assume the metric (2.1) is Kähler, meaning (iii) of Theorem 2.1 holds. Then

the Ricci curvature of g is

Ric = −1

2

(

Hess u (·, ·) + Hess u (J ·, J ·)
)

(2.19)

Proof. The proof of Proposition 1 of [19] gives Ricci form and Ricci curvature

ρ = −
√
−1∂∂̄u, and

Ric = ρ(·, J ·) = −1

2

(

Hess u (·, ·) + Hessu (J ·, J ·)
)

.
(2.20)

Proposition 2.2. Assume the metric (2.1) is Kähler, meaning (iii) of Theorem 2.1 holds. Then

the scalar curvature s of g is

s = − 1

weu
(uxx + uyy + (eu)zz) . (2.21)

Proof. This is computed in the proof of Proposition 1 of [19].

Proposition 2.3 (The extremal condition). Assume the metric (2.1) is Kähler. Then it is an

extremal Kähler metric if constants m, b ∈ R exist so

− 1

weu
(uxx + uyy + (eu)zz) = mz + b. (2.22)

Proof. If (2.22) holds then s = mz + b and so ∇s = m∇z and J∇s = m ∂
∂τ

; thus J∇s is a

Killing field. The proposition is established after recalling that a Kähler metric is extremal if and

only if J∇s is Killing [7] [8].

Remark. Whether g is Kähler or not, its scalar curvature is

s = − 1

weu

(

(

uxx + uyy + (eu)zz

)

+
1

w

(

wxx + wyy + (weu)zz

)

+
1

2w2
(B2

x − (wx)
2) +

1

2w2
(B2

y − (wy)
2) +

e−u

2w2
(B2

z −
(

(weu)z
)2

)

.

(2.23)
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3 Expressing Toric Kähler metrics using the LeBrun ansatz

The LeBrun ansatz operates on 4-manifolds with one symmetry. On Kähler 4-manifolds with

two holomorphic symmetries, there are more specialized ansätze. Letting X 1, X 2 be commuting

holomorphic Killing fields (recall that “holomorphic” means LX iJ = 0, just as Killing means

LX ig = 0), then (M4, g, J,X 1,X 2) can be considered a toric Kähler 4-manifold. This situation

has been studied in [17] [1] [13] [14] [2] [9] and many other works. Certainly a toric Kähler metric

can be translated into the LeBrun ansatz once a distinguished Killing field is chosen. We do this

here.

3.1 The two toric ansätze

There are two standard presentations for toric Kähler 4-manifolds. These were originally explored

by Guillemin [17], who also discovered that they are equivalent via a Legendre transform. The

LeBrun ansatz is a mixture of the two.

The first of the two presentations is the symplectic ansatz. If {X 1,X 2} are independent

commuting holomorphic Killing fields, we can use the Arnold-Liouville construction [3] to produce

the so-called action-angle coordinates on M4. To execute this construction, one defines action

variables (up to a constant) by ∇ϕi = −JX i or equivalently by dϕi = iX iω, and defines angle

variables, denoted θ1, θ2, by choosing a transversal and then pushing forward the action of the

fields X 1, X 2. In these coordinates, the ansatz demands the metric be expressed

g = Uijdϕ
i ⊗ dϕj + U ijdθi ⊗ dθj (3.1)

where U = U(ϕ1, ϕ2) is a convex function of the action variables. The matrix (Uij) is defined by

Uij ,
∂2U

∂ϕiϕj , and we define (U ij) , (Uij)
−1.

The map M4 → R2 given by p 7→ (ϕ1(p), ϕ2(p)) sends M4 to a region Σ2 ⊂ R2; this is

sometimes called the Arnold-Liouville reduction or, by abuse of terminology, the moment map. If

M4 is compact then its image Σ2 is a compact polygon in R2. This polygon encodes the topology

of M4, via the Delzant gluing rules [11]. If M4 is non-compact, then Σ2 need not be a polygon

nor even be topologically closed.

The second ansatz, the holomorphic ansatz, also begins with the fields {X 1,X 2}. Again we

may produce corresponding coordinates θ1, θ2 after choosing a transversal. Because X 1, X 2 are

not only symplectomorphic but holomorphic, the variables θi are actually pluriharmonic, meaning

d(Jdθi) = 0. The Poincaré lemma then guarantees functions ξ1, ξ2 exist (at least locally) so that

dξi = Jdθi, and we have two holomorphic functions fi = ξi+
√
−1θi which constitute a holomorphic

chart (f1, f2) : Ω → C2 on some subdomain Ω ⊆M4. The Kähler form on this chart, as usual, can

be expressed ω =
√
−1∂∂̄V for some pseudoconvex function V . Because V is θ1-θ2 invariant, it is
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convex instead of just pseudoconvex. The metric is then

g = V ijdξi ⊗ dξi + V ijdθi ⊗ dθj (3.2)

where (V ij) is the matrix with components V ij , ∂2V
∂ξi∂ξj

.

We might consider the map p 7→ (ξ1(p), ξ2(p)) for p ∈M4, just as we considered the moment

map p 7→ (ϕ1(p), ϕ2(p)). But it is much less interesting than the moment map. If M4 is compact

then its image is all of R2. In particular there is no way to read off the topology of M4 from its

image.

A duality relationship exists between the symplectic system (ϕ1, θ1, ϕ
2, θ2) with its symplectic

potential U and the holomorphic system (ξ1, θ1, ξ2, θ2) with its Kähler potential V . As shown in

[17], they are Legendre transforms of each other:

ξi =
∂U

∂ϕi
, ϕi =

∂V

∂ξi
, and

U(ϕi) + V (ξi) =
∑

i

ϕiξi.
(3.3)

3.2 Translation to the LeBrun Ansatz

It is now possible to relate these two systems to the LeBrun ansatz, which is a mixed symplectic-

holomorphic system. We define the LeBrun variable τ to be the angle variable θ1 corresponding to

X 1, and y the angle variable θ2 corresponding to X 2. Let z be the symplectic variable corresponding

to the angle τ , meaning z = ϕ1, and x the holomorphic variable corresponding the angle variable y,

meaning x = ξ2. Then we create the LeBrun functions w and u, and determine the 1-form A. We

record the change of frame from the symplectic frame
{

∂
∂ϕ1 ,

∂
∂θ1

, ∂
∂ϕ2 ,

∂
∂θ2

}

to the LeBrun frame
{

∂
∂z
, ∂

∂τ
, ∂
∂x
, ∂

∂y

}

. One easily computes

∂
∂ϕ1 = ∂

∂z
+ U21

∂
∂x

dϕ1 = dz
∂

∂θ1
= ∂

∂τ
dθ1 = dτ

∂
∂ϕ2 = U22

∂
∂x

dϕ2 = −U21

U22
dz + 1

U22
dx

∂
∂θ1

= ∂
∂y

dθ2 = dy.

(3.4)

Upon substituting the symplectic frame components into the LeBrun metric (2.1), we find the

functions w, u and the components Ax, Ay, and Az to be

w = 1/U11, u = log
(

U11U22 − (U12)2
)

Ax = 0, Ay =
U12

U11
, Az = 0.

(3.5)

We express this in the form of a proposition.
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Proposition 3.1. Assume (M4, J, g,X 1,X 2) is a toric Kähler manifold. Let (ϕ1, θ1, ϕ
2, θ2) be

symplectic coordinates and (ξ1, θ1, ξ2, θ2) holomorphic coordinates on M4. There exists a convex

function U(ϕ1, ϕ2) on Σ2, where Σ2 is the image of the moment map (ϕ1, ϕ2) : M4 → R2, so that

g = Uijdϕ
i ⊗ dϕj + U ijdθi ⊗ dθj (3.6)

where Uij = ∂2U
∂ϕiϕj and (U ij) = (Uij)

−1. There also exists a convex function V = V (ξ1, ξ2) on R
2

so that

g = V ijdξi ⊗ dξj + V ijdθi ⊗ dθj (3.7)

where V ij = ∂2V
∂ξiξj

. These systems are related via the Legendre transform:

ϕi =
∂V

∂ξi
, ξi =

∂U

∂ϕi
,

U(ϕ1, ϕ2) + V (ξ1, ξ2) = ϕ1ξ1 + ϕ2ξ2.

(3.8)

The metric (M4, g, J,X 1,X 2) can be expressed in the LeBrun ansatz after setting

(

z, τ, x, y
)

=
(

ϕ1, θ1, ξ2, θ2
)

. (3.9)

A LeBrun ansatz expression of g is obtained by setting

u = log detU ij = log
(

U11U22 − (U12)2
)

,

w =
1

U11
, and A = Aydy =

U12

U11
dy

(3.10)

(the components Ax and Az are zero). The components of the magnetic 2-form are Bx = −Ay,z,

By = 0, and Bz = Ay,x.

3.3 Variation of LeBrun structures

In our construction of Section 3.2 we began by setting τ = θ1, but we could have chosen τ = θ2 or

indeed any linear combination of the cyclic variables. Up to scale a toric metric automatically has

a 1-parameter family of distinct LeBrun structures. If α ∈ [0, π/2] is a constant and X 1, X 2 are

symplectomorphic Killing fields, then for each α we may select the field

X = cos(α)X 1 + sin(α)X 2. (3.11)

Then, referring to the construction of Section 3.2, the corresponding angle variable is τ =

cos(α)θ1+sin(α)θ2 with conjugate momentum variable z = cos(α)ϕ1+sin(α)ϕ2. The holomorphic

variables are then x = − sin(α)ξ1 + cos(α)ξ2 and y = − sin(α)θ1 + cos(α)θ2.

This allows for a “tuning” or selection of a distinguished 1-parameter symmetry field form

which the LeBrun ansatz metric can be constructed. The variable y remains cyclic (that is, its field
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remains a symmetry direction), and u, w will remain functions of x and z. These functions will

change with α, so we may write u = uα(x, z) and w = wα(x, z). We remark that a third auxiliary

function u̇α , d
dα
uα exists. If the uα solve the LeBrun equation (uα)xx + (euα)zz = 0 then u̇α will

solve the linearized equation (u̇α)xx + (u̇αe
uα)zz = 0. Under some conditions uα will be positive,

and setting w = u̇α we have an entirely new LeBrun metric.

4 Expressing U(2)-invariant metrics in the LeBrun ansatz

The usual ansatz for U(2)-invariant metrics is

g = Adr2 + B (η1)
2 + C

(

(η2)
2 + (η3)

2
)

(4.1)

where {η1, η2, η3} is a standard left-invariant coframe on S3, and A, B, C are functions of the

radial variable r. If (ψ, ϕ, θ) are Euler coordinates on on S3, the usual frame transitions are

η1 =
1

2
(dψ + cos(θ)dϕ)

η2 =
1

2
(sin(θ) cos(ψ)dϕ − sin(ψ)dθ)

η3 =
1

2
(sin(θ) sin(ψ)dϕ+ cos(ψ)dθ) .

(4.2)

From this we deduce (η2)
2 + (η3)

2 = 1
4

(

dθ2 + sin2(θ)dϕ2
)

, so in Euler coordinates

g = Adr2 +
B

4
(dψ + cos(θ)dϕ)2 +

C

4

(

dθ2 + sin2(θ)dϕ2
)

(4.3)

This is already close to LeBrun ansatz form. To place it precisely in LeBrun ansatz form we

make the change of variables

x = log cot
θ

2
, y = ϕ, z =

1

2

∫ √
AB dr, τ = ψ. (4.4)

This gives dθ2 + sin2(θ)dϕ2 = sech2(x)(dx2 + dy2), and the metric now reads

g =
4

B
dz2 +

B

4
(dτ + tanh(x) dy)

2
+
C

4
sech2(x)

(

dx2 + dy2
)

. (4.5)

Reading off the LeBrun ansatz quantities from (2.1), we have

w =
4

B
, u = log

(

BC

16
sech2(x)

)

Ax = 0, Ay = tanh(x), Az = 0

(4.6)

where B and C are now functions of the new variable z, via the transition from r to z given in

(4.4). Because U(2) has a rank 2 toral subgroup, any U(2)-invariant metric is also T
2-invariant—

if the metric is Kähler then it is toric. One can see directly that the metric (4.5) has no τ - or

y-dependency so has T2 symmetry.
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5 Examples

We give two examples of our method. The exceptional half-plane metric from [21] was originally

written in a toric ansatz, and the Page metric on CP 2♯CP 2 was originally written in the U(2)

ansatz. We use our methods to express both in the LeBrun ansatz. In the last section we outline

methods for creating new metrics that are Einstein, half-conformally flat, or Bach-flat.

5.1 The exceptional half-plane metric on C2.

This toric SFK metric on C2 appears in [21]. It has one translational and one rotational field. In

rectangular coordinates (x1, y1, x2, y2) on C2, these fields are X 1 = ∂
∂y1

and X 2 = −y2 ∂
∂x2

+x2
∂

∂y2

,

which are clearly translational and rotational, respectively. Let U = U(ϕ1, ϕ2) be the symplectic

potential

U =
1

2

(

(ϕ2)2

1 + 2Mϕ1
+ ϕ1 log(ϕ1) +M(ϕ1)2

)

(5.1)

where M ≥ 0 is a constant. The case M = 0 produces the flat metric. When M > 0, the resulting

metric is the exceptional half-plane metric; the fact that (5.1) is the correct symplectic potential

for the exceptional half-plane metric can be verified directly from equations (6-1) and (6-3) of

[21]. The Kähler potential V is difficult to write explicitly, as it involves inverting a function with

transcendental and algebraic parts. However it is possible to find LeBrun coordinates, which in

terms of the symplectic coordinates are

x =
ϕ2

1 + 2Mϕ1
, y = θ2, z = ϕ1, τ = θ1. (5.2)

The LeBrun functions w and u are

w = M +
1

2z
, u = log (2z) (5.3)

and the vector potential and field strength are

A = 2Mxdy, which is Ax = 0, Ay = 2Mx, Az = 0,

B = 2Mdx ∧ dy, which is Bx = 0, By = 0, Bz = 2M.
(5.4)

We notice that u = log(2z) gives what LeBrun called the hyperbolic ansatz in section 4 of

[19]. If M = 0 this is the flat metric, which LeBrun wrote down on p. 233 of [19] (unfortunately

LeBrun’s equations are mostly unnumbered). The exceptional half-plane metric in LeBrun ansatz

form is

g = (1 + 2Mz)(dx2 + dy2) +
1 + 2Mz

2z
dz2 +

2z

1 + 2Mz
(dτ + 2Mxdy)2. (5.5)
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5.2 The Page metric

The Page metric was originally developed in [20], and can be found explicitly in (3.25) of [16]

(unfortunately its expression in the appendix of [15] has a typo). Methods for building Ricci-flat

metrics, including the Page metric, can be found [4]; see also 9.125 of [5]. This metric exists on

CP 2♯CP 2; it is Einstein, Hermitian, and Bach-flat, but not half-conformally flat. It is conformal to

an extremal Kähler metric, which Calabi [7] [8] independently wrote down; see [10] for the specific

conformal transformation, or [12] for a more general theory of conformal transformations between

extremal Kähler and Einstein metrics on 4-manifolds. From [16] the Page metric is

g =
3(1 + ν2)

Λ

[

1− ν cos2(r)

3− ν2 − ν2(1 + ν2) cos2(r)
dr2+

+
3− ν2 − ν2(1 + ν2) cos2(r)

(3 + ν2)2(1− ν cos2(r))
sin2(r)η21 + 4

1− ν2 cos2(r)

3 + 6ν2 − ν4
(

η22 + η23
)

]

.

(5.6)

The method of Section 4 gives its expression in the LeBrun ansatz:

g = weu
(

dx2 + dy2
)

+ w dz2 +
1

w
(dτ + tanh(x)dy)

2
, where

w =
F (z)

G(z)
and weu =

1

3Λ(1 + ν2)(3 + 6ν2 − ν4)
H(z) sech2(x)

(5.7)

and F , G, H are the polynomials

F (z) = 27(1 + ν2 − ν4 − ν6) + 36(4ν2 + 4ν4 + ν6)Λz

− 12(9ν2 + 6ν4 + ν6)Λ2z2

G(z) = 27(1 + ν2 − ν4 − ν6) + 3(−9 + 9ν2 + 11ν4 + 15ν6)Λz

− 24(3ν2 + 3ν4 − ν6)Λ2z2 + 4(9ν2 + 6ν3 + ν6)Λ3z3

H(z) = 9(1 + ν2 − ν4 − ν6) + 12(3ν2 + 16ν4 + ν6)Λz

− 4(9ν2 + 6ν4 + ν6)Λ2z2.

(5.8)

The domain for (x, z) is x ∈ R and z ∈
[

0, 3(1+ν2)
Λ(3+ν2)

]

.

5.3 New metrics

Creation of special metrics, namely Einstein, half-conformally flat, or Bach-flat metrics are of

considerable importance in differential geometry. One may regard the metric g, if expressed in

the LeBrun ansatz, as a dynamic variable with five unknowns w, u, Bx, By, Bz which are each

functions of the coordinates (x, y, z). These values can be specified independently, subject to the

single requirement that Bx,x+By,y+Bz,z = 0 which is equivalent to the definition of B from (2.2),
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which is that B = dA for a 1-form A. In a sense, there are four completely independent variables

that may be chosen, with the choice of a fifth being partially constrained.

LettingW+ be the self-dual part of the Weyl tensor, one might consider the conditionW+ = 0.

Because the operatorW+ :
∧+ →

∧+
has three eigenvalues which are subject to the condition that

they sum to zero, the condition W+ = 0 imposes two differential identities on our five variables.

With the fifth constraint discussed above, we arrive at an underdetermined system, which surely

has a large solutions space. There remain many obstacles, both technical and theoretical, to fully

understanding this system. Similar comments hold for systems like Rı
◦

c = 0 and B = 0 where Rı
◦

c

is the trace-free Ricci tensor and B is the Bach tensor. This subject will be taken up elsewhere.
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l’Institut Élie Cartan, vol. 6, 1982.

[5] A. Besse: Einstein manifolds. Springer Science & Business Media, 2007.

[6] J. Bourguignon, “A mathematician’s visit to Kaluza-Klein theory”, Presented at Conference

on Differential Geometry and Partial Differential Equations, Torino, Italy, Rend. Semin. Mat.

Torino Fasc., pp. 143-163, 1989.

[7] E. Calabi: Extremal Kähler metrics. In Seminar on differential geometry, Princeton University

Press, vol. 102, pp. 259–290, 1982.

[8] E. Calabi, Extremal Kähler metrics II. In Differential geometry and complex analysis, Springer,

Berlin, Heidelberg, pp. 95-114, 1985.

[9] D. Calderbank, L. David, and P. Gauduchon, “The Guillemin formula and Kähler metrics on

toric symplectic manifolds”, Journal of Symplectic Geometry, vol. 4, no. 1, pp. 767–784, 2002.

[10] T. Chave and G. Valent, “Compact extremal versus compact Einstein metrics”, Classical and

Quantum Gravity, vol. 13, no. 8, pp. 2097–2108, 1996.

[11] T. Delzant, “Hamiltoniens périodiques et images convexes de l’application moment”, Bulletin
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