
2022
VOLUME 24 · ISSUE 3

I S S N  0 7 1 9 - 0 6 4 6

Departamento de Matemática y Estadística

Facultad de Ingeniería y Ciencias

Temuco - Chile

O N L I N E  V E R S I O N



CUBO

A Mathematical Journal

a
EDITOR-IN-CHIEF

a
Rub́ı E. Rodŕıguez
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Facultad de Ingenieŕıa
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ABSTRACT

Dual digraphs of finite join-semidistributive lattices,

meet-semidistributive lattices and semidistributive lat-

tices are characterised. The vertices of the dual digraphs

are maximal disjoint filter-ideal pairs of the lattice. The

approach used here combines representations of arbitrary

lattices due to Urquhart (1978) and Ploščica (1995). The

duals of finite lattices are mainly viewed as TiRS digraphs

as they were presented and studied in Craig–Gouveia–

Haviar (2015 and 2022). When appropriate, Urquhart’s

two quasi-orders on the vertices of the dual digraph are

also employed. Transitive vertices are introduced and

their role in the domination theory of the digraphs is

studied. In particular, finite lattices with the property

that in their dual TiRS digraphs the transitive vertices

form a dominating set (respectively, an in-dominating

set) are characterised. A characterisation of both finite

meet- and join-semidistributive lattices is provided via

minimal closure systems on the set of vertices of their

dual digraphs.
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RESUMEN

Se caracterizan los digrafos duales de reticulados fini-

tos unión-semidistributivos, encuentro-semidistributivos

y semidistributivos. Los vértices de los digrafos duales

son pares filtro-ideales disjuntos maximales del reticu-

lado. El enfoque usado combina las representaciones de

reticulados arbitrarios de Urquhart (1978) and Ploščica

(1995). Los duales de reticulados finitos son vistos prin-

cipalmente como digrafos TiRS como fueron presentados

y estudiados en Craig–Gouveia–Haviar (2015 y 2022).

Cuando sea apropiado, también se emplean los dos cuasi-

órdenes de Urquhart en los vértices del digrafo dual. Se

introducen los vértices transitivos y se estudia su rol en la

teoŕıa de dominación de digrafos. En particular, se carac-

terizan los reticulados finitos con la propiedad que en

sus digrafos TiRS duales los vértices transitivos forman

un conjunto dominante (respectivamente un conjunto do-

minante interior). Se entrega una caracterización de re-

ticulados encuentro- y unión-semidistributivos a través

de sistemas de clausura mı́nima en el conjunto de vértices

de sus digrafos duales.

Keywords and Phrases: semidistributive lattice, TiRS digraph, join-semidistributive lattice, meet-semidistributive

lattice, dual digraph, domination.
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1 Introduction

Semidistributivity was first described by Jónsson [16] while he was studying sublattices of a free

lattice. He proved [16, Lemma 2.6] that every free lattice is semidistributive.

A lattice is join-semidistributive if it satisfies the following quasi-equation for all x, y, z ∈ L:

(SD∨) x ∨ y = x ∨ z =⇒ x ∨ y = x ∨ (y ∧ z).

Dually, L is meet-semidistributive if it satisfies:

(SD∧) x ∧ y = x ∧ z =⇒ x ∧ y = x ∧ (y ∨ z).

A lattice is semidistributive if it satisfies both (SD∨) and (SD∧).

For background on semidistributive lattices we refer to the papers by Adaricheva et al. [1] and [2],

the chapter by Adaricheva and Nation [3], and the paper by Davey et al. [10].

The aim of our paper is to investigate dual digraphs of finite semidistributive lattices. Theo-

rem 3.6 provides a representation of finite semidistributive lattices via a certain class of TiRS

digraphs (see Definition 2.4). This theorem is a generalisation of Birkhoff’s representation of finite

distributive lattices via finite ordered sets [6] (see comments in the next paragraph regarding the

distributive case). In addition, we study transitive vertices in the dual digraphs and their role in

the domination theory of the digraphs, and also explore closure systems on the set of vertices of

the dual digraphs.

We employ representations for finite lattices due to Urquhart [20] and Ploščica [17]. In Urquhart’s

representation the elements of the dual space are maximal disjoint filter-ideal pairs of the lattice.

Urquhart considered two quasi-orders !1 and !2 on them and studied the dual of the lattice as a

certain doubly (quasi-) ordered space. In Ploščica’s representation, the dual space of a lattice L is

formed by maximal partial homomorphisms from L into the two-element lattice, which correspond

to Urquhart’s maximal disjoint filter-ideal pairs of L. When L is a distributive lattice, these max-

imal partial homomorphisms become total homomorphisms from L into the two-element lattice,

which form the Priestley dual of L [18]. The close relationship between Ploščica’s representation

of general lattices and Priestley’s representation of distributive lattices lies in the single binary re-

lation E, which Ploščica considered on his dual space. When L is distributive, E becomes exactly

Priestley’s order on the dual space. Ploščica’s dual space of a finite lattice L is therefore a finite

digraph where the vertices are the maximal partial homomorphisms from L into the two-element

lattice and the binary relation E, which mimics Priestley’s order, forms the edge set of the di-

graph. These dual digraphs of lattices were presented and studied as TiRS digraphs in two papers

by Craig, Gouveia and Haviar [7, 8].

In our approach we combine Urquhart’s and Ploščica’s representations of finite lattices: the vertices
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of our dual digraphs are maximal disjoint filter-ideal pairs of the lattice in the Urquhart style, but

we mainly study them as TiRS digraphs using the Ploščica binary relation E on the vertices. Only

in a small part of our investigation do we swap Ploščica’s relation E for Urquhart’s two quasi-

orders on the vertices to present our results in a different yet rather satisfactory way (the end of

Section 3).

In Section 2 we give preliminary results that will prove useful in the subsequent three sections of

the paper. In Section 3 we provide several characterisations of the dual digraphs of finite meet-

semidistributive, finite join-semidistributive, and finite semidistributive lattices. In Section 4 we

introduce transitive vertices in the dual digraphs and we study their role in the domination theory

of the digraphs. In particular, we are able to characterise finite lattices having the properties

that in their dual TiRS digraphs the transitive vertices form a dominating set, respectively an

in-dominating set. In Section 5 we characterise both finite meet-semidistributive and finite join-

semidistributive lattices via minimal closure systems on the set of vertices of their dual digraphs.

In Section 6 we make some concluding remarks and observations. In particular, we note connections

to other representations of finite semidistributive lattices, and we propose several directions for

future research in this area.

2 Preliminaries

Ploščica’s representation of arbitrary bounded lattices [17] uses the set of maximal partial homo-

morphisms (MPHs) from a bounded lattice L to the two-element bounded lattice ({0, 1},∧,∨, 0, 1)

as the underlying set of the dual space of L. We recall that a partial homomorphism from a

bounded lattice (L,∧,∨, 0, 1) into the two-element bounded lattice ({0, 1},∧,∨, 0, 1) is a partial

map f : L → {0, 1} such that dom f is a bounded sublattice of L and the restriction f "dom f is

a bounded lattice homomorphism. A maximal partial homomorphism is a partial homomorphism

with no proper extension. The set of MPHs is then equipped with a binary relation and a topology.

Definition 2.1 ([20, Section 3]). Let L be a lattice. Then 〈F, I〉 is a disjoint filter-ideal pair of L

if F is a filter of L and I is an ideal of L such that F ∩ I = ∅. We say that a disjoint filter-ideal

pair 〈F, I〉 is maximal if there is no disjoint filter-ideal pair 〈G, J〉 )= 〈F, I〉 such that F ⊆ G and

I ⊆ J . A maximal disjoint filter-ideal pair 〈F, I〉 of L is total in L if F ∪ I = L.

There is a one-to-one correspondence between the set of MPHs from L to 2 = ({0, 1},∧,∨, 0, 1)

and the maximal disjoint filter-ideal pairs (MDFIPs) of L. The latter were used in the dual

representation of Urquhart [20]. We will use a combination of the two approaches: for a lattice L,

the elements of our dual set XL will be MDFIPs, but we will equip the set with the binary relation

due to Ploščica, and hence will obtain a digraph. (Later, when desirable, we will also equip the
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set XL of all MDFIPs of L with Urquhart’s two quasi-orders !1 and !2.) We do not require the

topologies used by Ploščica and Urquhart because we are only working with finite lattices.

Ploščica’s binary relation on the set of MPHs is defined as follows for MPHs f and g from L to 2:

(E1) fEg ⇐⇒ (∀x ∈ dom f ∩ dom g)(f(x) ! g(x)).

The digraph dual to a finite bounded lattice L in Ploščica’s representation is GL = (VL, E) where

the set of vertices VL is formed by all MPHs from L to 2 and the relation E is defined by (E1)

above. We will now present this dual digraph as GL = (XL, E) where the set of vertices will be

XL, i.e. is formed by all MDFIPs of L, and the corresponding Ploščica relation E will be defined

below by (E2).

For two MDFIPs 〈F, I〉 and 〈G, J〉, Ploščica’s relation E is determined as follows:

(E2) 〈F, I〉E〈G, J〉 ⇐⇒ F ∩ J = ∅.

For finite lattices every filter is the up-set of a unique element and every ideal is the down-set

of a unique element, so we can represent every disjoint filter-ideal pair 〈F, I〉 by an ordered pair

〈↑x, ↓y〉 where x =
∧
F and y =

∨
I. Hence for finite lattices we have 〈↑x, ↓y〉E〈↑a, ↓b〉 if and only

if x " b.

In Figure 1 we present a number of examples of finite (non-distributive) lattices and their dual

digraphs. To make the labelling more compact, we denote by xy the MDFIP 〈↑x, ↓y〉. Also, to

keep the display simpler, we have not included the loop on each vertex. Notice that the directed

edge set is not a transitive relation.

SD∨, not SD∧

0

a b

c d e

1

a
b

c

d e

SD∧, not SD∨

0

1

0

a
b

c

1

SD∨ & SD∧

1

a b c

0

1

Not SD∨, not SD∧

ea

dc

de

cb

dc

ab

cb

ea

ab

bc

ca ab ac

ba

bc

ca

cb

Figure 1: Some finite lattices and their dual digraphs.

The fact below was noted by Urquhart and will be useful later.
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Proposition 2.2 ([20, p. 52]). Let L be a finite lattice. If 〈F, I〉 is a maximal disjoint ideal-filter

pair of L then
∧
F is join-irreducible and

∨
I is meet-irreducible.

Some of what appears in the proposition below can be found in the paper by Gaskill and Nation [13,

p. 353]. We will make frequent use of this result and its proof reveals some important features of

MDFIPs.

Proposition 2.3. Let L be a finite lattice and 〈F, I〉 be a maximal disjoint filter-ideal pair of L.

Then the following are equivalent:

(i)
∧
F is join-prime;

(ii)
∨
I is meet-prime;

(iii) F ∪ I = L;

(iv) F is a prime filter;

(v) I is a prime ideal.

The equivalences (iii) ⇔ (iv) ⇔ (v) hold even when L is not finite.

Proof. Let L be a finite lattice and let 〈F, I〉 be a maximal disjoint filter-ideal pair of L. Let
∧
F = x and

∨
I = y.

First we show that (iii) ⇒ (i). Assume that F ∪ I = L. Let a, b ∈ L such that x ! a∨ b. We claim

that a ∈ F or b ∈ F . Suppose for a contradiction that a /∈ F and b /∈ F . Then a, b ∈ L \ F = I.

That implies a ∨ b ∈ I, whence x ∈ I, a contradiction.

Now we show that (i) ⇒ (iii). Assume that x is join-prime. Let a ∈ L such that a /∈ F ∪ I. We

will consider three cases for the element a ∨ y and derive a contradiction for each case.

Case 1: If a ∨ y ∈ I then a ! a ∨ y = y, thus a ∈ I, a contradiction.

Case 2: If a ∨ y ∈ F then x ! a ∨ y. Since x is join-prime, x ! a or x ! y. If x ! a then a ∈ F ,

contradicting a /∈ F ∪ I. If x ! y then x ∈ I, contradicting F ∩ I = ∅.

Case 3: Suppose a∨y /∈ F ∪I. Since a∨y /∈ ↑x, ↓(a∨y)∩↑x = ∅. From a∨y /∈ ↓y it follows that

↓y ⊂ ↓(a ∨ y). Hence 〈↑x, ↓(a ∨ y)〉 is a disjoint filter-ideal pair properly containing 〈F, I〉,

which contradicts the maximality of 〈F, I〉.

The equivalence of (ii) and (iii) can be shown analogously.

Now we drop the assumption that L is finite and show that (iii) ⇒ (iv). Let a ∨ b ∈ F . If a /∈ F

and b /∈ F then we have a, b ∈ L\F = I. Since I is an ideal we would get a∨ b ∈ I, a contradiction.

Therefore a ∈ F or b ∈ F .
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To show (iv) ⇒ (iii), and the equivalence of (iv) and (v), one uses the fact that a filter F ⊆ L is

prime if and only if L\F is a prime ideal.

The properties of the digraphs dual to bounded lattices were described by Craig, Gouveia and

Haviar [7]. There they were called TiRS graphs ; in this paper we will use the terminology TiRS

digraphs. We recall the necessary facts. (We note that in the definition below xE = { y ∈ V |

(x, y) ∈ E } and Ex = { y ∈ V | (y, x) ∈ E }.)

Definition 2.4 ([7, Definition 2.2]). A TiRS digraph G = (V,E) is a set V and a reflexive relation

E ⊆ V × V such that:

(S) If x, y ∈ V and x )= y then xE )= yE or Ex )= Ey.

(R) For all x, y ∈ V , if xE ⊂ yE then (x, y) /∈ E, and if Ey ⊂ Ex then (x, y) /∈ E.

(Ti) For all x, y ∈ V , if xEy then there exists z ∈ V such that zE ⊆ xE and Ez ⊆ Ey.

We recall that the vertices of the dual digraph GL of a bounded lattice L are formed by the set XL

of MDFIPs of L and Ploščica’s relation E is determined by (E2). Using these facts, the following

result can be stated.

Proposition 2.5 ([7, Proposition 2.3]). For any bounded lattice L, its dual digraph GL = (XL, E)

is a TiRS digraph.

We recall from [17] a fact concerning general digraphs G = (X,E). Let 2∼ = ({0, 1},!) denote the

two-element digraph. A partial map ϕ : X → 2∼ is said to preserve the relation E if ϕ(x) ! ϕ(y)

whenever x, y ∈ domϕ and (x, y) ∈ E. The lattice of maximal partial E-preserving maps from G

to 2∼ is denoted by Gmp(G, 2∼).

Lemma 2.6 ([17, Lemma 1.3]). Let G = (X,E) be a digraph and let us consider ϕ ∈ G
mp(G, 2∼).

Then

(i) ϕ−1(0) = { x ∈ X | there is no y ∈ ϕ−1(1) with (y, x) ∈ E };

(ii) ϕ−1(1) = { x ∈ X | there is no y ∈ ϕ−1(0) with (x, y) ∈ E }.

The above lemma allows us to observe that for a digraph G = (X,E) and ϕ,ψ ∈ Gmp(G, 2∼) we

have

ϕ−1(1) ⊆ ψ−1(1) ⇐⇒ ψ−1(0) ⊆ ϕ−1(0).

This implies that the reflexive and transitive binary relation ! defined on Gmp(G, 2∼) by

ϕ ! ψ ⇐⇒ ϕ−1(1) ⊆ ψ−1(1)

is a partial order. For a digraph G = (X,E) we let C(G) = (Gmp(G, 2∼),!).
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Theorem 2.7 ([7, Theorem 1.7 and p. 87]). For any finite bounded lattice L we have that L is

isomorphic to C(GL) and for any finite TiRS digraph G = (V,E) we have that G is isomorphic to

GC(G).

In later sections, we will frequently make use of Theorem 2.7 in the following way: given any finite

TiRS digraph G = (V,E), we can consider G to be the dual digraph GL = (XL, E) for some finite

lattice L.

There are a number of different constructions that yield complete lattices isomorphic to the com-

plete lattice C(G) described above, which is assigned to a digraph G = (X,E) (see [9]). In

particular, later we will use the lattice obtained via the polarity K(G) = (X,X,E!), which will be

described in Section 5.

At the end of this preliminary section we recall from [20] how the set XL of all MDFIPs of a finite

bounded lattice L can be equipped with two quasi-orders !1 and !2. Urquhart in [20, p. 47]

defined two binary relations !1 and !2 on the set set XL of all MDFIPs of an arbitrary lattice L

as follows: for two MDFIPs 〈F, I〉 and 〈G, J〉,

(!1) 〈F, I〉 !1 〈G, J〉 ⇐⇒ F ⊆ G;

(!2) 〈F, I〉 !2 〈G, J〉 ⇐⇒ I ⊆ J .

It is clear that the binary relations !1 and !2 are reflexive and transitive on the set XL, and hence

are quasi-orders.

3 Characterisation of dual digraphs

The theorem below will play a crucial role in the proof of our first result. Our presentation is slightly

different to [3]; we have re-stated their items to suit our purposes. We use J(L), respectively M(L),

to denote the join-irreducible, respectively meet-irreducible, elements of L.

Theorem 3.1 ([3, Theorem 3-1.4]). Let L be a finite lattice. Then the following are equivalent:

(i) L satisfies SD∨;

(ii) For each x ∈ M(L), there exists a unique minimal element of the set

S(x) = {k ∈ L | k " x & k ! x∗},

where x∗ is the unique upper cover of x, and moreover, this minimal element of S(x) is in

J(L).
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(iii) There exists a map κ : M(L) → J(L) such that for each x ∈ M(L), κ(x) is the minimal

element of the set S(x).

Using the previous result, in the next theorem we characterise finite join-semidistributive and

meet-semidistributive lattices via their MDFIPs.

Theorem 3.2. Let L be a finite lattice.

(i) L is not join-semidistributive if and only if there exist distinct maximal disjoint filter-ideal

pairs of the form 〈↑y, ↓x〉 and 〈↑z, ↓x〉 for some x, y, z ∈ L.

(ii) L is not meet-semidistributive if and only if there exist distinct maximal disjoint filter-ideal

pairs of the form 〈↑x, ↓y〉 and 〈↑x, ↓z〉 for some x, y, z ∈ L.

Proof. For the necessity, assume L is not join-semidistributive, whence by Theorem 3.1, for some

x ∈ M(L) there exist two minimal elements y and z of the set S(x). Then ↑y ∩ ↓x = ∅ and

↑z ∩ ↓x = ∅ so 〈↑y, ↓x〉 and 〈↑z, ↓x〉 are disjoint filter-ideal pairs. We claim that 〈↑y, ↓x〉 and

〈↑z, ↓x〉 are maximal. Suppose on the contrary that there is a disjoint filter-ideal pair 〈↑a, ↓b〉 of

L such that ↑y ⊆ ↑a and ↓x ⊆ ↓b but 〈↑a, ↓b〉 )= 〈↑y, ↓x〉. This gives us two possible cases:

Case 1: If a )= y then since y is minimal in the set S(x) and a ! y ! x∗ we have that a ! x. But

x ! b, which implies that a ! b, contradicting ↑a ∩ ↓b = ∅.

Case 2: If b )= x then x∗ ! b since x∗ is the unique upper cover of x. But a ! y ! x∗, which

implies that a ! b, contradicting again ↑a ∩ ↓b = ∅.

Thus 〈↑y, ↓x〉 is maximal and we can use a similar argument to prove that 〈↑z, ↓x〉 is maximal.

For the sufficiency, assume that there exist distinct maximal disjoint filter-ideal pairs of the form

〈↑y, ↓x〉 and 〈↑z, ↓x〉 for some x, y, z ∈ L. We will prove that y and z are both minimal elements

of the set S(x). If follows from ↑y ∩ ↓x = ∅ and ↑z ∩ ↓x = ∅ that y " x and z " x. We will argue

y ! x∗ by contradiction. Suppose y " x∗, then ↑y ∩ ↓x∗ = ∅. Since x < x∗ implies that ↓x ⊂ ↓x∗,

we get that 〈↑y, ↓x〉 is properly contained in 〈↑y, ↓x∗〉, which is a contradiction. Therefore y ! x∗

and y ∈ S(x). Using a similar argument, z ∈ S(x). Now if a ∈ S(x) and a < y, then ↑y ⊂ ↑a.

Since a " x, we have ↑a ∩ ↓x = ∅. Therefore 〈↑a, ↓x〉 is a disjoint filter-ideal pair with ↑y ⊂ ↑a,

contradicting the maximality of 〈↑y, ↓x〉. Similarly, if b ∈ S(x) such that b < z, then 〈↑b, ↓x〉 is a

disjoint filter-ideal pair properly containing 〈↑z, ↓x〉, which is a contradiction. Therefore y and z

are both minimal elements of S(x).

The proof of (ii) follows by an order-dual argument.
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Corollary 3.3. Let G = (V,E) be a finite TiRS digraph which is the dual digraph of a finite lattice

L. If the relation E is antisymmetric, then L is semidistributive.

Proof. In accordance with our remarks after Theorem 2.7, we can consider G to be GL and so its

vertex set V will be XL.

Suppose for a contradiction that L is not semidistributive. Then L is not join-semidistributive

or L is not meet-semidistributive. If L is not join-semidistributive then by Theorem 3.2 (i)

there are maximal disjoint filter-ideal pairs of the form 〈↑y, ↓x〉 and 〈↑z, ↓x〉 for some x, y, z ∈ L.

Since G is the dual digraph of L, we have 〈↑y, ↓x〉, 〈↑z, ↓x〉 ∈ V . Clearly 〈↑y, ↓x〉E〈↑z, ↓x〉 and

〈↑z, ↓x〉E〈↑y, ↓x〉. This contradicts the antisymmetry of the relation E.

If L is not meet-semidistributive, then the argument is analogous.

Remark 3.4. The converse to Corollary 3.3 does not hold. We can see it on the lattice in Figure 2.

0

a

c

b

d

1

ac bd

cb da

Figure 2: A finite semidistributive lattice and its dual digraph.

The lattice is semidistributive but we see on its dual digraph, which contains a “double arrow”

between the elements ac and bd, that the relation E of the digraph is not antisymmetric.

Hence the condition in Corollary 3.3 is sufficient but not necessary for a finite lattice to be semidis-

tributive. An interesting task that is left open is to possibly weaken the given sufficient condition

to some form of “weak antisymmetry” of the relation E so that the resulting condition on E is

necessary and sufficient for a finite lattice to be semidistributive.

In the statement and the proof of the following result we again use the fact that, by Theorem 2.7,

G = (V,E) is isomorphic to the dual digraph GL = (XL, EL) of the lattice L, whose vertex set XL

is the set of all MDFIPs of L.

Lemma 3.5. Let G = (V,E) be a finite TiRS digraph with dual lattice L. Let u, v ∈ V be distinct.

Then:

(i) Eu = Ev if and only if u and v are the isomorphic images of 〈↑x, ↓y〉 and 〈↑z, ↓y〉 in XL for

some x, y, z ∈ L;
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(ii) uE = vE if and only if u and v are the isomorphic images of 〈↑x, ↓y〉 and 〈↑x, ↓z〉 in XL for

some x, y, z ∈ L.

Proof. Let u, v ∈ V . To show the sufficiency of the condition in (i), let u and v be the isomorphic

images of the vertices 〈↑x, ↓y〉 and 〈↑z, ↓y〉 in GL for some x, y, z ∈ L. Since G is isomorphic to

GL, we only need to show that EL〈↑x, ↓y〉 = EL〈↑z, ↓y〉. To this end, let 〈F, I〉 ∈ EL〈↑x, ↓y〉, then

F ∩ ↓y = ∅. Thus 〈F, I〉 ∈ EL〈↑z, ↓y〉. Similarly, if 〈F, I〉 ∈ EL〈↑z, ↓y〉, then F ∩ ↓y = ∅ and

〈F, I〉 ∈ EL〈↑x, ↓y〉. Therefore EL〈↑x, ↓y〉 = EL〈↑z, ↓y〉 and Eu = Ev.

For the necessity of the condition in (i), let 〈↑x, ↓y〉 and 〈↑z, ↓w〉 be isomorphic images of u and

v in XL and let Eu = Ev. We will show ↓y = ↓w. Let a ∈ ↓y. For all 〈F, I〉 ∈ EL〈↑z, ↓w〉

we have F ∩ ↓y = ∅ since EL〈↑x, ↓y〉 = EL〈↑z, ↓w〉. For S =
⋃
{F | 〈F, I〉 ∈ EL〈↑z, ↓w〉} now

a /∈ S as a ∈ ↓y. We claim that a ∈ ↓w. Suppose on the contrary that a /∈ ↓w. Then a " w and

↑a ∩ ↓w = ∅. This shows 〈↑a, ↓w〉 is a disjoint filter-ideal pair. Hence there is an MDFIP 〈H, J〉

such that ↑a ⊆ H and ↓w ⊆ J . But ↓w ⊆ J and H ∩ J = ∅ implies that H ∩ ↓w = ∅. Then

〈H, J〉 ∈ EL〈↑z, ↓w〉, so H ⊆ S, which means a ∈ S, a contradiction. Thus a ∈ ↓w. The reverse

inclusion can be shown analogously. Therefore ↓y = ↓w and the proof of (i) is complete. Part (ii)

can be proven analogously.

Theorem 3.6. Let G = (V,E) be a finite TiRS digraph with u, v ∈ V . Then

(i) G is the dual digraph of a join-semidistributive lattice if and only if whenever u )= v then

Eu )= Ev.

(ii) G is the dual digraph of a meet-semidistributive lattice if and only if whenever u )= v then

uE )= vE.

(iii) G is the dual digraph of a semidistributive lattice if and only if whenever u )= v then Eu )= Ev

and uE )= vE.

Proof. Let G be a finite TiRS digraph with dual lattice L. To show the necessity in (i), assume

there exist distinct u, v ∈ V such that Eu = Ev. Then by Lemma 3.5 there exist distinct MDFIPs

〈↑x, ↓y〉 and 〈↑z, ↓y〉 in L. It then follows from Theorem 3.2(i) that L is not join-semidistributive.

To show the sufficiency in (i), assume that L is not join-semidistributive. Then by Theorem 3.2(i)

there exist distinct MDFIPs 〈↑x, ↓y〉 and 〈↑z, ↓y〉. By Lemma 3.5 there exist distinct vertices

u, v ∈ V such that Eu = Ev.

Part (ii) can be shown analogously, and part (iii) follows directly from (i) and (ii).

We recall that the “separation property” (S) in the definition of TiRS digraphs is defined as follows:

(S) If x, y ∈ V and x )= y then xE )= yE or Ex )= Ey.
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Hence it should be emphasized that the condition (iii) in the theorem above characterising the

semidistributivity is clearly strengthening the separation condition (S) by replacing in it the logical

connective “or” with “and”. Thus it can be considered as a certain “strong separation property”:

(sS) If x, y ∈ V and x )= y then xE )= yE and Ex )= Ey.

It is interesting to realise that finite semidistributive lattices are exactly those finite lattices whose

dual digraphs have the “separation property” (S) strengthened to the “strong separation property”

(sS).

A remark of Urquhart [20, Section 7] says that a finite lattice L is meet-semidistributive if and

only if the quasi-order !1 is an order. We state that result (and its dual) below and prove it using

the results from earlier in the section.

Theorem 3.7. Let L be a finite lattice.

(i) L is join-semidistributive if and only if the quasi-order !2 on the vertices of the dual digraph

is an order.

(ii) L is meet-semidistributive if and only if the quasi-order !1 on the vertices of the dual digraph

is an order.

Proof. Assume firstly that the quasi-order !2 on the vertices of the dual digraph is not an order,

that is, the relation !2 is not antisymmetric. Then there exist distinct vertices x and y such that

x !2 y and y !2 x. If we consider the vertices x and y as the MDFIPs x = 〈F, I〉 and y = 〈G, J〉,

then by definition of !2 we have I ⊆ J and J ⊆ I, hence the MDFIPs x and y have the same ideal

part. By Theorem 3.2 it follows that L is not join-semidistributive.

Conversely, if L is not join-semidistributive, then by Theorem 3.2 there exist distinct MDFIPs x

and y with the same ideal part, whence x !2 y and y !2 x. It follows that the relation !2 is not

antisymmetric, hence the quasi-order !2 is not an order.

Now we can rephrase Lemma 3.5 in terms of quasi-orders !1 and !2:

Corollary 3.8. Let G = (V,E) be a finite TiRS digraph with dual lattice L. Let u, v ∈ V be

distinct. Then:

(i) Eu = Ev if and only if u !2 v and v !2 u;

(ii) uE = vE if and only if u !1 v and v !1 u.

We can finally summarise the previous results in the following characterisations of join-semidistribu-

tivity, meet-semidistributivity and semidistributivity of finite lattices via the properties of their

dual digraphs:
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Corollary 3.9. Let G = (V,E) be a finite TiRS digraph.

(1) The following are equivalent:

(i) G is the dual digraph of a join-semidistributive lattice;

(ii) for all u, v ∈ V , if u )= v then Eu )= Ev;

(iii) the quasi-order !2 on V is an order.

(2) The following are equivalent:

(i) G is the dual digraph of a meet-semidistributive lattice;

(ii) for all u, v ∈ V , if u )= v then uE )= vE;

(iii) the quasi-order !1 on V is an order.

(3) The following are equivalent:

(i) G is the dual digraph of a semidistributive lattice;

(ii) for all u, v ∈ V , if u )= v then Eu )= Ev and uE )= vE;

(iii) both the quasi-orders !1 and !2 on V are orders.

4 Domination in dual digraphs

In the dual digraph of a lattice L, there are certain vertices that play an important role. It turns

out that these vertices correspond to MDFIPs where F ∪ I = L.

Definition 4.1. A vertex v of a digraph G = (V,E) is said to be transitive in G if uEv and vEw

imply uEw for all u,w ∈ V .

With respect to the illustration of the following result, the reader is reminded to return to Figure 1

for examples.

Theorem 4.2. Let L be a lattice with dual digraph GL = (XL, E). A maximal disjoint filter-ideal

pair 〈F, I〉 is total in L if and only if it is transitive in GL.

Proof. Let 〈F, I〉 be total in L. Assume that 〈G, J〉 and 〈H,K〉 are maximal disjoint filter-ideal

pairs such that 〈G, J〉E〈F, I〉 and 〈F, I〉E〈H,K〉. By the definition of E we have that G ∩ I = ∅

and F ∩K = ∅. We claim that G ∩K = ∅. Notice that since F ∩K = ∅ and 〈F, I〉 is total, it

follows that K ⊆ L\F = I. But G ∩ I = ∅ and hence G ∩K = ∅. By the definition of E we get

〈G, J〉E〈H,K〉 and therefore 〈F, I〉 is transitive.
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For the converse, assume that 〈F, I〉 is not total in L. Take x ∈ L\(F ∪I) and consider the disjoint

filter-ideal pairs 〈↑x, I〉 and 〈F, ↓x〉. These can be extended to maximal disjoint filter-ideal pairs

〈G, J〉 (where ↑x ⊆ G and I ⊆ J) and 〈H,K〉 (with F ⊆ H and ↓x ⊆ K). Since I ⊆ J , we have

G ∩ I = ∅ and hence 〈G, J〉E〈F, I〉. Since F ⊆ H we get F ∩K = ∅ and hence 〈F, I〉E〈H,K〉.

But, since x ∈ G ∩K we do not have 〈G, J〉E〈H,K〉 and so 〈F, I〉 is not transitive.

The following result was first shown in a more restricted context by Gaskill and Nation [13]. This

more general statement is folklore.

Proposition 4.3 ([13, Lemma 1]). Let L be a join-semidistributive lattice with greatest element 1.

Then L has a prime ideal. Dually, if L is a meet-semidistributive lattice with least element 0, then

L has a prime filter.

Proof. Let I be an ideal that is maximal with respect to not containing 1. Suppose that y, z /∈ I.

Then there is an element x ∈ I such that x ∨ y = x ∨ z = 1. Since L satisfies SD∨ we get

x ∨ (y ∧ z) = 1 and hence y ∧ z /∈ I.

Corollary 4.4. Let L be a bounded lattice. If the dual digraph GL = (XL, E) does not have a

transitive vertex then L satisfies neither SD∨ nor SD∧.

Proof. Assume that GL does not have a transitive element. Then every MDFIP of L is such that

F ∪ I )= L. By Proposition 2.3 we have that no filter F ⊆ L can be prime. Since L has both a

greatest and least element, by Proposition 4.3, L cannot be join-semidistributive and it cannot be

meet-semidistributive.

Notice that the converse of Corollary 4.4 does not hold. The lattice L3 from [10] satisfies neither

SD∨ nor SD∧ but there exists a maximal disjoint filter-ideal pair 〈F, I〉 with F ∪ I = L (or, a

total homomorphism from L3 to 2).

As stated earlier, the transitive elements in a finite TiRS digraph can play a special role. Notice

that when a TiRS digraph G is a poset (i.e. it is the dual digraph of a finite distributive lattice)

then every element of G is transitive.

The next lemma captures two familiar facts about finite join-semidistributive and meet-semidistribu-

tive lattices.

Lemma 4.5 ([13, Lemma 1]). (i) The co-atoms of a finite join-semidistributive lattice are meet-

prime.

(ii) The atoms of a finite meet-semidistributive lattice are join-prime.

Proof. We prove only (i) as the proof of (ii) will follow using a dual argument.
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Let L be a finite join-semidistributive lattice and let x ∈ L be a co-atom such that x # a ∧ b

for some a, b ∈ L. Suppose that x # a and x # b. We then have x ∨ a > x and x ∨ b > x.

Since x is a co-atom, we get x ∨ a = 1 = x ∨ b. However, since L is join-semidistributive, we get

x = x ∨ (a ∧ b) = x ∨ a = 1, a contradiction. Thus x # a or x # b.

In the definition below we note that the original source uses ‘arc’ instead of ‘edge’.

Definition 4.6 ([15, Definition 2]). Given a digraph D = (V,E), with vertex set V and edge set

E, a set S ⊆ V is a dominating set if for every vertex v ∈ V \S, there is a vertex u ∈ S such that

uEv.

Proposition 4.7. Let G = (V,E) be a finite TiRS digraph. If G is dual to a finite join-semidis-

tributive lattice L, then the transitive vertices of G form a dominating set.

Proof. Assume that G = GL = (XL, E) for some finite join-semidistributive lattice L. If x is a

vertex of G then x = 〈↑a, ↓b〉 for some a, b ∈ L. Since b )= 1 we have that b ! c for some co-atom c.

By Lemma 4.5 we have that c is meet-prime and so by Proposition 2.3 we know that ↓c is a prime

ideal and that there exists d ∈ L such that ↑d is a prime filter with ↑d ∩ ↓c = ∅ and ↑d ∪ ↓c = L.

By Theorem 4.2, y = 〈↑d, ↓c〉 is a transitive vertex of GL. Since ↓b ⊆ ↓c we have ↑d ∩ ↓b = ∅ and

hence yEx.

The converse of the above proposition does not hold. Let L′ be the diamond M3 with a new top

element t. Then its dual digraph G is the same as the dual digraph of M3 (see Figure 1) except

it has an extra vertex v = 〈↑t, ↓1〉, which is transitive since it is total. In G the edges obviously

go from the vertex v to every other vertex. Hence the set {v} of transitive vertices of G is the

dominating set, yet the lattice L′ is not join-semidistributive as it contains a sublattice isomorphic

to M3 (cf. [10]).

Since transitive elements are connected to join- and meet-prime elements, the previous result

is partly related to how the join-primes or meet-primes sit inside the lattice. The next result

characterises finite TiRS digraphs G dual to finite lattices, in which the transitive vertices of G

form a dominating set.

Theorem 4.8. Let G = (V,E) be a finite TiRS digraph. Then G is dual to a finite lattice L in

which every co-atom is meet-prime if and only if the transitive vertices of G form a dominating

set.

Proof. Let G = (V,E) be the dual digraph GL for some finite lattice L in which every co-atom

is meet-prime. If x ∈ V then x = 〈↑a, ↓b〉 for some a, b ∈ L. Since b )= 1 we have that b ! c for

some co-atom c. By Proposition 2.3 we know that ↓c is a prime ideal and that there exists d ∈ L
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such that ↑d is a prime filter with ↑d ∩ ↓c = ∅ and ↑d ∪ ↓c = L. By Theorem 4.2, y = 〈↑d, ↓c〉 is a

transitive vertex of GL = G. Since ↓b ⊆ ↓c we have ↑d ∩ ↓b = ∅ and hence yEx.

Next, assume that the transitive vertices of G form a dominating set and let c be a co-atom of L.

The pair 〈↑1, ↓c〉 is a disjoint filter-ideal pair that can be extended to a maximal disjoint filter-ideal

pair 〈↑b, ↓c〉. Since the transitive vertices form a dominating set, there exists a transitive vertex

〈↑x, ↓y〉 such that 〈↑x, ↓y〉E〈↑b, ↓c〉, i.e. ↑x ∩ ↓c = ∅. Since 〈↑x, ↓y〉 is transitive, we have by

Proposition 2.3 and Theorem 4.2 that x is join-prime. Now, we have that 〈↑x, ↓c〉 is a disjoint

filter-ideal pair which can be extended to a maximal disjoint filter-ideal pair 〈↑a, ↓c〉 where a ! x.

Since a " c we have c < a ∨ c = 1. Clearly now x ! a ∨ c and hence x ! a or x ! c. The latter

cannot happen as ↑x ∩ ↓c = ∅ so x ! a and hence x = a. Now 〈↑x, ↓c〉 is a maximal disjoint

filter-ideal pair with x join-prime, and hence c is meet-prime.

Remark 4.9. It is well-known (cf. [11, Theorem 2.24]; see also [3, Theorem 3-1.4]) that a finite

lattice L satisfies SD∨ if and only if each element in L has a so-called canonical join representation.

Using [13, Lemma 1(ii)] we are able to show that the equivalent conditions of Theorem 4.8 hold for

the TiRS digraph G dual to a finite lattice L if and only if the top element 1 of L has a canonical

join representation. Since canonical join representations are not the focus of this paper, we have

decided to present the proof in a separate paper where this will be explored with the proper context

and in more depth.

Definition 4.10 ([15, Definition 3]). Given a digraph D = (V,E), with vertex set V and edge set

E, a set S ⊆ V is an in-dominating set if for every vertex v ∈ V \S, there is a vertex u ∈ S such

that vEu.

Theorem 4.11. Let G = (V,E) be a finite TiRS digraph. Then G is dual to a finite lattice L in

which every atom is join-prime if and only if the transitive vertices of G form an in-dominating

set.

Proof. Let GL = (XL, E) be the dual digraph of some finite lattice L in which every atom is

join-prime. If x ∈ V then x = 〈↑a, ↓b〉 for some a, b ∈ L. Assume that x is not transitive. Since

a )= 0 we have that c ! a for some atom c ∈ L. By Proposition 2.3 we know that ↑c is a prime

filter and that there exists d ∈ L such that ↓d is a prime ideal with ↑c ∩ ↓d = ∅ and ↑c ∪ ↓d = L.

By Theorem 4.2, y = 〈↑c, ↓d〉 is a transitive vertex of GL. Since ↑a ⊆ ↑c we have ↑c ∩ ↓b = ∅ and

hence xEy.

Next, assume that the transitive vertices of G = (V,E) form an in-dominating set and let c be

an atom of L. The pair 〈↑c, ↓0〉 is a disjoint filter-ideal pair that can be extended to an MDFIP

〈↑c, ↓b〉. Since the transitive vertices form an in-dominating set, there exists a transitive vertex

〈↑x, ↓y〉 such that 〈↑c, ↓b〉E〈↑x, ↓y〉, i.e. ↑c ∩ ↓y = ∅. Since 〈↑x, ↓y〉 is transitive, we have by

Proposition 2.3 and Theorem 4.2 that y is meet-prime.
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Now, we have that 〈↑c, ↓y〉 is a disjoint filter-ideal pair which can be extended to a maximal disjoint

filter-ideal pair 〈↑c, ↓a〉 where y ! a. Since c " a we have 0 = a ∧ c < c. Clearly now a ∧ c < y

and hence a ! y or c ! y. The latter cannot happen as ↑c ∩ ↓y = ∅ so a ! y and hence y = a.

Now 〈↑c, ↓y〉 is an MDFIP with y is meet-prime, and hence c is join-prime.

Corollary 4.12. Let G = (V,E) be a finite TiRS digraph. If G is dual to a finite meet-

semidistributive lattice L, then the transitive vertices of G form an in-dominating set.

Proof. Let G = (V,E) be a finite TiRS digraph. Assume G is dual to a finite meet-semidistributive

lattice L. Then by Lemma 4.5 the atoms of L are join-prime. It then follows from Theorem 4.11

that the transitive elements of L form an in-dominating set.

We think it is an interesting problem to try and characterise the dual digraphs of finite join-

semidistributive lattices within the class of finite TiRS digraphs whose transitive vertices form a

dominating set (and dually). We attempted to do so but were unable to identify the required

condition.

5 Minimal closure systems from dual digraphs

Closure systems appear in many different areas of mathematics. They were investigated in relation

to join-semidistributive lattices by Adaricheva et al. [1]. A comprehensive account of the theory

can be found in the book chapters by Adaricheva and Nation [4, 5]. The definitions below all follow

the notational conventions used in Adaricheva and Nation [4, Section 4-2] although in some cases

the reference is to another source.

Definition 5.1 ([14, Definition 30]). Let X be a set and φ : ℘(X) → ℘(X). Then φ is a closure

operator on X if for all Y, Z ∈ ℘(X),

(i) Y ⊆ φ(Y ),

(ii) Y ⊆ Z implies φ(Y ) ⊆ φ(Z),

(iii) φ(φ(Y )) = φ(Y ).

If X is a set and φ a closure operator on X then the pair 〈X,φ〉 is called a closure system.

For Y ⊆ X we say that Y is closed if φ(Y ) = Y . The closed sets of a closure operator φ on X

form a complete lattice, denoted by Cld(X,φ).

Example 5.2. Let L be a finite lattice. If a ∈ L let Ja = {x ∈ J(L) | x ! a} and define

τ : ℘(J(L)) → ℘(J(L)) by τ(A) =
⋂
{Ja | a ∈ L and A ⊆ Ja}. Then 〈J(L), τ〉 is a closure system.

Notice that every finite lattice L is isomorphic to Cld(J(L), τ) via the isomorphism a 5→ Ja.
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From any digraph G = (X,E) we get the closure system 〈X,E!
! ◦E

!
"〉 (see [9, Theorem 3.3]). Here

we recall necessary facts from [9, Section 3].

For a digraph G = (X,E) one can consider the triple (called a context) K(G) := (X,X,E!), where

the relation E! ⊆ X ×X is the complement of the digraph relation E: E! = (X × X)\E. One

can then define a Galois connection via so-called polars as follows. The maps

E!
" : (℘(X),⊆) → (℘(X),⊇) and E!

! : (℘(X),⊇) → (℘(X),⊆)

are given by

E!
"(Y ) = { x ∈ X | (∀ y ∈ Y )(y, x) /∈ E },

E!
!(Y ) = { z ∈ X | (∀ y ∈ Y )(z, y) /∈ E }.

The so-called concept lattice CL(K(G)) of the context K(G) = (X,X,E!), given by

CL(K(G)) = { Y ⊆ X | (E!
! ◦ E!

")(Y ) = Y },

is a complete lattice when ordered by inclusion.

The isomorphism in Proposition 5.3 below is different to the original source but is equivalent

because of the one-to-one correspondence between the sets VL andXL. We recall that the definition

of the lattice C(GL) is given directly before Theorem 2.7.

Proposition 5.3 ([9, Proposition 3.1 and Corollary 3.2]). If L is a finite lattice and GL = (XL, E)

is its dual digraph, we have

L ∼= C(GL) ∼= CL(K(GL)).

The map a 5→ { 〈F, I〉 ∈ XL | a ∈ F } is the isomorphism from L to CL(K(GL)).

The definition below is important in understanding the notion of a minimal closure system later

on.

Definition 5.4 ([4, Definition 4-2.1]). Closure systems 〈X,φ〉 and 〈Y,ψ〉 are called equivalent if

Cld(X,φ) ∼= Cld(Y,ψ). Two equivalent systems are called isomorphic if there exists a bijection

ρ : X → Y such that ρ(φ(Z)) = ψ(ρ(Z)) for all Z ⊆ X .

The left-most lattice in Figure 1 is referred to as L∂
4 in [10]. We use this lattice to provide an

illustration of Definition 5.4.

Example 5.5. Let L = L∂
4 and consider its dual digraph GL = (XL, E) = ({cb, de, dc, ea}, E).

From this digraph we get the closure system 〈XL, E!
! ◦ E!

"〉 with

Cld(XL, E
!
! ◦ E!

") = {∅, {cb}, {ea}, {de, dc}, {cb, de, dc}, {ea, de, dc},XL}.
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If we let Y = {cb, de, ea} and φY (S) = Y ∩ (E!
! ◦ E!

")(S) then

Cld(Y,φY ) = {∅, {cb}, {ea}, {de}, {cb, de}, {ea, de}, Y }.

It is easy to see that 〈XL, E!
! ◦E!

" 〉 and 〈Y,φY 〉 are equivalent but not isomorphic.

Proposition 5.6. Let 〈X,φ〉 and 〈Y,ψ〉 be closure systems and let f : X → Y be a mapping. If

f(A) is closed in Y for all closed sets A ⊆ X and f−1(B) is closed in X for all closed sets B ⊆ Y

then f(φ(A)) = ψ(f(A)) for all A ⊆ X.

Proof. Let f be such that f(A) is closed in Y for all closed sets A ⊆ X and f−1(B) is closed

in X for all closed sets B ⊆ Y . Notice that for all S ⊆ X we have that φ(S) =
⋂
{A ⊆ X |

S ⊆ A and A is closed in X}, and similarly for ψ. Let S ⊆ X . To show the inclusion f(φ(A)) ⊆

ψ(f(A)), let B ∈ Cld(Y,ψ) such that f(S) ⊆ B. Then S ⊆ f−1(B). But f−1(B) is closed in X by

our assumption. Hence φ(S) ⊆ f−1(B) = φ(f−1(B)). This implies that f(φ(S)) ⊆ B. Since B was

arbitrary, this is true for all closed sets containing f(S). Therefore f(φ(S)) ⊆ ψ(f(S)) =
⋂
{A ⊆

X | f(S) ⊆ A and A is closed in X}. For the reverse inclusion notice that since A ⊆ φ(A) we get

that f(A) ⊆ f(φ(A)). But f(φ(A)) is closed by our assumption. Thus ψ(f(A)) ⊆ f(φ(A)).

Further, Adaricheva and Nation [4] posed the following problem: given a closure system 〈X,φ〉,

can we find a ⊆-minimal subset Y of X and a closure operator ψ on Y such that 〈Y,ψ〉 is equivalent

to 〈X,φ〉? Such a closure system is then said to be minimal for 〈X,φ〉.

Theorem 5.7 ([5, Lemma 4-2.13]). A closure system 〈X,φ〉 with lattice of closed sets L is minimal

if and only if it is isomorphic to 〈J(L), τ〉.

Proposition 5.8. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then the mapping

f : X → J(L) defined by f(〈F, I〉) =
∧
F is surjective and satisfies f(E!

! ◦ E!
"(S)) = τ(f(S)) for

all S ⊆ X.

Proof. We start by proving the surjectivity of f . Let x ∈ J(L) and let T (x) denote the set

{a ∈ L | x∗ ! a and x " a} where x∗ is the unique lower cover of x. We notice that the set T (x)

is non-empty since x∗ ∈ T (x). Let y ∈ T (x) be a maximal element (which exists since T (x) is a

finite ordered set). Then we claim that 〈↑x, ↓y〉 is an MDFIP. We have that ↑x ∩ ↓y = ∅ since

x " y. Now let 〈↑a, ↓b〉 be an MDFIP such that ↑x ⊆ ↑a and ↓y ⊆ ↓b and 〈↑a, ↓b〉 )= 〈↑x, ↓y〉. We

get two cases from this.

Case 1: If ↑x )= ↑a then a < x so a ! x∗. Thus we get that a ! x∗ ! y ! b, which is a

contradiction.

Case 2: If ↓y )= ↓b then y < b and so x∗ ! y < b. But y is maximal in T (x) so we have that

a ! x ! b. Again, this is a contradiction.
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Thus 〈↑x, ↓y〉 is an MDFIP and f(〈↑x, ↓y〉) = x. Hence f is surjective.

To help us prove that f preserves closure, we define Ba = {〈F, I〉 ∈ XL | a ∈ F} and Ja = {x ∈

J(L) | x ! a} for a ∈ L. Notice that the closed sets from 〈XL, E!
! ◦E

!
"〉 are exactly the sets Ba for

all a ∈ L and the closed sets from 〈J(L), τ〉 are exactly the sets Ja for all a ∈ L (see Proposition 5.3

and Example 5.2). We claim that f(Ba) = Ja and f−1(Ja) = Ba for all a ∈ L.

Let a ∈ L. We prove firstly that f(Ba) = Ja. To show the inclusion f(Ba) ⊆ Ja, let x ∈ f(Ba).

Then x =
∧
F for some 〈F, I〉 ∈ Ba. Since 〈F, I〉 ∈ Ba we have that a ∈ F . This implies that

x ! a. But x ∈ J(L) and thus x ∈ Ja. To show the reverse inclusion f(Ba) ⊇ Ja, let x ∈ Ja. Then

by the surjectivity there is y ∈ L such that 〈↑x, ↓y〉 ∈ XL. Then since x ∈ Ja, we have that x ! a.

This implies that a ∈ ↑x and that 〈↑x, ↓y〉 ∈ Ba. Since 〈↑x, ↓y〉 ∈ Ba, we get that x ∈ f(Ba).

Thus f(Ba) = Ja.

Now we prove that f−1(Ja) = Ba for all a ∈ L. To show f−1(Ja) ⊆ Ba, let 〈F, I〉 ∈ f−1(Ja).

Then f(〈F, I〉) = x ∈ Ja. Since x ∈ Ja, we have that x ! a and that a ∈ ↑x = F . Therefore

〈F, I〉 ∈ Ba. To show f−1(Ja) ⊇ Ba, let 〈F, I〉 ∈ Ba. Then a ∈ F and f(〈F, I〉) =
∧
F ! a.

Therefore f(〈F, I〉) ∈ Ja and 〈F, I〉 ∈ f−1(Ja). Thus f−1(Ja) = Ba.

By Proposition 5.6 we get f(E!
! ◦ E!

"(S)) = τ(f(S)) for all S ⊆ X .

The main result of this section is the theorem below. We again refer the reader to Figure 1 for

basic illustrative examples, while Example 5.5 provides a demonstration of what can happen when

L is not meet-semidistributive.

Theorem 5.9. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then 〈XL, E!
! ◦ E!

"〉

is a minimal closure system for itself if and only if L is meet-semidistributive.

Proof. The necessity will be proved by contraposition. Assume L is not meet-semidistributive. By

Proposition 5.8 we have that |J(L)| ≤ |XL| since f is surjective. But by Theorem 3.2 there exist

distinct MDFIPs 〈↑x, ↓y〉 and 〈↑x, ↓z〉 where x ∈ J(L). This implies that f is not injective and

hence |J(L)| < |XL|. Therefore by [5, Lemma 4-2.13], 〈X,E!
! ◦ E!

"〉 is not minimal.

For the sufficiency, assume that L is meet-semidistributive. We will show that f defined in Propo-

sition 5.8 is a bijection. We only need to show that f is injective. Let 〈F, I〉, 〈G, J〉 ∈ X be

such that f(〈F, I〉) = f(〈G, J〉) = x. Then F = G = ↑x. By Theorem 3.2 we have that I = J .

Therefore 〈F, I〉 = 〈G, J〉 and hence f is injective. Thus it follows from Propositions 5.6 and 5.8

that f is an isomorphism of closure systems. By [5, Lemma 4-2.13] this implies that 〈X,E!
! ◦E!

"〉

is minimal.

Before stating the dual of Theorem 5.9, we need to make some observations. As observed earlier in

the section, if L is a finite lattice, with GL = (XL, E) its dual digraph, then L ∼= Cld(XL, E!
!◦E

!
") ∼=
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Cld(J(L), τ). If we reverse the order of the polar maps E!
! and E!

" , we again get a closure operator,

but with L∂ ∼= Cld(XL, E!
"◦E

!
!). For a finite lattice L, it is easy to show that g : XL → XL∂ , defined

for 〈↑a, ↓b〉 ∈ XL by g(〈↑a, ↓b〉) = 〈↑b, ↓a〉, is a bijection. From this we get that 〈XL, E!
" ◦ E!

!〉 is

isomorphic to 〈XL∂ , E!
! ◦ E!

"〉.

Theorem 5.10. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then 〈XL, E!
" ◦E!

!〉

is a minimal closure system for itself if and only if L is join-semidistributive.

Proof. We know that L is join-semidistributive if and only if L∂ is meet-semidistributive. We can

then apply Theorem 5.9 to the closure system 〈XL∂ , E!
! ◦ E!

"〉.

Corollary 5.11. Let L be a finite lattice and GL = (XL, E) its dual digraph. Then 〈XL, E!
! ◦E

!
"〉

and 〈XL, E!
" ◦E

!
!〉 are minimal closure systems for themselves if and only if L is semidistributive.

6 Conclusion and future research

In this paper we characterised dual digraphs of finite meet-semidistributive, join-semidistributive

and semidistributive lattices. We combined Urquhart’s and Ploščica’s representations of finite

lattices in the following sense: the vertices of our dual digraphs were maximal disjoint filter-ideal

pairs of the lattice in the Urquhart style, but we mainly viewed the duals as TiRS digraphs using

the Ploščica binary relation E on the vertices. We introduced transitive vertices in our digraphs

and explored their role in the domination theory. In particular, we characterised the finite lattices

with the property that in their dual digraphs the transitive vertices form a dominating set resp. an

in-dominating set. Finally, we characterised finite meet-semidistributive and join-semidistributive

lattices via minimal closure systems on the set of vertices of their dual digraphs.

We wish to take note of two other settings in which dual representations of finite semidistributive

lattices have been developed. The older of these is that of Formal Concept Analysis, where a char-

acterisation of both finite join-semidistributive and meet-semidistributive lattices is available [12,

Section 6.3]. There is also a recent paper by Reading, Speyer and Thomas [19] where they give a

representation of finite semidistributive lattices via two-acyclic factorization systems. They define

a two-acyclic factorization system to be a 4-tuple 〈W,→,$, ↪→〉 with a set W and three binary

relations →, ↪→,$ on W . The relations $ and ↪→ are required to be partial orders. The repre-

sentation then comes from defining a factorization system on the set of join-irreducible elements

of a semidistributive lattice. The triple (X, ↪→,$) is isomorphic to Urquhart’s dual of the lattice

L. We note that, in our representation, join- and meet-semidistributive lattices can be considered

separately, but in the setting of factorization systems this separation is not yet possible (see [19,

Remark 5.14]).
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Lastly, we wish to point to some promising directions for future research. These would build on the

representation of finite join- and meet-semidistributive lattices obtained in Section 3. The first of

these would be to attempt to study finite sublattices of free lattices via their dual digraphs. This

would require first finding a dual description of the well-known Whitman’s Condition. The second

direction would be the study of finite convex geometries (see [1, 5]) via their dual digraphs. Finite

convex geometries are closure systems that are often studied via their lattice of closed sets. These

lattices of closed sets are join-semidistributive and lower semimodular. Work is already under way

to find a dual characterisation of upper and lower semimodularity.
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[2] K. Adaricheva, M. Maróti, R. McKenzie, J. B. Nation and E. R. Zenk, “The Jónsson–Kiefer

Property”, Studia Logica, vol. 83, no. 1–3, pp. 111–131, 2006.

[3] K. Adaricheva and J. B. Nation, “Classes of semidistributive lattices”, in Lattice Theory:

Special Topics and Applications, vol. 2, G. Grätzer and F. Wehrung, Basel: Birkhäuser, 2016,
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Birkhäuser, 2016, pp. 103–151.

[5] K. Adaricheva and J. B. Nation, “Convex geometries”, in Lattice Theory: Special Topics and

Applications, vol. 2, G. Grätzer and F. Wehrung, Basel: Birkhäuser, 2016, pp. 153–179.
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1 Introduction

Global existence for nonlinear wave equations is an important mathematical topic. Mathemati-

cians, including F. John, S. Kleinerman, L. Hörmander, etc., have made investigations to this

subject. The first non-trivial long-time existence result was established by F. John and S. Klein-

erman in [19], where it is proved the almost global existence for a class 3D quasilinear scalar wave

equations. Global existence for 3D quasilinear wave equations was established firstly by S. Klein-

erman in [20] and by D. Christodoulou, independently by S. Kleinerman, in [5]. The problem in

2D case is quite delicate. Introducing the ghost weight, in [1] was proved the global well-posedness

for a class 2D nonlinear wave equations. Using a class Hardy-type inequality depending on the

compact support of the initial data, in [21] was proved almost global existence for 2D case. Here

we propose a new approach for investigations for classical solutions of a class 2D nonlinear wave

equations. We investigate for existence of at least two positive solutions for the following IVP

utt ��u = f(t, x, u, ut, ux), t > 0, x = (x1, x2) 2 R2
,

u(0, x) = u0(x), x = (x1, x2) 2 R2
, (1.1)

ut(0, x) = u1(x), x = (x1, x2) 2 R2
,

where �u = ux1x1 + ux2x2 , ux = (ux1 , ux2).

The initial value problem (1.1) has attracted considerable attention in the mathematical community

and the well-posedness theory in the Sobolev spaces for polynomial type nonlinearities has been

extensively studied. The case of exponential nonlinearity was recently investigated (see [18] and

references therein). In particular, if the nonlinearity f and the initial data u0, u1 are smooth then

the Cauchy problem (1.1) has a classical local (in time) solution. This follows from Duhamel’s

formula via the usual fixed point argument in the space H
s
loc ⇥H

s�1
loc , s > 2. Such an s guarantee

that u, ut,ru are in L
1. Note that u 2 H

s
loc means that the H

s norm over a ball centered at x0

and with radius 1 is uniformly bounded by a constant independent of x0. We refer the reader to

[23] and references therein for more properties and information on nonlinear wave equations. In

[17] is proved existence and uniqueness of generalized solutions of the first initial boundary value

problem for strongly hyperbolic systems in bounded domains. In the case when

f(t, x, u, ut, ux) = f(u(x)), t > 0, x 2 R2
,

and

u0(x) = u1(x) = 0, x 2 R2
,

the problem (1.1) is investigated in [14] where the authors prove existence of at least one nontrivial

classical solution of the problem (1.1).
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We make the following assumptions on the non-linearity and initial data trough the paper.

(H1) u0, u1 2 C2(R2),

0  u0, |u0x1 |, |u0x1x1 |, |u0x2 |, |u0x2x2 |  r,

0  u1, |u1x1 |, |u1x1x1 |, |u1x2 |, |u1x2x2 |  r on R2
,

where r > 0 is a given constant.

(H2) f 2 C([0,1)⇥ R6),

0  f(t, x, w1, w2, w3, w4)


lX

j=1

(aj(t, x)|w1|pj + bj(t, x)|w2|pj + cj(t, x)|w3|pj + dj(t, x)|w4|pj ) ,

(t, x) 2 [0,1)⇥ R2, where aj , bj , cj , dj 2 C([0,1)⇥ R2),

0  aj , bj , cj , dj  a, pj > 0, j 2 {1, . . . , l},

where a > 0 and l 2 N are given constants.

Our main result reads as follows.

Theorem 1.1. Suppose (H1) and (H2). Then the IVP (1.1) has at least two nonnegative classical

solutions.

To prove our main result we use a new topological approach. This approach can be used for

investigations for existence of at least one and at least two classical solutions for initial value

problems, boundary value problems and initial boundary value problems for some classes ordinary

di↵erential equations, partial di↵erential equations and fractional di↵erential equations (see [2,

3, 4, 7, 10, 12, 13, 15, 16] and references therein). So far, for the authors they are not known

investigations for existence of multiple solutions for the IVP (1.1).

The paper is organized as follows. In the next section, we give some auxiliary results. In Section

3, we prove our main result. In Section 4, we give an example.
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2 Auxiliary Results

Let X be a real Banach space.

Definition 2.1. A mapping K : X ! X is said to be completely continuous if it is continuous

and maps bounded sets into relatively compact sets.

The concept for k-set contraction is related to that of the Kuratowski measure of noncompactness

which we recall for completeness.

Definition 2.2. Let ⌦X be the class of all bounded sets of X. The Kuratowski measure of non-

compactness ↵ : ⌦X ! [0,1) is defined by

↵(Y ) = inf

8
<

:� > 0 : Y =
m[

j=1

Yj and diam(Yj)  �, j 2 {1, . . . ,m}

9
=

; ,

where diam(Yj) = sup{kx� ykX : x, y 2 Yj} is the diameter of Yj, j 2 {1, . . . ,m}.

For the main properties of measure of noncompactness we refer the reader to [6].

Definition 2.3. For a given number k � 0, a map K : X ! X is said to be k-set contraction if

it is continuous, bounded and

↵(K(Y ))  k↵(Y )

for any bounded set Y ⇢ X.

Obviously, if K : X ! X is a completely continuous mapping, then K is 0-set contraction.

Definition 2.4. Let X and Y be real Banach spaces. A mapping K : X ! Y is said to be

expansive if there exists a constant h > 1 such that

kKx�KykY � hkx� ykX

for any x, y 2 X.

Definition 2.5. A closed, convex set P in X is said to be a cone if

(1) ↵x 2 P for any ↵ � 0 and for any x 2 P,

(2) x,�x 2 P implies x = 0.
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Let P ⇢ X be a cone and define

P⇤ = P\{0},

Pr1 =

⇢
u 2 P : kuk  r1

�
,

Pr1,r2 =

⇢
u 2 P : r1  kuk  r2

�

for positive constants r1, r2 such that 0 < r1  r2. The following result will be used to prove

Theorem 1.1 . We refer the reader to [8] and [11] for more details.

Theorem 2.6. Let P be a cone of a Banach space E; ⌦ a subset of P and U1, U2 and U3 three

open bounded subsets of P such that U1 ⇢ U2 ⇢ U3 and 0 2 U1. Assume that T : ⌦ ! P is an

expansive mapping with constant h > 1, S : U3 ! E is a k-set contraction with 0 6 k < h� 1 and

S(U3) ⇢ (I � T )(⌦). Suppose that (U2 \ U1) \ ⌦ 6= ;, (U3 \ U2) \ ⌦ 6= ;, and there exists u0 2 P⇤

such that the following conditions hold:

(i) Sx 6= (I � T )(x� �u0), for all � > 0 and x 2 @U1 \ (⌦+ �u0),

(ii) there exists ✏ > 0 such that Sx 6= (I � T )(�x), for all � � 1 + ✏, x 2 @U2 and �x 2 ⌦,

(iii) Sx 6= (I � T )(x� �u0), for all � > 0 and x 2 @U3 \ (⌦+ �u0).

Then T + S has at least two non-zero fixed points x1, x2 2 P such that

x1 2 @U2 \ ⌦ and x2 2 (U3 \ U2) \ ⌦

or

x1 2 (U2 \ U1) \ ⌦ and x2 2 (U3 \ U2) \ ⌦.

Note that (see [9]) the function

G(t, x, ⌧, ⇠) = � 1

2⇡

H(t� ⌧ � |x� ⇠|)p
(t� ⌧)2 � |x� ⇠|2

, t, ⌧ > 0, x, ⇠ 2 R2
,

where |x � ⇠| =
p
(x1 � ⇠1)2 + (x2 � ⇠2)2, is the Green function for the two-dimensional wave

equation

utt ��u = h(t, x), t > 0, x = (x1, x2) 2 R2
,

u(0, x) = ut(0, x) = 0, x = (x1, x2) 2 R2
,

where H(·) denotes the Heaviside function. Observe that

G(t, x, ⌧, ⇠)  0, t, ⌧ > 0, x, ⇠ 2 R2
.
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A key lemma in our proof is the following.

Lemma 2.7. For h1, h2, p > 0, we have

����
Z

R2

Z 1

0
(h1 + h2⌧)

p
G(t, x, ⌧, ⇠)d⌧d⇠

����  (h1 + h2t)
p
I(t), (t, x) 2 (0,1)⇥ R2

, (2.1)

where I(t) = t
3 + t

2(1 + | log t|).

Proof. Let h1, h2, p > 0 and t > 0. One has

����
Z

R2

Z 1

0
(h1 + h2⌧)

p
G(t, x, ⌧, ⇠)d⌧d⇠

���� 
1

2⇡

Z

|x�⇠|t

Z t�|x�⇠|

0

(h1 + h2⌧)pp
(t� ⌧)2 � |x� ⇠|2

d⌧d⇠

 (h1 + h2t)p

2⇡

Z

|x�⇠|t

⇣
log(t+

p
t2 � |x� ⇠|2)� log |x� ⇠|

⌘
d⇠

=
(h1 + h2t)p

2⇡

 Z

|x�⇠|t
log(t+

p
t2 � |x� ⇠|2)d⇠ �

Z

|x�⇠|t
log |x� ⇠|d⇠

!

 (h1 + h2t)p

2⇡

 
log(2t)

Z

|x�⇠|t
d⇠ � 2⇡

Z t

0
r1 log r1dr1

!

=
(h1 + h2t)p

2⇡

✓
⇡t

2 log(2t)� ⇡

✓
t
2 log t� t

2

2

◆◆

 (h1 + h2t)p

2

✓
t
2 log(1 + 2t) + t

2| log t|+ t
2

2

◆

 (h1 + h2t)p

2

✓
2t3 + t

2| log t|+ t
2

2

◆

 (h1 + h2t)
p
�
t
3 + t

2(1 + | log t|)
�
.

This gives (2.1) as desired.

We make the change u = v + u0 + tu1. Then, we get the IVP

vtt ��v = f(t, x, v + u0 + tu1, vt + u1, vx + u0x + tu1x) +�u0 + t�u1

= f1(t, x, v, vt, vx), t > 0, x 2 R2
, (2.2)

v(0, x) = vt(0, x) = 0, x 2 R2
.

Lemma 2.8. Suppose (H2). If wk 2 R, |wk|  b, k 2 {1, . . . , 4}, for some positive b, then

f(t, x, w1, w2, w3, w4)  4a
lX

j=1

b
pj .



CUBO
24, 3 (2022)

Two nonnegative solutions for two-dimensional nonlinear... 399

Proof. We have

0  f(t, x, w1, w2, w3, w4)


lX

j=1

(aj(t, x)|w1|pj + bj(t, x)|w2|pj + cj(t, x)|w3|pj + dj(t, x)|w4|pj )


lX

j=1

(abpj + ab
pj + ab

pj + ab
pj )

= 4a
lX

j=1

b
pj , (t, x, w1, w2, w3, w4) 2 [0,1)⇥ R6

.

This completes the proof.

Let E = C2([0,1)⇥ R2) and for any u 2 E, denote

kuk = max

⇢
kuk1, kutk1, kuttk1kuxjk1, kuxjxjk1, j 2 {1, 2}

�
,

provided that it is finite, where

kvk1 = sup
(t,x)2[0,1)⇥R2

|v(t, x)|.

Lemma 2.9. Suppose (H1) and (H2). Let v 2 E, kvk  b, for some positive b. Then

f(t, x, v + u0 + tu1, vt + u1, vx + u0x + tu1x)  4a
lX

j=1

(b+ r(1 + t))pj , (t, x) 2 [0,1)⇥ R2
.

Proof. Let

w1 = v + u0 + tu1,

w2 = vt + u0 + tu1,

w3 = ux1 + u0x1 + tu1x1 ,

w4 = vx2 + u0x2 + tu1x2 .

Then

|wj |  b+ r(1 + t), j 2 {1, . . . , 4}, t � 0.

Hence and Lemma 2.8, we get the desired result. This completes the proof.
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Lemma 2.10. Suppose (H1) and (H2). Let v 2 E, kvk  b, for some positive b. Then

|f1(t, x, v, vt, vx)|  4a
lX

j=1

(b+ r(1 + t))pj + 2r(1 + t), (t, x) 2 [0,1)⇥ R2
.

Proof. By (H1), we get

|�u0|  2r, |�u1|  2r on R2
.

Using Lemma 2.9, we obtain

|f1(t, x, v, vt, vx)|  f(t, x, v + u0 + tu1, vt + u1, vx + u0x + tu1x) + |�u0|+ t|�u1|

 4a
lX

j=1

(b+ r(1 + t))pj + 2r(1 + t), (t, x) 2 [0,1)⇥ R2
.

This completes the proof.

Now, applying Lemma 2.10 and (2.1), we obtain the following result.

Lemma 2.11. Suppose (H1) and (H2). Then

����
Z

R2

Z 1

0
G(t, x, ⌧, ⇠)f1(⌧, ⇠, v(⌧, ⇠), vt(⌧, ⇠), vx(⌧, ⇠))d⌧d⇠

����



0

@4a
lX

j=1

(b+ r(1 + t))pj + 2r(1 + t)

1

A I(t)



0

@4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj t
pj + 2r(1 + t)

1

A I(t), (t, x) 2 [0,1)⇥ R2
.

Take a nonnegative function g 2 C([0,1)⇥ R2). Suppose that v 2 E is a solution to the integral

equation.

0 =
1

8

Z t

0

Z x1

0

Z x2

0
(x1 � s1)

2(x2 � s2)
2(t� t1)

2
g(t1, s1, s2)v(t1, s1, s2)ds2ds1dt1

� 1

16⇡

Z t

0

Z x1

0

Z x2

0
(x1 � s1)

2(x2 � s2)
2(t� t1)

2
g(t1, s1, s2)

Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1ds2ds1dt1, (2.3)

t � 0, (x1, x2) 2 R2. We di↵erentiate three times in t, three times in x1 and three times in x2 the

equation (2.3) and we obtain

0 = g(t, x)v(t, x)� 1

2⇡
g(t, x)

Z

R2

Z 1

0
G(t, x, ⌧, ⇠)f1(⌧, ⇠, v(⌧, ⇠), vt(⌧, ⇠), vx(⌧, ⇠))d⌧d⇠,
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t � 0, x 2 R2, whereupon

0 = v(t, x)� 1

2⇡

Z

R2

Z 1

0
G(t, x, ⌧, ⇠)f1(⌧, ⇠, v(⌧, ⇠), vt(⌧, ⇠), vx(⌧, ⇠))d⌧d⇠,

t � 0, x 2 R2. Hence, using the Green function, we conclude that v is a solution of the IVP (2.2).

Thus, any solution v 2 E of the integral equation (2.3) is a solution to the IVP (2.2).

(H3) Let m > 0 be large enough and A, r1, L1, R1 be positive constants that satisfy the following

conditions

r1 < L1 < R1, r1 < r, R1 >

✓
2

5m
+ 1

◆
L1,

A

0

@R1 + 4a
lX

j=1

(2(R1 + r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A <
L1

20
.

(H4) There exists a nonnegative function g 2 C([0,1)⇥ R2) such that

q(t, x1, x2) =

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)g(t1, s1, s2)

⇥
�
1 + |x1 � s1|+ (x1 � s1)

2
� �

1 + |x2 � s2|+ (x2 � s2)
2
�

⇥
�
1 + (t� t1) + (t� t1)

2
�
0

@1 +

0

@1 + t1 +
lX

j=1

t
pj

1

1

A I(t1)

1

A ds2ds1dt1

 A, (t, x1, x2) 2 [0,1)⇥ R2
.

In the last section we will give an example for the constants m, A, r, L1, R1 and R and for a

function g that satisfy (H3) and (H4). For v 2 E, define the operator

Fv(t, x1, x2) =
1

8

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2
g(t1, s1, s2)

⇥ v(t1, s1, s2)ds2ds1dt1

� 1

16⇡

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2
g(t1, s1, s2)

⇥
Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1ds2ds1dt1,

(t, x1, x2) 2 [0,1)⇥ R2.

Lemma 2.12. Suppose (H1)–(H3). Then, for v 2 E, kvk  b, for some positive b, we have

kFvk  A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A .
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Proof. Using Lemma 2.11 and (H3), we get

|Fv(t, x1, x2)| 
1

8

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2
g(t1, s1, s2)

⇥ |v(t1, s1, s2)|ds2ds1dt1

+
1

16⇡

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2
g(t1, s1, s2)

⇥
����
Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1

����ds2ds1dt1

 bA+ 4a
lX

j=1

(2(b+ r))pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2

⇥ g(t1, s1, s2)I(t1)ds2ds1dt1

+ 4a
lX

j=1

(2r)pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2

⇥ g(t1, s1, s2)t
pj

1 I(t1)ds2ds1dt1

+ 2r

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

2

⇥ g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1

 A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2, and

����
@

@t
Fv(t, x1, x2)

���� 
1

4

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)g(t1, s1, s2)

⇥ |v(t1, s1, s2)|ds2ds1dt1

+
1

8⇡

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)g(t1, s1, s2)

⇥
����
Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1

����ds2ds1dt1

 bA

+ 4a
lX

j=1

(2(b+ r))pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

⇥ g(t1, s1, s2)I(t1)ds2ds1dt1
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+ 4a
lX

j=1

(2r)pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

⇥ g(t1, s1, s2)t
pj

1 I(t1)ds2ds1dt1

+ 2r

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2(t� t1)

⇥ g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1

 A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2, and

����
@
2

@t2
Fv(t, x1, x2)

���� 
1

4

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2
g(t1, s1, s2)

⇥ |v(t1, s1, s2)|ds2ds1dt1

+
1

8⇡

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2
g(t1, s1, s2)

⇥
����
Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1

����ds2ds1dt1

 bA+ 4a
lX

j=1

(2(b+ r))pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2

⇥ g(t1, s1, s2)I(t1)ds2ds1dt1

+ 4a
lX

j=1

(2r)pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2

⇥ g(t1, s1, s2)t
pj

1 I(t1)ds2ds1dt1

+ 2r

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x1 � s1)

2(x2 � s2)
2

⇥ g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1

 A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2, and

����
@

@x1
Fv(t, x1, x2)

���� 
1

4

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)|x1 � s1|(x2 � s2)

2(t� t1)
2
g(t1, s1, s2)

⇥ |v(t1, s1, s2)|ds2ds1dt1

+
1

8⇡

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)|x1 � s1|(x2 � s2)

2(t� t1)
2
g(t1, s1, s2)
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⇥
����
Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1

����ds2ds1dt1

 bA

+ 4a
lX

j=1

(2(b+ r))pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)|x1 � s1|(x2 � s2)

2(t� t1)
2

⇥ g(t1, s1, s2)I(t1)ds2ds1dt1

+ 4a
lX

j=1

(2r)pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)|x1 � s1|(x2 � s2)

2(t� t1)
2

⇥ g(t1, s1, s2)t
pj

1 I(t1)ds2ds1dt1

+ 2r

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)|x1 � s1|(x2 � s2)

2(t� t1)
2

⇥ g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1

 A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2, and

����
@
2

@x
2
1

Fv(t, x1, x2)

���� 
1

4

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x2 � s2)

2(t� t1)
2
g(t1, s1, s2)

⇥ |v(t1, s1, s2)|ds2ds1dt1

+
1

8⇡

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x2 � s2)

2(t� t1)
2
g(t1, s1, s2)

⇥
����
Z 1

�1

Z 1

�1

Z 1

0
G(t1, s1, s2, t2, ⇠1, ⇠2)

⇥ f1(t2, ⇠1, ⇠2, v(t2, ⇠1, ⇠2), vt(t2, ⇠1, ⇠2), vx(t2, ⇠1, ⇠2))dt2d⇠2d⇠1

����ds2ds1dt1

 bA

+ 4a
lX

j=1

(2(b+ r))pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x2 � s2)

2(t� t1)
2

⇥ g(t1, s1, s2)I(t1)ds2ds1dt1

+ 4a
lX

j=1

(2r)pj

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x2 � s2)

2(t� t1)
2

⇥ g(t1, s1, s2)t
pj

1 I(t1)ds2ds1dt1

+ 2r

Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)(x2 � s2)

2(t� t1)
2

⇥ g(t1, s1, s2)(1 + t1)I(t1)ds2ds1dt1
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 A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2. As above, one can obtain

����
@

@x2
Fv(t, x1, x2)

����  A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2, and

����
@
2

@x
2
2

Fv(t, x1, x2)|  A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A ,

(t, x1, x2) 2 [0,1)⇥ R2. Consequently

kFvk  A

0

@b+ 4a
lX

j=1

(2(b+ r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A .

This completes the proof.

3 Proof of the Main Result

Let

eP = {u 2 E : u � 0 on [0,1)⇥ R2}.

With P we will denote the set of all equi-continuous families in eP. Note that Fv � 0 for any

v 2 P. Let ✏ > 0. For v 2 E, define the operators

Tv(t, x) = (1 +m✏)v(t, x)� ✏
L1

10
,

Sv(t, x) = �✏Fv(t, x)�m✏v(t, x)� ✏
L1

10
,

(t, x) 2 [0,1) ⇥ R2. Note that any fixed point v 2 E of the operator T + S is a solution to the

IVP (2.2). Define

U1 = Pr1 = {v 2 P : kvk < r1},

U2 = PL1 = {v 2 P : kvk < L1},

U3 = PR1 = {v 2 P : kvk < R1},
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R2 = R1 +
A

m

0

@R1 + 4a
lX

j=1

(2(R1 + r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A+
L1

5
,

⌦ = PR2 = {v 2 P : kvk  R2}.

1. For v1, v2 2 ⌦, we have

kTv1 � Tv2k = (1 +m✏)kv1 � v2k,

whereupon T : ⌦ ! E is an expansive operator with a constant 1 +m✏ > 1.

2. For v 2 PR1 , we get

kSvk  ✏kFvk+m✏kvk+ L1

10

 ✏

✓
A

0

@R1 + 4a
lX

j=1

(2(R1 + r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A+mR1 +
L1

10

◆
.

Therefore S(PR1) is uniformly bounded. Since S : PR1 ! E is continuous, we have that

S(PR1) is equi-continuous. Consequently S : PR1 ! E is a 0-set contraction.

3. Let v1 2 PR1 . Set

v2 = v1 +
1

m
Fv1 +

L1

5m
.

Note that by the second inequality of (H3) and by Lemma 2.12, it follows that ✏Fv+✏
L1
5 � 0

on [0,1)⇥ R2. We have v2 � 0 on [0,1)⇥ R2 and

kv2k  kv1k+
1

m
kFv1k+

L1

5m

 R1 +
A

m

✓
R1 + 4a

lX

j=1

(2(R1 + r))pj + 4a
lX

j=1

(2r)pj + 2r

◆
+

L1

5

= R2.

Therefore v2 2 ⌦ and

�✏mv2 = �✏mv1 � ✏Fv1 � ✏
L1

10
� ✏

L1

10

or

(I � T )v2 = �✏mv2 + ✏
L1

10
= Sv1.

Consequently S(PR1) ⇢ (I � T )(⌦).

4. Suppose that there exists an v0 2 P⇤ such that T (v��v0) 2 P, v 2 @Pr1 , v 2 @Pr1

T
(⌦+�u0)
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and Sv = v � �v0 for some � � 0. Then

r1 = kv � �v0k

= kSvk

� �Sv(t, x)

= ✏Fv(t, x) + ✏mv(t, x) + ✏
L1

10

� ✏
L1

20
, (t, x) 2 [0,1)⇥ R2

,

because by the second inequality of (H3) and by Lemma 2.12, it follows that ✏Fv+ ✏
L1
20 � 0

on [0,1)⇥ R2.

5. Suppose that for any ✏1 > 0 small enough there exist a u 2 @PL and �1 � 1 + ✏1 such that

�1u 2 PR1 and

Su = (I � T )(�1u). (3.1)

In particular, for ✏1 >
2

5m , we have u 2 @PL, �1u 2 PR1 , �1 � 1 + ✏1 and (3.1) holds. Since

u 2 @PL and �1u 2 PR1 , it follows that

✓
2

5m
+ 1

◆
L < �1L = �1kuk  R1.

Moreover,

�✏Fu�m✏u� ✏
L

10
= ��1m✏u+ ✏

L

10
,

or

Fu+
L

5
= (�1 � 1)mu.

From here,

2
L

5
�
����Fu+

L

5

���� = (�1 � 1)mkuk = (�1 � 1)mL

and
2

5m
+ 1 � �1,

which is a contradiction.

Therefore all conditions of Theorem 2.6 hold. Hence, the IVP (2.2) has at least two solutions v1

and v2 so that

r1 < kv1k < L1 < kv2k < R1,

and

u = v1 + u0 + tu1, w = v2 + u0 + tu1
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are two di↵erent positive solutions of the IVP (1.1). This completes the proof.

4 An Example

Let

l = 1, p1 =
3

5
, R1 = r = 1, a = 200, L1 =

1

2
, r1 =

1

100
,

m = 1050, ✏ = 50, A =
1

1010
, R = 100.

Then

R1 >

✓
2

5m
+ 1q

◆
L1, r1 < L1 < R1, r1 <

L1

20
.

Also,

A

0

@R1 + 4a
lX

j=1

(2(R1 + r))pj + 4a
lX

j=1

(2r)pj + 2r

1

A =
1

1010
�
1 + 800 · (4)2 + 800 · 4 + 2

�

<
1

40
=

L1

20
.

Consequently (H3) holds. Now, we will construction the function g in (H4). Let

h(x) = log
1 + s

11
p
2 + s

22

1� s11
p
2 + s22

, l(s) = arctan
s
11
p
2

1� s22
, s 2 R.

Then

h
0(s) =

22
p
2s10(1� s

22)

(1� s11
p
2 + s22)(1 + s11

p
2 + s22)

,

l
0(s) =

11
p
2s10(1 + s

20)

1 + s40
, s 2 R.

Therefore

�1 < lim
s!±1

(1 + s+ s
2)h(s) < 1,

�1 < lim
s!±1

(1 + s+ s
2)l(s) < 1.

Hence, there exists a positive constant C1 so that

(1 + s+ s
2)

 
1

44
p
2
log

1 + s
11
p
2 + s

22

1� s11
p
2 + s22

+
1

22
p
2
arctan

s
11
p
2

1� s22

!
 C1, s 2 R.
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Note that by [22, p. 707, Integral 79], we have

Z
dz

1 + z4
=

1

4
p
2
log

1 + z
p
2 + z

2

1� z
p
2 + z2

+
1

2
p
2
arctan

z
p
2

1� z2
.

Let

Q(s) =
s
10

(1 + s44)(1 + s+ s2)2(1 + ((1 + s+ s2)I(s))2)
, s 2 R,

and

g1(t, x1, x2) = Q(t)Q(x1)Q(x2), t 2 [0,1), x1, x2 2 R.

Then there exists a constant C2 > 0 so that

C2 �
Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)g1(t1, s1, s2)

⇥
�
1 + |x1 � s1|+ (x1 � s1)

2
� �

1 + |x2 � s2|+ (x2 � s2)
2
�

⇥
�
1 + (t� t1) + (t� t1)

2
� �

1 + (1 + t1 + t
2
1)I(t1)

�
ds2ds1dt1, (t, x1, x2) 2 [0,1)⇥ R2

.

Now, we take

g(t, x1, x2) =
1

1020C2
g1(t, x1, x2), (t, x1, x2) 2 [0,1)⇥ R2

.

Then

A =
1

1010

�
Z t

0

Z x1

0

Z x2

0
sign(x1)sign(x2)g(t1, s1, s2)

⇥
�
1 + |x1 � s1|+ (x1 � s1)

2
� �

1 + |x2 � s2|+ (x2 � s2)
2
�

⇥
�
1 + (t� t1) + (t� t1)

2
� �

1 + (1 + t1 + t
2
1)I(t1)

�
ds2ds1dt1, (t, x1, x2) 2 [0,1)⇥ R2

.

Now, consider the IVP

utt � ux1x1 � ux2x2 = w(t)u
3
5 , (t, x1, x2) 2 (0,1)⇥ R2

,

u(0, x) = ut(0, x) = 0, (x1, x2) 2 R2
, (4.1)

where

w(t) =

8
>><

>>:

10(9t2 � 9t+ 2) t 2 [0, 1]

20 t > 1.
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Here l = 1,

a1(t, x1, x2) = |w(t)|  a = 200,

b1(t, x1, x2) = c1(t, x1, x2) = d1(t, x1, x2) = 0,

(t, x1, x2) 2 [0,1)⇥ R2, and

u0(x) = u1(x) = 0  1 = r, (x1, x2) 2 R2
.

We have that (H1) and (H2) hold. The IVP (4.1) has two nonnegative solutions u1(t, x) = 0,

(t, x) 2 [0,1)⇥ R2, and

u2(t, x) =

8
>><

>>:

(t(1� t))5 (t, x) 2 [0, 1]⇥ R2

0 (t, x) 2 (1,1)⇥ R2
.
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ABSTRACT

In this paper, we are concerned with the existence of positive

solution of the following semipositone boundary value problem

on time scales:

( (t)y�(t))r+�1g(t, y(t))+�2h(t, y(t)) = 0, t 2 [⇢(c), �(d)]T,

with mixed boundary conditions

↵y(⇢(c))� � (⇢(c))y�(⇢(c)) = 0,

�y(�(d)) + � (d)y�(d) = 0,

where  : C[⇢(c), �(d)]T,  (t) > 0 for all t 2 [⇢(c), �(d)]T;

both g and h : [⇢(c), �(d)]T ⇥ [0, 1) ! R are continuous and

semipositone. We have established the existence of at least one

positive solution or multiple positive solutions of the above

boundary value problem by using fixed point theorem on a

cone in a Banach space, when g and h are both superlinear or

sublinear or one is superlinear and the other is sublinear for

�i > 0; i = 1, 2 are su�ciently small.
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RESUMEN

En este art́ıculo estudiamos la existencia de soluciones posi-

tivas del siguiente problema de valor de frontera semipositón

en escalas de tiempo:

( (t)y�(t))r+�1g(t, y(t))+�2h(t, y(t)) = 0, t 2 [⇢(c), �(d)]T,

con condiciones de frontera mixtas

↵y(⇢(c))� � (⇢(c))y�(⇢(c)) = 0,

�y(�(d)) + � (d)y�(d) = 0,

donde  : C[⇢(c), �(d)]T,  (t) > 0 para todo t 2 [⇢(c), �(d)]T;

ambas g y h : [⇢(c), �(d)]T ⇥ [0, 1) ! R son continuas y

semipositón. Hemos establecido la existencia de al menos una

solución positiva o múltiples soluciones positivas del problema

de valor en la frontera anterior usando un teorema de punto

fijo en un cono en un espacio de Banach, cuando g y h son

ambas superlineales o sublineales o una es superlineal y la otra

es sublineal para �i > 0; i = 1, 2 suficientemente pequeños.
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1 Introduction

The study of dynamic equations on time scales goes to the seminal work of Stefan Hilger [11] and

has received a lot of attention in recent years. Time scales were created to unify the study of

continuous and discrete mathematics and particularly used in di↵erential and di↵erence equations.

We are interested to prove the results for a dynamic equation where the domain of the unknown

function is a time scale T, which is a non-empty closed subset of real numbers R.

We consider the second order semipositone boundary value problem on time scales:

( (t)y�(t))r + �1g(t, y(t)) + �2h(t, y(t)) = 0, t 2 [⇢(c), �(d)]T, (1.1)

with mixed boundary conditions

↵y(⇢(c))� � (⇢(c))y�(⇢(c)) = 0,

�y(�(d)) + � (d)y�(d) = 0,
(1.2)

where �1 and �2 are positive and

(H1)  : C[⇢(c), �(d)]T,  (t) > 0 for all t 2 [⇢(c), �(d)]T;

(H2) ↵, �, �, �, � 0 and ↵� + �� + ↵� > 0;

(H3) g and h : [⇢(c), �(d)]T ⇥ [0, 1) ! R are continuous satisfying with both g and h are

semipositone.

D. R. Anderson and P. Y. Wong [1], have established the existence result for the SL-BVP (1.1)

and (1.2) where g is superlinear such that g(t, y) � �M for some constant M > 0 and � is in

some interval of R with h(t, y) = 0. They did not establish any results concerning the existence

of positive solutions for the boundary value problem (1.1) and (1.2), when g is sublinear. Many

findings have also been obtained for the existence of positive solution of the boundary value problem

(1.1) and (1.2), when h(t, y) = 0, but only a few results have been established for the existence of

positive solutions when h(t, y) 6= 0. Motivated by the work of [1] and the references cited therein,

we would like to establish the su�cient conditions for the existence of positive solution of the

boundary value problem (1.1) and (1.2), when g and h are both superlinear or sublinear or one is

superlinear and the other is sublinear for �i > 0; i = 1, 2 are su�ciently small.

It is worthy of mention that results of this paper not only apply to the set of real numbers or the set

of integers but also to more general time scales such as T = N2
0 = {t2 : t 2 N0}, T = {

p
n : n 2 N0},

etc. For basic notations and concepts on time scale calculus, we refer the readers to monographs [5,

6] and references cited therein. The study of nonlinear, semipositone boundary value problem has

considerable importance even in di↵erential equations. In recent years, several researchers studied
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semipositone boundary value problem on time scales [1, 2, 4, 7, 10, 16, 17]. Semipositone problems

arise in many physical and chemical processes such as in chemical reactor theory, astrophysics, gas

dynamics and fluidmechanics, relativistic mechanics, nuclear physics, design of suspension bridges,

bulking of mechanical systems, combustion and management of natural resources (see [3, 9, 12, 15]).

Let a and b such that 0  ⇢(a)  a < b  �(b) < 1 and (⇢(a), �(b))T has at least two points.

The plan of the paper is as follows. In Section 2, we provided some preliminary results concerning

the Green’s function for the homogeneous boundary value problem and some important Lemmas.

These results allow us in Section 3 to discuss the existence of at least one or multiple positive

solutions. Finally, in Section 4, we illustrate few examples to justify the results obtained in the

previous section.

2 Preliminaries

In this section, we have obtained some basic results related to Green’s function for the homogeneous

boundary value problem and some important Lemmas.

Now let us consider the homogenoeous dynamic boundary value problem

( (t)y�(t))r = 0, t 2 [⇢(c), �(d)]T, (2.1)

with boundary conditions (1.2). Green’s function G(t, s) (see [7]) for the boundary value problem

(2.1) and with the boundary conditions (1.2) is given by

G(t, s) = 1

'

8
>>>>><

>>>>>:

✓
� + ↵

R t
⇢(c)

r⌧
 (⌧)

◆✓
� + �

R �(d)
s

r⌧
 (⌧)

◆
, ⇢(c)  t  s  �(d),

✓
� + ↵

R s
⇢(c)

r⌧
 (⌧)

◆✓
� + �

R �(d)
t

r⌧
 (⌧)

◆
, ⇢(a)  s  t  �(b),

(2.2)

where

' = ↵� + �� + ↵�

Z �(d)

⇢(c)

r⌧
 (⌧)

> 0.

Lemma 2.1 ([17]). Assume (H1) and (H2) hold. Then the Green function G(t, s) satisfies

( (t)y�(t))r +Q(t) = 0, t 2 (⇢(c), �(d))T, (2.3)

with mixed boundary conditions (1.2), where Q 2 Crd[⇢(c), �(d)]T, Q(t) � 0; then

y(t) � q(t)kyk, t 2 [⇢(c), �(d)]T, s 2 [a, b]T, (2.4)
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where q(t) is given by

q(t) = min

8
<

:
� + ↵

R t
⇢(c)

r⌧
 (⌧)

� + ↵
R �(d)
⇢(c)

r⌧
 (⌧)

,

� + �
R �(d)
t

r⌧
 (⌧)

� + �
R �(d)
⇢(c)

r⌧
 (⌧)

9
=

; .

Lemma 2.2 ([1]). For all t 2 [⇢(c), �(d)]T and s 2 [c, d]T, then

q(t)G(s, s)  G(t, s)  G(s, s), (2.5)

where G(t, s) is given in (2.2) and q(t) is defined as in Lemma 2.1.

Lemma 2.3 ([1]). Let (H1) and (H2) hold and let y1 be the solution of

( (t)y�(t))r + 1 = 0, t 2 (⇢(c), �(d))T, (2.6)

with mixed boundary conditions (1.2), then there exists a positive constant C such that

y1(t)  C q(t), t 2 [⇢(c), �(d)]T, (2.7)

where

C =
1

'
(�(d)� ⇢(c))

 
� + ↵

Z �(d)

⇢(c)

r⌧
 (⌧)

! 
� + �

Z �(d)

⇢(c)

r⌧
 (⌧)

!
.

Lemma 2.4 ([8]). Let lim
y!1

g(t, y)

y
= 1 and define G : [0, 1) ! [0, 1) by

G = max
⇢(c)t�(d), 0yr

g(t, y). (2.8)

Then

(I) G is non-decreasing;

(II) lim
r!1

G(r)

r
= 1;

(III) there exists r
⇤
> 0 such that G(r) > 0 for r � r

⇤
.

Lemma 2.5 ([8]). Let limy!1
g(t, y)

y
= 0 holds. Then G defined by (2.8) is a nondecreasing

function, such that

lim
r!1

G(r)

r
= 0.

Define a function for y 2 C[⇢(c), �(d)]T,

g(t, y) =

8
><

>:

g(t, y), y � 0,

g(t, 0), y < 0.
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and

h(t, y) =

8
><

>:

h(t, y), y � 0,

h(t, 0), y < 0.

Let us consider the nonlinear boundary value problem:

( (t)y�)r = �[�1g(t, y � x) + �2h(t, y � x) +M ], (2.9)

with boundary conditions (1.2).

Lemma 2.6. Assume that x(t) = My1(t), where y1(t) is a unique solution of the boundary value

problem (2.6) and (1.2). Then y(t) is a solution of the boundary value problem (1.1) and (1.2) if

and only if y(t) = y(t) + x(t) is a positive solution of the boundary value problem (2.9) and (1.2)

with y(t) > x(t) for t 2 [⇢(c), �(d)]T.

Proof. Let us assume that y(t) is a solution of the boundary value problem (2.9) and (1.2) such

that y(t) � x(t) for any t 2 [⇢(c), �(d)]T. Let y(t) = y(t)�x(t) > 0 on [⇢(c), �(d)]T as y(t) � x(t).

Now, for any t 2 [⇢(c), �(d)]T, we have

( (t)y�(t))r + [�1g(t, (y(t)� x(t)) + �2h(t, (y(t)� x(t))) +M ] = 0,

that is,

( (t)y�(t))r + ( (t)x�(t))r + [�1g(t, (y(t)� x(t)) + �2h(t, (y(t)� x(t))) +M ] = 0.

By using the definition of y together with the definition of x, we have

( (t)y�(t))r + [�1g(t, y(t)) + �2h(t, y(t)) +M ] +M( (t)y�1 (t))r(t) = 0.

Thus,

( (t)y�(t))r + �1g(t, y(t)) + �2h(t, y(t)) = 0.

On the other hand,

↵y(⇢(c))� � (⇢(c))y(⇢(c))

= (↵y(⇢(c))� � (⇢(c))y�(⇢(c)))� (↵x(⇢(c))� � (⇢(c))x�(⇢(c)))

= (↵y(⇢(c))� � (⇢(c))y�(⇢(c)))�M(↵y1(⇢(c))� � (⇢(c))y�1 (⇢(c))) = 0,

and

�y(�(d)) + � (d)y�(d) = �y(�(d)) + � (d)y�(d)� (�x(�(d)) + � (d)x�(d))
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= �y(�(d)) + � (d)y�(d)�M(�y1(�(d)) + � (d)y�1 (d)) = 0.

Hence, y(t) is a solution of the boundary value problem (1.1) and (1.2). Hence this completes the

proof of the lemma.

Let us define a Banach space

E = {y : C[⇢(c), �(d)]T ! R}

endowed with the norm

kyk = max{|y(t)|, t 2 [⇢(c), �(d)]T}.

Define a cone K on E by

K = {y 2 C[⇢(c), �(d)]T : y(t) � q(t)kyk, t 2 [⇢(c), �(d)]T},

where q(t) is defined as in Lemma 2.1. Let us define an operator T� on K by

T�y(t) =

Z d

⇢(c)
G(t, s)[�1g(s, y(s)� x(s)) + �2h(s, y(s)� x(s)) +M ]rs. (2.10)

Lemma 2.7. Assume that (H1)–(H3) hold. Then T�(K) ⇢ K and T� : K ! K is a completely

continuous operator.

Proof. First we show that T�(K) ⇢ K. Let y 2 K and t 2 [⇢(a), �(b)]T. Note that

(T�y)(t) =

Z d

⇢(c)
G(t, s)[�1g(s, y(s)� x(s)) + �2h(s, y(s)� x(s)) +M ]rs,

that is,

(T�y)(t) 
Z d

⇢(c)
G(s, s)[�1g(s, y(s)� x(s)) + �2h(s, y(s)� x(s)) +M ]rs.

Hence,

kT�yk 
Z d

⇢(c)
G(s, s)[�1g(s, y(s)� x(s)) + �2h(s, y(s)� x(s)) +M ]rs.

By use of the Lemma (2.2), we obtain

(T�y)(t) � q(t)

Z d

⇢(c)
G(s, s)[�1g(s, y(s)� x(s)) + �2h(s, y(s)� x(s)) +M ]rs,

which implies

(T�y)(t) � q(t)kT�yk.

Thus, T�(K) ⇢ K. Since f and g are continuous, it shows that T� is continuous and by the
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Arzelà-Ascoli Theorem [14], it is easy to verify that T� is a completely continuous operator. Hence

this completes the proof of the lemma

Lemma 2.8 ([13]). Let E be a real Banach space, and let K ⇢ E be a cone. Let ⌦1, ⌦2 be two

bounded open subsets of E with 0 2 ⌦1, ⌦1 ⇢ ⌦2. Assume that T : K \ (⌦2 \ ⌦1) ! K be a

completely continuous operator such that either

kTyk  kyk for all y 2 K \ @⌦1 and and kTyk � kyk for all y 2 K \ @⌦2,

or

kTyk � kyk for all y 2 K \ @⌦1 and kTyk  kyk for all y 2 K \ @⌦2,

then T has at least one fixed point in K \ (⌦2 \ ⌦1).

Let us define the following:

(L1) lim
y!1

g(t, y)

y
= 1;

(L2) lim
y!1

g(t, y)

y
= 0;

(L3) lim
y!0

g(t, y)

y
= 0;

(L4) lim
y!0

g(t, y)

y
= 1;

(L5) lim
y!1

h(t, y)

y
= 1;

(L6) lim
y!1

h(t, y)

y
= 0;

(L7) lim
y!0

h(t, y)

y
= 0;

(L8) lim
y!0

h(t, y)

y
= 1.

Note that the limits (Li), i 2 N8
1, are assumed to be inform with respect t.

We would like to establish the existence of solutions for the boundary value problem (1.1) and

(1.2) under the following cases:

(I) L1 and L5;

(II) L1 and L6;

(III) L1 and L7;

(IV ) L2 and L5;

(V ) L2 and L6;

(V I) L2 and L8;

(V II) L3 and L5;

(V III) L3 and L7;

(IX) L3 and L8;

(X) L4 and L6;

(XI) L4 and L7;

(XII) L4 and L8.

Remark 2.9. We fails to apply the Lemma 2.8 for the pairs such as (XIII) L1 and L8, (XIV )

L2 and L7, (XV ) L3 and L6 & (XV I) L4 and L5.



CUBO
24, 3 (2022)

Existence of positive solutions for a nonlinear semipositone... 421

3 Main Results

Theorem 3.1. Let (H1)–(H3), (L1) and (L5) hold. Then the boundary value problem (1.1) and

(1.2) has a positive solution for �i, i = 1, 2 are su�ciently small.

Proof. Let �1 and �2 satisfy

0 < �1 + �2 <
1

max
⇢(c)t�(d)

0yr1

g(t, y) + max
⇢(c)t�(d)

0yr1

h(t, y)
, (3.1)

where r1 = max{(M + 1)ky1k, r⇤, CM}, C and r
⇤ are defined as in Lemma 2.3 and Lemma 2.4,

respectively and y1 be the solution of (1.2) and (2.6). Define ⌦r1 = {y 2 C[⇢(c), �(d)]T : kyk < r1}.
For y 2 K \ @⌦r1 , we have

(T�y)(t) =

Z d

⇢(c)
G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

 (�1 + �2)

0

@ max
⇢(c)t�(d)

0yr1

g(t, y) + max
⇢(c)t�(d)

0yr1

h(t, y)

1

A
Z d

⇢(c)
G(t, s)rs+

Z d

⇢(c)
G(t, s)Mrs

=

0

@(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr1

g(t, y) + max
⇢(c)t�(d)

0yr1

h(t, y)

1

A+M

1

A y1(t)

 (1 +M)y1(t)

 r1 = kyk.

Thus,

kT�yk  kyk for y 2 K \ @⌦r1 . (3.2)

Let us choose a constant M > 0 such that

1

2
M(�1 + �2)µ

✓
min

t1tt2

Z t2

t1

G(t, s)rs

◆
� 1, (3.3)

where

µ = min
t1st2

q(s). (3.4)

From (L1) and (L5), we have for same M > 0 there exists a constant l > 0 such that

g(t, y) � My for y 2 [l, 1),

h(t, y) � My for y 2 [l, 1).

Now set r2 = max
n
2r1, 2CM,

2l1
µ

o
. Define ⌦r2 = {y 2 C[⇢(c), �(d)]T : kyk < r2}. For y 2
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K \ @⌦r2 , we have

y(s)� x(s) = y(s)�My1(s)

� y(s)�MCq(s)

� y(s)� CM

kyk y(s)

� y(s)� CM

r2
y(s)

� 1

2
y(s),

and

min
t1st2

(y(s)� x(s)) � min
t1st2

y(s)

2

� min
t1st2

kyk
2

q(s)

=
r2µ

2

� l.

For y 2 K \ @⌦r2 , we have

min
t2[t1, t2]

(T�y)(t) = min
t2[t1, t2]

Z d

⇢(c)
G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)(�1 + �2)M(y(s)� x(s))rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)(�1 + �2)M
y(s)

2
rs

� 1

2
(�1 + �2)Mµ min

t2[t1, t2]

Z t2

t1

G(t, s)kykrs

� kyk.

Thus,

kT�yk � kyk for y 2 K \ @⌦r2 . (3.5)

By Lemma 2.8, T� has a fixed point y with r1  kyk  r2. By use of the Lemma 2.3, it follows
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that

y(t) � r1q(t)

� r1
y1(t)

C

� My1(t)

= x(t).

Hence, y = y � x is a positive solution of the boundary value problem (1.1) and (1.2). This

completes the proof of the theorem.

Theorem 3.2. Let (H1)–(H3), (L4) and (L8) hold. Then the boundary value problem (1.1) and

(1.2) has a positive solution for �i, i = 1, 2 are su�ciently small.

Proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1, hence it is omitted.

Theorem 3.3. Assume that (H1), (H2), (L2) and (L6) hold. Let there exist two constant D > 0

and ⌘ > 0 such that

g(t, y) � ⌘ for t 2 [⇢(c), �(d)], y 2 [D, 1),

h(t, y) � ⌘ for t 2 [⇢(c), �(d)], y 2 [D, 1),

then the boundary value problem (1.1) and (1.2) has a positive solution for �i, i = 1, 2 are su�-

ciently small.

Proof. Set

r1 = max

⇢
2D

µ
, 2MC

�
, (3.6)

and

A = 2r1

✓
min

t1tt2

Z t2

t1

G(t, s)(�1 + �2)⌘rs

◆�1

, (3.7)

where µ = min
t1st2

q(s). Our claim is that for �i 2 [A, 1), i = 1, 2, the boundary value problem

(1.1) and (1.2) has a positive solution. Define ⌦r1 = {y 2 C[⇢(c), �(d)]T : kyk < r1}. For

y 2 K \ @⌦r1 , we have

y(s)� x(s) = y(s)�My1(s)

� y(s)�MCq(s)

� y(s)� CM

r3
y(s)

� 1

2
y(s),
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and

min
t1st2

(y(s)� x(s)) � min
t1st2

y(s)

2

� min
t1st2

kyk
2

q(s)

=
r1µ

2

� D.

For y 2 K \ @⌦r1 , we have

min
t2[t1, t2]

(T�y)(t) = min
t2[t1, t2]

Z d

⇢(c)
G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)(�1 + �2)⌘rs

= r1 = kyk.

Thus,

kT�yk � kyk for y 2 K \ @⌦r1 . (3.8)

From (L2) and (L6), we have

g(t, y)  ✏y for t 2 [⇢(c), �(d)], y � l,

h(t, y)  ✏y for t 2 [⇢(c), �(d)], y � l,

On the other hand, by use of the Lemma 2.4, there exists a R > 0 such that

R > max

(
2r1, max

⇢(c)t�(d)

Z d

⇢(c)
[G(t, s)M + 1]rs

)
.

and ✏ satisfies

max
⇢(c)t�(d)

Z d

⇢(c)
G(t, s)[✏�1R+ ✏�2R+M ]rs  R.

Let

⌦R = {y 2 C[⇢(c), �(d)]T : kyk < R}.
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For y 2 K \ @⌦R, we have

T�y(t) =

Z d

⇢(c)
G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs


Z d

⇢(c)
G(t, s)[�1✏R+ ✏�2R+M ]rs

 R = kyk.

Thus,

kT�yk  kyk for y 2 K \ @⌦R. (3.9)

By Lemma 2.8, T� has a fixed point y with r1  kyk  R. It follows that

y(t) � r1q(t)

� r1
y1(t)

C

� 2My1(t)

� x(t).

Hence, y = y � x is a positive solution of the boundary value problem (1.1) and (1.2). This

completes the proof of the theorem.

Theorem 3.4. Assume that (H1)–(H3), (L3) and (L7) hold. Let there exist two constant D > 0

and ⌘ > 0 such that

g(t, y) � ⌘ for t 2 [⇢(c), �(d)] y 2 [D, l],

h(t, y) � ⌘ for t 2 [⇢(c), �(d)] y 2 [D, l],

then the boundary value problem (1.1) and (1.2) has a positive solution for �i, i = 1, 2 are su�-

ciently small.

Proof. The proof of the Theorem 3.4 is similar to that of Theorem 3.3, hence it is omitted.

Theorem 3.5. Let (H1)–(H3), (L1) and (L6) hold. Then the boundary value problem (1.1) and

(1.2) has at least two positive solutions for �i, 1 = 1, 2 are su�ciently small.

Proof. If (L6) holds, then by the Lemma 2.5, there exists a constant r1 > 0 such that

G(r1)  Nr1.
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Since �1 and �2 are su�ciently small, we have

2

4�1 max
⇢(c)t�(d)

0yr1

g(t, y) + �2 max
⇢(c)t�(d)

0yr1

h(t, y) +M

3

5
Z d

⇢(c)
G(s, s)rs  r1.

Let ⌦r1 = {y 2 C[⇢(c), �(d)]T : kyk < r1}. For y 2 @⌦r1 , we have

(T�y)(t) =

Z d

⇢(c)
G(t, s)


�1g(s, y � x) + �2h(s, y � x) +M

�
rs



0

@�1 max
⇢(c)t�(d)

0yr1

g(t, y) + �2 max
⇢(c)t�(d)

0yr1

h(t, y)

1

A
Z d

⇢(c)
G(s, s)rs

+

Z d

⇢(c)
G(s, s)Mrs  r1 = kyk.

Thus,

kT�yk  kyk for all y 2 K \ @⌦r1 . (3.10)

From (L1), we have

g(t, y) > N1y for all y  l.

Let r2 = max
n
2CM,

2l
µ , 2r1

o
and ⌦r2 = {y 2 C[⇢(c), �(d)]T : kyk < r2}. For y 2 @K \ ⌦r2 , we

have

y(s)� x(s) = y(s)�My1(s)

� y(s)�MCq(s)

� y(s)� CM

r5
y(s)

� 1

2
y(s),

and

min
t1st2

(y(s)� x(s)) � min
t1st2

y(s)

2

� min
t1st2

kyk
2

q(s)

=
r2µ

2

� l.
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For y 2 K \ @⌦r2 , we have

min
t2[t1, t2]

(T�y)(t) = min
t2[t1, t2]

Z d

⇢(c)
G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)[�1g(s, y � x) + �2h(s, y � x) +M ]rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)�1N1(y(s)� x(s))rs

= r2 = kyk.

Thus,

kT�yk � kyk for all y 2 K \ @⌦r2 . (3.11)

Let

R = max

8
<

:

0

@�1 max
⇢(c)t�(d)

0yR

g(t, y) + �2 max
⇢(c)t�(d)

0yR

h(t, y) +M

1

A
 Z d

⇢(c)
G(s, s)rs

!
, 2r2

9
=

; ,

then r1 < r2 < R. Let ⌦R = {y 2 C[⇢(c), �(d)]T : kyk < R}. For y 2 K \ ⌦R, t 2 [⇢(c), �(d)]T,

we have

(T�y)(t) =

Z d

⇢(c)
G(t, s)

⇥
�1g(s, y � x) + �2h(s, y � x) +M

⇤
rs



0

@�1 max
⇢(c)t�(d)

0yR

g(t, y) + �2 max
⇢(c)t�(d)

0yR

h(t, y) +M

1

A
Z d

⇢(c)
G(s, s)rs

 R = kyk.

Thus,

kT�yk  kyk for all y 2 K \ @⌦R. (3.12)

Thus by the Lemma 2.8, T� has at least two fixed points. Hence, the boundary value problem

(1.1) and (1.2) has at least two positive solutions.

Theorem 3.6. Let (H1)–(H3), (L2) and (L5) hold. Then the boundary value problem (1.1) and

(1.2) has at least two positive solutions for �i, i = 1, 2 are su�ciently small.

Proof. The proof of the Theorem 3.6 is similar to that of Theorem 3.5.

Theorem 3.7. Let (H1)–(H3), (L4) and (L7) hold. Then the boundary value problem (1.1) and

(1.2) has at least two positive solutions for �i, i = 1, 2 are su�ciently small.
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Proof. From (L7), we have

lim
y!0

h(t, y)

y
= 0.

For ✏ > 0, there exists a r1 > 0 such that

h(t, y)  ✏y for y 2 [0, r1).

Since �1 and �2 are su�ciently small, we have

2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr1

g(t, y) + max
⇢(c)t�(d)

0yr1

h(t, y)

1

A+M

3

5
Z d

⇢(c)
G(s, s)rs  r1.

Let ⌦r1 = {y 2 C[⇢(c), �(d)]T : kyk < r1}. For y 2 @⌦r1 , we have

(T�y)(t) =

Z d

⇢(c)
G(t, s)

⇥
�1g(s, y � x) + �2h(s, y � x) +M

⇤
rs


Z d

⇢(c)
G(s, s)

�
�1g(s, y � x) + �2h(s, y � x)

�
rs+

Z d

⇢(c)
G(s, s)Mrs



2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr1

g(t, y) + max
⇢(c)t�(d)

0yr1

h(t, y)

1

A+M

3

5
Z d

⇢(c)
G(s, s)rs

 r1 = kyk

Thus,

kT�yk  kyk for all y 2 K \ @⌦r1 . (3.13)

From (L4), we have

g(t, y) > N1y for all y  l.

Let r2 = max
n
2CM,

2l
µ , 2r1

o
and ⌦r2 = {y 2 C[⇢(c), �(d)]T : kyk < r2}. For y 2 K \ @⌦r2 , we

have

y(s)� x(s) = y(s)�My1(s)

� y(s)�MCq(s)

� y(s)� CM

r5
y(s)

� 1

2
y(s),
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and

min
t1st2

(y(s)� x(s)) � min
t1st2

y(s)

2

� min
t1st2

kyk
2

q(s)

=
r2µ

2

� l.

For y 2 K \ @⌦r2 , we have

min
t2[t1, t2]

(T�y)(t) = min
t2[t1, t2]

Z d

⇢(c)
G(t, s)

⇥
�1g(s, y � x) + �2h(s, y � x) +M

⇤
rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)
⇥
�1g(s, y � x) + �2h(s, y � x) +M

⇤
rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)�1N1(y(s)� x(s))rs

= r2 = kyk.

Thus,

kT�yk � kyk for all y 2 K \ @⌦r2 . (3.14)

Let

R = max

8
<

:

0

@�1 max
⇢(c)t�(d)

0yR

g(t, y) + �2 max
⇢(c)t�(d)

0yR

h(t, y) +M

1

A
 Z d

⇢(c)
G(s, s)rs

!
, 2r2

9
=

; ,

then r1 < r2 < R. Let ⌦R = {y 2 C[⇢(c), �(d)]T : kyk < R}. For y 2 K \ ⌦R, t 2 [⇢(c), �(d)]T,

we have

(T�y)(t) =

Z d

⇢(c)
G(t, s)


�1g(s, y � x) + �2h(s, y � x) +M

�
rs



2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yR

g(t, y) + max
⇢(c)t�(d)

0yR

h(t, y)

1

A+M

3

5
Z d

⇢(c)
G(s, s)rs

 R = kyk

Thus,

kT�yk  kyk for all y 2 K \ @⌦R. (3.15)

Thus by the Lemma 2.8, T� has at least two fixed points. Hence, the boundary value problem

(1.1) and (1.2) has at least two positive solutions.
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Theorem 3.8. Let (H1)–(H3), (L3) and (L8) hold. Then the boundary value problem (1.1) and

(1.2) has at least two positive solutions for �i, i = 1, 2 are su�ciently small.

Proof. The proof of the Theorem 3.8 is similar to that of Theorem 3.5.

Theorem 3.9. Let (H1)–(H3), (L1) and (L7) hold. Then the boundary value problem (1.1) and

(1.2) has at least one positive solution for �i, i = 1, 2 are su�ciently small.

Proof. From (L1), we have

lim
y!1

g(t, y)

y
= 1.

For k > 0, there exists a r1 > 0 such that

g(t, y) � ky for y > r1.

Let ⌦r1 = {y 2 C[⇢(c), �(d)]T : kyk < r1} and let k satisfy

kµ

2
�1 min

t2[t1, t2]

Z t2

t1

G(t, s)rs � 1.

For y 2 K \ @⌦r1 , we have

min
t2[t1, t2]

(T�y)(t) = min
t2[t1, t2]

Z d

⇢(c)
G(t, s)

⇥
�1g(s, y � x) + �2h(s, y � x) +M

⇤
rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)�1k(y � x)rs

� k

2
�1 min

t2[t1, t2]

Z t2

t1

G(t, s)kykq(s)rs

� kyk.

Thus,

kT�yk � kyk for y 2 K \ @⌦r1 . (3.16)

From (L7), we have

lim
y!0

h(t, y)

y
= 0.

For ✏ > 0, there exists a r2 > 0 such that

h(t, y)  ✏y for y 2 [0, 1).
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Since �1 and �2 are su�ciently small, let

2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr2

g(t, y) + max
⇢(c)t�(d)

0yr2

h(t, y) +M

1

A

3

5
Z d

⇢(c)
G(s, s)rs  r2.

Let ⌦r2 = {y 2 C[⇢(c), �(d)]T : kyk < r2}. Now for any y 2 K \ @⌦r2 , we have

(T�y)(t) =

Z d

⇢(c)
G(t, s)

⇥
�1g(t, y � x) + �2h(s, y � x) +M

⇤
rs


Z d

⇢(c)
G(s, s)

⇥
�1g(t, y � x) + �2h(s, y � x) +M

⇤
rs



2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr2

g(t, y) + max
⇢(c)t�(d)

0yr2

h(t, y)

1

A+M

3

5
Z d

⇢(c)
G(s, s)rs

 r2 = kyk.

Thus,

kT�yk  kyk for y 2 K \ @⌦r2 . (3.17)

Hence, by the Lemma 2.8, T� has a fixed point y with r1 < kyk < r2. By the Lemma 2.6, the

boundary value problem (1.1) and (1.2) has at least one positive solution.

Theorem 3.10. Let (H1)–(H3), (L3) and (L5) hold. Then the boundary value problem (1.1) and

(1.2) has at least one positive solution for �i, i = 1, 2 are su�ciently small.

Proof. The proof of the Theorem 3.10 is similar to that of Theorem 3.9.

Theorem 3.11. Let (H1)–(H3), (L2) and (L8) hold. Then the boundary value problem (1.1) and

(1.2) has at least one positive solution for �i, i = 1, 2 are su�ciently small.

Proof. From (L2), we have

lim
y!1

g(t, y)

y
= 0.

By Lemma 2.5, there exist r1 > 0 and k1 > 0 such that

G(r1)  k1r1.

Let ⌦r1 = {y 2 C[⇢(c), �(d)]T : kyk < r1}. Since �1 and �2 are su�ciently small, we have

2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr1

g(t, y) + max
⇢(c)t�(d)

0yr1

h(t, y)

1

A+M

3

5
Z d

⇢(c)
G(s, s)rs  r1.
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For any y 2 K \ @⌦r1 , we obtain

(T�y)(t) =

Z d

⇢(c)
G(t, s)

⇥
�1g(t, y � x) + �2h(s, y � x) +M

⇤
rs


Z d

⇢(c)
G(s, s)

⇥
�1g(t, y � x) + �2h(s, y � x) +M

⇤
rs



2

4(�1 + �2)

0

@ max
⇢(c)t�(d)

0yr2

g(t, y) + max
⇢(c)t�(d)

0yr2

h(t, y)

1

A+M

3

5
Z d

⇢(c)
G(s, s)rs

 r1 = kyk.

Thus,

kT�yk  kyk for y 2 K \ @⌦r1 . (3.18)

From (L8), we have

lim
y!0

h(t, y)

y
= 1.

For k > 0, there exists a l > 0 such that

h(t, y) � ky for y 2 [0, l].

Let r2 =
n
2cm,

2l
µ , 2r1

o
and ⌦r2 = {y 2 C[⇢(c), �(d)]T : kyk < r2}. For any y 2 K \ @⌦r2 , we

have

min
t2[t1, t2]

(T�y)(t) = min
t2[t1, t2]

Z d

⇢(c)
G(t, s)

⇥
�1g(t, y � x) + �2h(s, y � x) +M

⇤
rs

� min
t2[t1, t2]

Z t2

t1

G(t, s)�2k(y(s)� x(s))rs

� k

2
�2µ min

t2[t1, t2]

Z t2

t1

G(t, s)kykrs

� r2 = kyk.

Thus,

kT�yk � kyk for y 2 K \ @⌦r2 . (3.19)

Hence, by the Lemma 2.8, T� has a fixed point y with r1 < kyk < r2. By the Lemma 2.6, the

boundary value problem (1.1) and (1.2) has at least one positive solution.

Theorem 3.12. Let (H1)–(H3), (L4) and (L6) hold. Then the boundary value problem (1.1) and

(1.2) has at least one positive solution for �i, , i = 1, 2 are su�ciently small.

Proof. The proof of the Theorem 3.12 is similar to that of Theorem 3.11.
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4 Examples

We shall illustrate few examples in di↵erent time scales to justify the results obtained in the

preceding section.

Example 4.1. Let us consider the following boundary value problem on time scale T = R,

((1 + t
2)y0)0 +

1

2

1 + y
2

52
+

1

4

y
2 sin2 y

35
= 0, t 2 [0, 1], (4.1)

with boundary conditions

y(0)� y
0(0) = 0,

y(1) + 2y0(1) = 0,
(4.2)

where  (t) = 1+ t
2
, M = 1, ↵, �, �, � � 0, g(t, y) = 1+y2

52 and h(t, y) = y2 sin2 y
35 . Green’s function

for the boundary value problem (4.1) and (4.2) is given by

G(t, s) = 1

2 + ⇡
4

8
>><

>>:

✓
1 + tan�1

t

◆✓
1 + ⇡

4 � tan�1
s

◆
, t  s,

✓
1 + tan�1

s

◆✓
1 + ⇡

4 � tan�1
t

◆
, s  t.

All the conditions (H1)–(H3), (L1) and (L5) are satishfied for (t, y) 2 [0, 1]⇥ [0, 100]. By Theorem

3.1, boundary value problem (4.1) and (4.2) has at least one positive solution for �1 = 1
2 and

�2 = 1
4 .

Example 4.2. Let us consider the following boundary value problem on time scale T = Z,

r((1 + t)�1
y
�) + �1 sin

2
y + �2

p
y cos y = 0, t 2 [0, 3], (4.3)

with boundary conditions

y(0)��y(0) = 0,

y(3) +
1

3
�y(2) = 0,

(4.4)

where  (t) = (1 + t)�1
, M = 1, ↵, �, �, � � 0, g(t, y) = sin2 y and h(t, y) =

p
y cos y. Green’s

function for the boundary value problem (4.3) and (4.4) is given by

G(t, s) = 1

11

8
><

>:

⇣
1 + t2+3t

2

⌘⇣
1 + (3�s)(s+6)

2

⌘
, t  s,

⇣
1 + s2+3s

2

⌘⇣
1 + (3�t)(t+6)

2

⌘
, s  t.

All the conditions (H1)–(H3), (L2) and (L6) are satishfied for (t, y) 2 [0, 3]⇥ [0, 100]. Let D = 1
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and ⌘ = 1
2 such that g(t, y) � 1

2 and h(t, y) � 1
2 for t 2 [0, 3], y 2 [1, 1). By Theorem 3.3,

boundary value problem (4.3) and (4.4) has at least one positive solution for �i; i = 1, 2 are

su�ciently small.

Example 4.3. Consider the boundary value problem on time scale T = q
Z = {2k : k 2 Z} [ {0},

where q = 2 > 1,

D
q
�
(1 + t)�1

Dqy(t)
�
+ �1

y
2

sin y
+ �2 ln(y) = 0, t 2 [0, 2], (4.5)

with boundary conditions

y(0)�Dqy(0) = 0,

y(2) +
1

2
Dqy(1) = 0,

(4.6)

where  (t) = (1+t)�1
, M = 1, ↵, �, �, � � 0, g(t, y) = y2

sin y and h(t, y) = ln(y). Green’s function

for the boundary value problem (4.5) and (4.6) is given by

G(t, s) = 3

20

8
><

>:

⇣
2t2+3t+3

3

⌘⇣
17�3s�2s2

3

⌘
, t  s,

⇣
2s2+3s+3

3

⌘⇣
17�3t�2t2

3

⌘
, s  t.

The conditions (H1)–(H3), (L1) and (L6) are satishfied for (t, y) 2 [0, 2] ⇥ [0, 100]. By Theorem

3.5, boundary value problem (4.5) and (4.6) has at least two positive solutions for �i; i = 1, 2 are

su�ciently small.

Example 4.4. Let us consider the time scale T = Pa, b =
1S
k=0

[k(a + b), k(a + b) + a] = P1, 1 =

1S
k=0

[2k, 2k + 1], where a = b = 1. Consider the following boundary value problem:

8
><

>:

y
�r + �1

p
y + �2 y ln(1 + y), t 2 (0, 2),

y(0) = 0, y(2) = 0,
(4.7)

where  (t) = 1, M = 1, ↵, �, �, � � 0, g(t, y) =
p
y and h(t, y) = y ln(y). Green’s function for

the boundary value problem (4.7) is given by

G(t, s) = 1

2

8
><

>:

t(1� s), t  s,

(1 + s)(2� t), s  t.

The conditions (H1)–(H3), (L4) and (L7) are satishfied for (t, y) 2 [0, 2] ⇥ [0, 100]. By Theorem

3.7, boundary value problem (4.7) has at least two positive solutions for �i; i = 1, 2 are su�ciently

small.
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Example 4.5. Consider the boundary value problem on time scale T = {n
2 : t 2 N0}:

y
�r(t) + �1y ln(1 + y) + �2

p
y sin y

6
= 0, t 2


0,

3

2

�
, (4.8)

with boundary conditions

y(0)� y
�(0) = 0,

y

✓
3

2

◆
+ y

�(1) = 0,
(4.9)

where  (t) = 1, M = 1, ↵, �, �, � � 0, g(t, y) = y ln(1+y) and h(t, y) =
p
y sin y
6 . Green’s function

for the boundary value problem (4.8) and (4.9) is given by

G(t, s) = 2

7

8
><

>:

(1 + s)
�
5
2 � t

�
, t  s,

(1 + t)
�
5
2 � s

�
, s  t.

The conditions (H1)–(H3), (L1) and (L7) are satisfied for (t, y) 2 [0, 3
2 ] ⇥ [0, 100]. By Theorem

3.9, boundary value problem (4.8) and (4.9) has at least one positive solutions for �i; i = 1, 2 are

su�ciently small.

Example 4.6. Consider the following boundary value problem in time scale T = hZ = {hk : k 2
Z}, where h = 1

2 > 0,

�
(1 + t)�1

y
�
�r

+ �1
p
y sin y + �2 = 0 for t 2 [0, 2], (4.10)

with boundary conditions

y(0)� y
�(0) = 0,

y(2) +
2

5
y
�

✓
3

2

◆
= 0,

(4.11)

where  (t) = (1+t)�1
, M = 1, ↵, �, �, � � 0, g(t, y) =

p
y sin y and h(t, y) = 1. Green’s function

for the boundary value problem (4.10) and (4.11) is given by

G(t, s) = 2

13

8
><

>:

⇣
1 + s(2s+5)

4

⌘⇣
1 + (2�t)(2t+9)

4

⌘
, s  t,

✓
1 + t(2t+5)

4

◆⇣
1 + (2�s)(2s+9)

4

⌘
, t  s.

The conditions (H1)–(H3), (L2) and (L8) are satishfied for (t, y) 2 [0, 2] ⇥ [0, 100]. By Theorem

3.11, boundary value problem (4.10) and (4.11) has at least one positive solutions for �i; i = 1, 2

are su�ciently small.
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ABSTRACT

In this paper, we deal with the Duhamel formula, existence,

uniqueness, and stability of mild solutions of a class of non-

local impulsive differential equations with conformable frac-

tional derivative. The main results are based on the semi-

group theory combined with some fixed point theorems. We

also give an example to illustrate the applicability of our

abstract results

RESUMEN

En este art́ıculo, tratamos la fórmula de Duhamel, la exis-

tencia, unicidad y estabilidad de soluciones mild de una

clase de ecuaciones diferenciales no locales impulsivas con

derivadas fraccionarias conformables. Los resultados prin-

cipales se basan en teoŕıa de semigrupos, combinada con

algunos teoremas de punto fijo. También entregamos un

ejemplo para ilustrar la aplicabilidad de nuestros resultados

abstractos.
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1 Introduction

Fractional calculus has attracted the attention of many researchers, due to its wide range of

applications in modeling of various natural phenomena in different fields of sciences and engineering

including: physics, engineering, biology, finance, chemistry [3, 26, 31, 35, 38, 41, 43, 44, 45, 46, 47,

48]. For better understanding these phenomena, several definitions of fractional derivatives have

been introduced such as Riemann-Liouville and Caputo definitions, for more details we refer to

the books [31, 41]. Unfortunately, these definitions are very complicated to handle in real models.

However, in [30] a new definition of fractional derivative named conformable fractional derivative

was initiated. This novel fractional derivative is very easy and satisfies all the properties of the

classical derivative. The advantage of the conformable fractional derivative is very remarkable

compared to other fractional derivatives in many comparisons. Indeed, for example, in the work

[15] the authors gave the solution of conformable-fractional telegraph equations in terms of the

classical exponential function, however for the Caputo-fractional telegraph equations considered

in the very good papers [19, 20, 36], the fundamental solution cannot be given in terms of the

exponential function as in the conformable-fractional case, and therefore the authors have been

introduced the so-called Mittag-Leffler function. Another comparison, we notice that the constants

of increases of the norms of the control bounded operators W and W−1 in the application of the

work [27] are given directly in a simple way in terms of the exponential function, contrary, for the

Caputo fractional derivative in the application of the nice work [51] these constants are given in

terms of the so-called Mittag-Leffler function. For more details and conclusions concerning the

uses and applications of conformable fractional calculus, we refer to the works [2, 4, 5, 7, 8, 10, 11,

12, 13, 14, 16, 17, 22, 23, 24, 25, 28, 29, 42, 49].

On the other hand, impulsive differential equations are crucial in description of dynamical processes

with short-time perturbations [6, 32, 50]. Actually, the Cauchy problem of impulsive differential

equations attracts the attention of many authors [1, 9, 33, 34, 37]. For example, Liang et al. [33]

have proved the existence and uniqueness of mild solutions for the Cauchy problem















ẋ(t) = Ax(t) + f(t, x(t)), t ∈ [0, τ ], t "= t1, t2, . . . , tn,

x(0) = x0 + g(x),

x(t+i ) = x(t−i ) + hi(x(ti)), i = 1, 2, . . . , n, .

(1.1)

by using the following classical Duhamel formula:

x(t) = T (t)[x0 + g(x)] +
∑

0<ti<t

T (t− ti)hi(x(ti)) +

∫ t

0
T (t− s)f(s, x(s))ds, (1.2)

where (T (t))t≥0 is the semigroup generated by the linear part A on a Banach space (X, ‖ . ‖) [40]

and x0 ∈ X . The expression x(t+i ) = x(t−i ) + hi(ti) means the impulsive condition, with x(t+i ),

x(t−i ) are the right and left limits of x(.) at t = ti, respectively. The condition x(0) = x0 + g(x)
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represents the nonlocal condition, which can be applied in physics with better effects than the

classical initial condition [18, 21, 39]. The functions f : [0, τ ] × X −→ X , hi : X −→ X and

g : C −→ X satisfied some assumptions, with C is the space of functions x(.) defined from [0, τ ]

into X such that x(.) is continuous on each interval ]ti, ti+1] and x(t+i ), x(t
−
i ) exist.

The analogous of equation (1.1) in the frame of the Caputo fractional derivative have been consid-

ered by Mophou [37], when the author proved the existence and uniqueness of mild solutions for

the following fractional Cauchy problem















cDαx(t) = Ax(t) + f(t, x(t)), t ∈ [0, τ ], t "= t1, t2, . . . , tn, 0 < α < 1,

x(0) = x0 + g(x),

x(t+i ) = x(t−i ) + hi(x(ti)), i = 1, 2, . . . , n,

(1.3)

by using the following fractional Duhamel formula:

x(t) = T (t)[x0 + g(x)] +
∑

0<ti<t

T (t− ti)hi(x(ti)) (1.4)

+
1

Γ(α)

∑

0<ti<t

∫ tk

tk−1

(tk − s)α−1T (t− s)f(s, x(s))ds

+
1

Γ(α)

∫ t

tk

(t− s)α−1T (t− s)f(s, x(s))ds,

with Γ is the Gamma function and cDαx(t) presents the Caputo fractional derivative.

In the present work, we are interested in studying of equation (1.1) in the frame of the conformable

fractional derivative. Precisely, we will be concerned with the study of the existence, uniqueness,

and stability of mild solutions for the following conformable fractional Cauchy problem



















dαx(t)

dtα
= Ax(t) + f(t, x(t)), t ∈ [0, τ ], t "= t1, t2, . . . , tn, 0 < α < 1,

x(0) = x0 + g(x),

x(t+i ) = x(t−i ) + hi(x(ti)), i = 1, 2, . . . , n,

(1.5)

where
dαx(t)

dtα
is the conformable fractional derivative.

The main novelty of this paper is to prove the analogous of Duhamel formulas (1.2) and (1.4) for

the Cauchy problem (1.5) as follows:

x(t) = T

(

tα

α

)

[x0 + g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

hi(x(ti)) (1.6)

+

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

Then, based on this conformable fractional Duhamel formula, we discuss some results concerning

the existence, uniqueness, and stability of the mild solution of the conformable fractional Cauchy

problem (1.5).
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This paper is organized as follows. In section 2, we briefly recall some tools related to the con-

formable fractional calculus. In section 3, we prove the main results. Section 4 is devoted to a

concrete application of the main abstract results.

2 Preliminaries

Recalling some preliminary facts on the conformable fractional calculus.

Definition 2.1 ([30]). Let α ∈ ]0, 1]. The conformable fractional derivative of order α of a function

x(.) : [0,+∞[−→ R is defined by

dαx(t)

dtα
= lim

ε−→0

x(t+ εt1−α)− x(t)

ε
, for t > 0 and

dαx(0)

dtα
= lim

t−→0+

dαx(t)

dtα
,

provided that the limits exist.

The fractional integral Iα(.) associated with the conformable fractional derivative is defined by

Iα(x)(t) =

∫ t

0
sα−1x(s)ds.

Theorem 2.2 ([30]). If x(.) is a continuous function in the domain of Iα(.), then we have

dα(Iα(x)(t))

dtα
= x(t).

Definition 2.3 ([41]). The Laplace transform of a function x(.) is defined by

L(x(t))(λ) :=
∫ +∞

0
e−λtx(t)dt, λ > 0.

It is remarkable that the above transform is not adequate to solve conformable fractional differential

equations. For this reason, we consider the following definition, which appeared in [2].

Definition 2.4 ([2]). The fractional Laplace transform of order α of a function x(.) is defined by

Lα(x(t))(λ) :=

∫ +∞

0
tα−1e−λ t

α

α x(t)dt, λ > 0.

The following proposition gives us the actions of the fractional integral and the fractional Laplace

transform on the conformable fractional derivative, respectively.

Proposition 2.5 ([2]). If x(.) is a differentiable function, then we have the following results

Iα
(

dαx(.)

dtα

)

(t) = x(t)− x(0),

Lα

(

dαx(t)

dtα

)

(λ) = λLα(x(t))(λ) − x(0).

We end this preliminaries by the following remark.
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Remark 2.6 ([14]). For two arbitrary functions x(.) and y(.), we have

Lα

(

x

(

tα

α

))

(λ) = L(x(t))(λ),

Lα

(
∫ t

0
sα−1x

(

tα − sα

α

)

y(s)ds

)

(λ) = L(x(t))(λ)Lα(y(t))(λ).

3 Main results

We first prove the conformable fractional Duhamel formula (1.6). To do so, for t ∈ [0, t1], we apply

the fractional Laplace transform in equation (1.5), we obtain

Lα(x(t))(λ) = (λ−A)−1[x0 + g(x)] + (λ −A)−1Lα(f(t, x(t)))(λ).

According to the inverse fractional Laplace transform and Remark (2.6), we get

x(t) = T

(

tα

α

)

[x0 + g(x)] +

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds,

where (T (t))t≥0 is the semigroup generated by the linear part A on the Banach space X , that

is, (T (t))t≥0 is one parameter family of bounded linear operators on X satisfying the following

properties

(1) T (0) = I,

(2) T (s+ t) = T (s)T (t) for all t, s ∈ R+,

(3) lim
t↓0

‖ T (t)x− x ‖= 0 for each fixed x ∈ X ,

(4) lim
t↓0

T (t)x− x

t
= Ax, for x ∈ X , provided that the limit exists.

As in [37], we assume that the solution of equation (1.5) is such that at the point of discontinuity

tk, we have x(t−k ) = x(tk). Hence, one has

x(t−1 ) = T

(

tα1
α

)

[x0 + g(x)] +

∫ t1

0
sα−1T

(

tα1 − sα

α

)

f(s, x(s))ds.

For t ∈ (t1, t2], using the fractional Laplace transform in equation (1.5), we obtain

x(t) = T

(

tα − tα1
α

)

x(t+1 ) +

∫ t

t1

sα−1T

(

tα − sα

α

)

f(s, x(s))ds

= T

(

tα − tα1
α

)

[x(t−1 ) + h1(x(t1))] +

∫ t

t1

sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

Replacing x(t−1 ) by its expression in the above equation, we get

x(t) = T

(

tα − tα1
α

)[

T

(

tα1
α

)

(x0 + g(x)) +

∫ t1

0
sα−1T

(

tα1 − sα

α

)

f(s, x(s))ds+ h1(x(t1))

]

+

∫ t

t1

sα−1T

(

tα − sα

α

)

f(s, x(s))ds.
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By using a computation, the above equation becomes

x(t) = T

(

tα

α

)

[x0 + g(x)] + T

(

tα − tα1
α

)

[h1(x(t1))] +

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

In particular, for t = t−2 , one has

x(t−2 ) = T

(

tα2
α

)

[x0 + g(x)] + T

(

tα2 − tα1
α

)

[h1(x(t1))] +

∫ t2

0
sα−1T

(

tα2 − sα

α

)

f(s, x(s))ds.

As the same, for t ∈ (t2, t3], we obtain

x(t) = T

(

tα − tα2
α

)

x(t+2 ) +

∫ t

t2

sα−1T

(

tα − sα

α

)

f(s, x(s))ds

= T

(

tα − tα1
α

)

[x(t−2 ) + h2(x(t2))] +

∫ t

t2

sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

Hence, replacing x(t−2 ) by its expression, we have

x(t) = T

(

tα − tα2
α

)[

T

(

tα2
α

)

[x0 + g(x)] + T

(

tα2 − tα1
α

)

[h1(x(t1))]

+

∫ t2

0
sα−1T

(

tα2 − sα

α

)

f(s, x(s))ds+ h2(x(t2))

]

+

∫ t

t2

sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

Using a computation, we get

x(t) = T

(

tα

α

)

[x0 + g(x)] + T

(

tα − tα1
α

)

[h1(x(t1))] + T

(

tα − tα2
α

)

[h2(x(t2))]

+

∫ t

t2

sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

Repeating the same process, we obtain the following conformable fractional Duhamel formula

x(t) = T

(

tα

α

)

[x0 + g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

hi(x(ti)) +

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

Definition 3.1. A function x ∈ C is called a mild solution of conformable fractional Cauchy

problem (1.5) if

x(t) = T

(

tα

α

)

[x0 + g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

hi(x(ti)) +

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds.

In the rest of this paper, we endow the space C with the norm | x |c:= sup
t∈[0,τ ]

‖ x(t) ‖. It is well

known that the space (C, | . |c) becomes a Banach space. We also denote by |.| the norm in the

space L(X) of bounded operators defined form X into itself.

To prove the main results, we need to use the following assumptions:

(H1) The function f(t, .) : X −→ X is continuous and for all r > 0 there exists a function

µr ∈ L∞([0, τ ],R+) such that sup
‖x‖≤r

‖ f(t, x) ‖≤ µr(t), for all t ∈ [0, τ ].
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(H2) The function f(., x) : [0, τ ] −→ X is continuous, for all x ∈ X .

(H3) There exists a constant L1 > 0 such that ‖ g(y)− g(x) ‖≤ L1 | y − x |c, for all x, y ∈ C.

(H4) There exist constants Ci > 0 such that ‖ hi(y(ti))−hi(x(ti)) ‖≤ Ci | y−x |c, for all x, y ∈ C.

Theorem 3.2. If (T (t))t>0 is compact and (H1) − (H4) are satisfied, then the conformable frac-

tional Cauchy problem (1.5) has at least one mild solution, provided that

(

L1 +
n
∑

i=1

Ci

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

< 1.

Proof. Let Br = {x ∈ C, | x |c≤ r}, where

r ≥

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[

‖ x0 ‖ + ‖ g(0) ‖ +
n
∑

i=1

‖ hi(0) ‖ +
τα

α
| µr |L∞([0,τ ],R+)

]

1−

(

L1 +
n
∑

i=1

Ci

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

.

In order to use the Krasnoselskii fixed-point theorem, we consider the following operators Γ1 and

Γ2 defined by

Γ1(x)(t) = T

(

tα

α

)

[x0 + g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

hi(x(ti)), x ∈ Br,

Γ2(x)(t) =

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds, x ∈ Br.

It is very easy to justify that the operator Γ := Γ1 + Γ2 is well defined, that is, Γ(x) ∈ C for all

x ∈ C. The rest of the proof will be given in four steps:

Step 1: Prove that Γ1(x) + Γ2(y) ∈ Br, whenever x, y ∈ Br.

Let x, y ∈ Br, we have

Γ1(x)(t) + Γ2(y)(t) = T

(

tα

α

)

[x0 + g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

hi(x(ti))

+

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, y(s))ds.

Then, we obtain

‖ Γ1(x)(t) + Γ2(y)(t) ‖ ≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[ ‖ x0 ‖ + ‖ g(0) ‖ + ‖ g(x)− g(0) ‖ ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∑

0<ti<t

[ ‖ hi(0) ‖ + ‖ hi(x(ti))− hi(0) ‖ ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∫ t

0
sα−1 ‖ f(s, y(s)) ‖ ds.
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By using assumptions (H1), (H3) and (H4), we get

‖ Γ1(x)(t) + Γ2(y)(t) ‖ ≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[ ‖ x0 ‖ + ‖ g(0) ‖ +L1 | x |c ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∑

0<ti<t

[ ‖ hi(0) ‖ +Ci | x |c ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| µr |L∞([0,τ ],R+)

∫ t

0
sα−1ds.

According to the fact that x, y ∈ Br, we conclude that

‖ Γ1(x)(t) + Γ2(y)(t) ‖ ≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[ ‖ x0 ‖ + ‖ g(0) ‖ +L1r ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∑

0<ti<t

[ ‖ hi(0) ‖ +Cir ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| µr |L∞([0,τ ],R+)

∫ t

0
sα−1ds.

Taking the supremum, we get

| Γ1(x) + Γ2(y) |c ≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[‖ x0 ‖ + ‖ g(0) ‖ +L1r]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

n
∑

i=1

[ ‖ hi(0) ‖ +Cir ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| µr |L∞([0,τ ],R+)

∫ τ

0
sα−1ds

= sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[ ‖ x0 ‖ + ‖ g(0) ‖ +L1r ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

n
∑

i=1

[ ‖ hi(0) ‖ +Cir ]

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| µr |L∞([0,τ ],R+)
τα

α

≤ r.

Hence, the above inequality combined with the continuity of the function Γ1(x)(.) + Γ2(y)(.) on

[0, τ ] show that Γ1(x) + Γ2(y) ∈ Br, for all x, y ∈ Br.

Step 2: Prove that Γ1 is a contraction operator on Br.

For x, y ∈ C, we have

Γ(y)(t)− Γ(x)(t) = T

(

tα

α

)

[g(y)− g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

[hi(y(ti))− hi(x(ti))].
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Consequently, one has

‖ Γ(y)(t)− Γ(x)(t) ‖ ≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

‖ g(y)− g(x) ‖

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∑

0<ti<t

‖ hi(y(ti))− hi(x(ti)) ‖ .

Using assumptions (H3) and (H4), we get

‖ Γ(y)(t)− Γ(x)(t) ‖≤

(

L1 +
n
∑

i=1

Ci

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| y − x |c .

Taking the supremum in above equation, we obtain

| Γ(y)− Γ(x) |c≤

(

L1 +
n
∑

i=1

Ci

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| y − x |c .

This implies that Γ1 is a contraction operator on Br.

Step 3: Prove that Γ2 is continuous.

Let (xn) ⊂ Br such that xn −→ x in Br. We have

Γ2(xn)(t)− Γ2(x)(t) =

∫ t

0
sα−1T

(

tα − sα

α

)

[f(s, xn(s))− f(s, x(s))]ds.

Then, by using a computation, we obtain

| Γ2(xn)− Γ2(x) |c≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∫ τ

0
sα−1 ‖ f(s, xn(s))− f(s, x(s)) ‖ ds.

Using assumption (H1), we get ‖ sα−1[f(s, xn(s)) − f(s, x(s))] ‖≤ 2µr(s)sα−1 and

f(s, xn(s)) −→ f(s, x(s)) as n −→ +∞.

According to the Lebesgue dominated convergence theorem, we conclude that

lim
n−→+∞

| Γ2(xn)− Γ2(x) |c= 0.

Thus, the operator Γ2 is continuous.

Step 4: Prove that Γ2 is compact by using the Arzelà-Ascoli theorem.

Claim 1: We prove that Γ2(Br) is equicontinuous.

Let t1, t2 ∈ [0, τ ] such that t1 < t2. Then, we have

Γ2(x)(t2)− Γ2(x)(t1) =

∫ t1

0
sα−1

[

T

(

tα2 − sα

α

)

− T

(

tα1 − sα

α

)]

f(s, x(s))ds

+

∫ t2

t1

sα−1T

(

tα2 − sα

α

)

f(s, x(s))ds

=

[

T

(

tα2 − tα1
α

)

− I)

]
∫ t1

0
sα−1T

(

tα1 − sα

α

)

f(s, x(s))ds

+

∫ t2

t1

sα−1T

(

tα2 − sα

α

)

f(s, x(s))ds.
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By using a computation and assumption (H1), we obtain

‖ Γ2(x)(t2)− Γ2(x)(t1) ‖≤
sup

t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| µr |L∞([0,τ ],R+)

α

[

(tα2 − tα1 ) + τα
∣

∣

∣

∣

T

(

tα2 − tα1
α

)

− I

∣

∣

∣

∣

]

.

According to [40], the compactness of (T (t))t>0 assures that lim
t2−→t1

∣

∣

∣

∣

T

(

tα2 − tα1
α

)

− I

∣

∣

∣

∣

= 0. Hence,

combining this fact with the above inequality, we conclude that Γ2(x), x ∈ Br are equicontinuous

on [0, τ ].

Claim 2: We prove that the set {Γ2(x)(t), x ∈ Br} is relatively compact in X .

For some fixed t ∈]0, τ ] let ε ∈]0, t[, x ∈ Br and define the operator Γε
2 as follows

Γε
2(x)(t) = T

(

εα

α

)
∫ (tα−εα)

1
α

0
sα−1T

(

tα − sα − εα

α

)

f(s, x(s))ds.

Since (T (t))t>0 is compact, then the set {Γε
2(x)(t), x ∈ Br} is relatively compact in X . By using

a computation combined with assumption (H1), we get

‖ Γε
2(x)(t) − Γ2(x)(t) ‖≤| µr |L∞([0,τ ],R+) sup

t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

εα

α
.

Therefore, we deduce that the {Γ2(x)(t), x ∈ Br} is relatively compact in X . For t = 0 the set

{Γ2(x)(0), x ∈ Br} is compact. Thus, the set {Γ2(x)(t), x ∈ Br} is relatively compact in X for

all t ∈ [0, τ ]. By using the Arzelà-Ascoli theorem, we conclude that the operator Γ2 is compact.

In conclusion, by the above steps combined with the Krasnoselskii fixed-point theorem, we conclude

that Γ1 + Γ2 has at least one fixed point in C, which is a mild solution of conformable fractional

Cauchy problem (1.5).

To obtain the uniqueness of the mild solution, we need the following assumption:

(H5) There exists a constant L2 > 0 such that ‖ f(t, y)− f(t, x) ‖≤ L2 ‖ y − x ‖, for all x, y ∈ X

and t ∈ [0, τ ].

Theorem 3.3. Assume that (H2) − (H5) hold, then the conformable fractional Cauchy problem

(1.5) has an unique mild solution, provided that

(

L1 +
n
∑

i=1

Ci +
τα

α
L2

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

< 1.

Proof. Define the operator Γ : C −→ C by:

Γ(x)(t) = T

(

tα

α

)

[x0 + g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

hi(x(ti)) +

∫ t

0
sα−1T

(

tα − sα

α

)

f(s, x(s))ds.
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For x, y ∈ C, we have

Γ(y)(t)− Γ(x)(t) = T

(

tα

α

)

[g(y)− g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

[hi(y(ti))− hi(x(ti))]

+

∫ t

0
sα−1T

(

tα − sα

α

)

[f(s, y(s))− f(s, x(s))]ds.

Then, we obtain

‖ Γ(y)(t) − Γ(x)(t) ‖ ≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

‖ g(y)− g(x) ‖

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∑

0<ti<t

‖ hi(y(ti))− hi(x(ti)) ‖

+ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

∫ t

0
sα−1 ‖ f(s, y(s))− f(s, x(s)) ‖ ds.

According to assumptions (H3), (H4) and (H5), we conclude that

‖ Γ(y)(t)− Γ(x)(t) ‖≤

(

L1 +
n
∑

i=1

Ci +
τα

α
L2

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| y − x |c .

Taking the supremum, we obtain

| Γ(y)− Γ(x) |c≤

(

L1 +
n
∑

i=1

Ci +
τα

α
L2

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

| y − x |c .

Since

(

L1 +
n
∑

i=1

Ci +
τα

α
L2

)

sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

< 1 then Γ is a contraction operator on the Banach

space (C, | . |c). Hence, by using the Banach contraction principle, we conclude that the operator

Γ has an unique fixed point in C, which is the mild solution of the conformable fractional Cauchy

problem (1.5).

Now, we are in position to prove the continuous dependence of the mild solution to the initial

condition. Precisely, we have the following result.

Theorem 3.4. Assume that the conditions of Theorem (3.3) are satisfied. Let x0, y0 ∈ X and

denote by x and y the solutions associated with x0 and y0, respectively. Then, we have the following

estimate

| y − x |c≤
α sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

α− sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

(

αL1 +
n
∑

i=1

αCi + L2τ
α

) ‖ y0 − x0 ‖ .

Proof. For t ∈ [0, τ ], we have

y(t)− x(t) = T

(

tα

α

)

[y0 − x0 + g(y)− g(x)] +
∑

0<ti<t

T

(

tα − tαi
α

)

[hi(y(ti))− hi(x(ti))]

+

∫ t

0
sα−1T

(

tα − sα

α

)

[f(s, y(s))− f(s, x(s))]ds.
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Then, by using a computation combined with assumptions (H1), (H3) and (H4), we obtain

‖ y(t)− x(t) ‖≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[

‖ y0 − x0 ‖ +

(

L1 +
L2τ

α

α
+

n
∑

i=1

Ci

)

| y − x |c

]

.

Taking the supremum, we get

| y − x |c≤ sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

[

‖ y0 − x0 ‖ +

(

L1 +
L2τ

α

α
+

n
∑

i=1

Ci

)

| y − x |c

]

.

Thus, we deduce the desired estimate

| y − x |c≤
α sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

α− sup
t∈[0,τ ]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

(

αL1 +
n
∑

i=1

αCi + L2τ
α

) ‖ y0 − x0 ‖ .

4 Application

We consider the nonlocal impulsive partial differential equation with conformable fractional deriva-

tive of the form










































∂
1
2u(t, ξ)

∂t
1
2

= −
∂2u(t, ξ)

∂ξ2
+

∫ t

0

| cos(u(t− s, ξ))|
1 + | sin(u(t− s, ξ))|

ds, (t, ξ) ∈ [0, 1]×]0,π[, t "=
1

2
,

u(t, 0) = u(t,π) = 0, t ∈ [0, 1],

u(0, ξ) =
1

n2
[u(t1, ξ) + 2u(t2, ξ) + 3u(t3, ξ) + · · ·+ nu(tn, ξ)], ξ ∈ [0,π],

lim
ε−→0+

u

(

1

2
+ ε, ξ

)

= lim
ε−→0+

u

(

1

2
− ε, ξ

)

+
|u(12 , ξ)|

n+ |u(12 , ξ)|
, ξ ∈ [0,π],

(4.1)

where n ∈ N such that 3 < n and 0 < t1 < t2 < t3 < · · · < tn < 1 are given real constants.

Let X = L2([0,π],R) and define the operator A as follows

A = −
∂2(.)

∂ξ2
, D(A) = {ϕ ∈ X : ϕ, ϕ̇ are absolutely continuous, ϕ̈ ∈ X and ϕ(0) = ϕ(π) = 0}.

It is well known that the operator A generates a compact semigroup (T (t))t≥0 on X such that

sup
t≥0

|T (t)| ≤ 1.

Next, we consider the change x(t)(ξ) = u(t, ξ) and the following notations

f(t, x(t)) =

∫ t

0

| cos(x(t− s))|
1 + | sin(x(t− s))|

ds,

g(x) =
1

n2

n
∑

i=1

ix(ti),

h1

(

x

(

1

2

))

=
|x(12 )|

n+ |x(12 )|
.
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Then, equation (4.1) becomes as follows:



















d
1
2 x(t)

dt
1
2

= Ax(t) + f(t, x(t)), t ∈ [0, 1], t "= 1
2 ,

x(0) = g(x),

x(12
+
) = x(12

−
) + h1(x(12 )).

(4.2)

In this concrete application, we have L1 =
1 + 2 + 3 + · · ·+ n

n2
=

n+ 1

2n
, C1 =

1

n
and sup

t∈[0,1]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

=

sup
t∈[0,1]

∣

∣

∣
T (2

√
t)
∣

∣

∣
.

Now, returning back to Theorem (3.2), we obtain that

(L1 + C1) sup
t∈[0,1]

∣

∣

∣

∣

T

(

tα

α

)
∣

∣

∣

∣

=

(

n+ 1

2n
+

1

n

)

sup
t∈[0,1]

|T (2
√
t)| ≤

n+ 1

2n
+

1

n
=

n+ 3

2n
< 1.

Hence, we conclude that the above equation has at least one mild solution.

Conclusion

In this work, we have proved the Duhamel formula, existence, uniqueness, and stability of mild

solutions of a class of nonlocal impulsive differential equations in the frame of the conformable

fractional derivative. The main results are obtained by using the semigroup theory combined with

some fixed point theorems. The ideas of this paper can be extended to other models in physics,

biology, chemistry, economics and so forth.
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ABSTRACT

We prove some equivalences associated with the case when

the average lower time is minimal. In addition, we charac-

terize the minimal systems by means of the positivity of in-

variant measures on open sets and also the minimum ergodic

averages. Finally, we show that a minimal system admits an
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ergodic measures and its value can be chosen in [0, 1].

RESUMEN
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1 Introduction

The main motivation of this paper is the result obtained by Jenkinson in [3] which states that given

an invariant measure there exists a continuous function that achieves the maximum ergodic average

using such measure. This result has been used in several recent works [1, 6, 7]. A minimizing

version of this result is possible to obtain in a straightforward way. In this sense, given the

behavior of uniquely ergodic systems, it is natural to ask whether this version admits any relation

to minimal systems and time averages. The present paper addresses both problems in the following

way. Firstly, we prove some equivalences associated with the case when the average lower time is

minimal. We also characterize the minimal systems by means of the positivity of invariant measures

on open sets and also the minimum ergodic averages (this result was inspired by Theorem 6.17 in

[9]). Finally, we show that given a finite set of ergodic measures in a minimal system it is possible

to find an open set whose measure is minimal and its value can be chosen in [0, 1]. Let us state

our results in a precise way.

Throughout this paper, the pair (X, d) denotes a compact metric space and C(X) denotes the

space of all continuous real-valued functions on X . We denote by M(X) the set of all Borel

probability measures of X , provided with the weak* topology. Let T : X → X be a continuous

transformation. Given µ an element of M(X), we say that µ is T -invariant if µ(T−1(A)) = µ(A)

for every Borel subset A of X . We denote by MT (X) the set of T -invariant probability measures.

A probability measure µ is called ergodic if µ(A) ∈ {0, 1} for each T -invariant set A. Denote by

ET (X) the set of ergodic measures. For x ∈ X , let δx be denote the Dirac point measure of x

defined by δx(A) = 1 when x ∈ A and δx(A) = 0 otherwise.

Let f : X → R be a continuous function, we say that an invariant measure µ is f -minimizing if

the minimum ergodic average [4] defined by

α(f) = min

{∫

X

fdm : m ∈ MT (X)

}
,

satisfies α(f) =

∫

X

fdµ. Given x ∈ X , recall that the lower time average is

τ(x, f) = lim inf
N→∞

1

N

N−1∑

i=0

f ◦ T i(x).

We consider the number E(x, f) = τ (x, f) − α(f). This number quantifies the non-minimal time

average. Note that E(x, f) ≥ 0.

Next we state our first result that characterizes the cases where the non-minimal time average is

equal to zero totally and partially uniform. For this purpose, we must recall that (X,T ) is said to

be uniquely ergodic if there is a unique invariant probability measure on X .
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Theorem 1.1. Let T : X → X be a continuous transformation of a compact metric space. For

every x ∈ X and f ∈ C(X), we have the following equivalences

(1) E ≡ 0 if and only if (X,T ) is uniquely ergodic.

(2) E(·, f) = 0 if and only if α(f) =

∫

X

fdµ, for all µ ∈ MT (X).

(3) E(x, ·) = 0 if and only if every ergodic measure is a limit point of the sequence

{
1

n

n−1∑

i=0

δT i(x)

}

.

Our next result shows a characterization of the minimal systems through the open sets and min-

imum ergodic averages. Recall that a dynamical system (X,T ) is called minimal if X does not

contain any non-empty, proper, closed T -invariant subset.

Theorem 1.2. Let T : X → X be a continuous transformation of a compact metric space. The

following statements are equivalents:

(1) (X,T ) is a minimal system.

(2) For each non empty open set A ⊂ X and each µ ∈ MT (X), we have µ(A) > 0.

(3) Every non-zero f ∈ C(X) with f ≥ 0 satisfies α(f) > 0.

Finally, in the case of non-discrete minimal systems, it is satisfied that the minimum ergodic average

reaches all values of [0, 1] for continuous functions of norm one. (see Lemma 2.8). Motivated by

this, we found a condition on the ergodic measures [2] to obtain a version of this result through

open sets.

Theorem 1.3. Let T : X → X be a continuous transformation of a non-discrete compact metric

space. If (X,T ) is minimal and F is a finite subset of ET (X), then for every r ∈ [0, 1] there is an

open set A such that r is the minimun value of µ(A) whenever µ ∈ F .

The paper is organized as follows. In Section 2, we will prove several results necessary for the proof

of the main theorems. Finally, in Section 3, we will prove Theorems 1.1, 1.2 and 1.3.

2 Preliminary lemmas

Let X be a compact metric space and T : X → X be a continuous transformation. We denote the

applications

α : C(X) −→ R

f (−→ min
µ∈MT (X)

∫

X

fdµ,
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and

E : X × C(X) −→ [0,+∞)

(x, f) (−→ τ (x, f)− α(f).

Below are some properties of these applications that are straightforward from the definition. Let

Z be a convex set of a vector space V . A subset F of Z is called face of Z if whenever x, y ∈ Z

and λx+ (1 − λ)y ∈ F with 0 < λ < 1, then {x, y} ⊂ F .

Proposition 2.1. We have the following properties

(1) α is continuous and T -invariant.

(2) α(1) = 1.

(3) E(x, f) = E(x, f ◦ T ).

(4) α(f) ≤ α(g) whenever f ≤ g.

(5) The set

{
µ ∈ MT (X) : α(f) =

∫

X

fdµ

}
is a non-empty closed face of MT (X).

We will prove some additional properties of E

Lemma 2.2. Let T : X → X be a continuous transformation of a compact metric space. It holds

that E(x, f) = 0 for every x ∈ X and f ∈ C(X) if and only if the system (X,T ) is uniquely

ergodic.

Proof. It is sufficient to prove that if E ≡ 0 then the system is uniquely ergodic. By Theorem 1 in

[3] for every ergodic measure ν there exists an f ∈ C(X) such that ν is the unique f -minimizing

measure, that is, ν is the unique satisfying

∫

X

fdν = α(f).

Since E(x, f) = 0 for each x ∈ X , we obtain

lim inf
n→∞

1

n

n−1∑

i=0

f ◦ T i(x) =

∫

X

fdν. (2.1)

If the system is not uniquely ergodic, there exists ω ∈ ET (X) such that ω ,= ν. Let p be a generic

point for ω. Using (2.1), we have

∫

X

fdω = lim
n→∞

1

n

n−1∑

i=0

f ◦ T i(p) =

∫

X

fdν <

∫

X

fdω.

It is a contradiction. So (X,T ) is uniquely ergodic.
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Lemma 2.3. Let T : X → X be a continuous transformation of a compact metric space. Given

f ∈ C(X). Then, E(x, f) = 0 for every x ∈ X if and only if α(f) =

∫

X

fdµ, for all µ ∈ MT (X).

Proof. By Proposition 2.1, we know that the set

H =

{
ν ∈ MT (X) : α(f) =

∫

X

fdν

}
,

is a non-empty closed face of MT (X). If H ,= MT (X), then there is µ ∈ ET (X) \H . Let p be a

generic point for µ, so
∫

X

fdµ = lim
n→∞

1

n

n−1∑

i=0

f ◦ T i(p) = α(f), (2.2)

the last equality in (2.2) is a consequence of the hypothesis E(p, f) = 0. Thus µ ∈ H , which is

absurd.

Conversely, given x ∈ X we can find a sequence {Nk} such that the inferior mean sojourn time is

written as

τ (x, f) = lim
k→∞

1

Nk

Nk−1∑

i=0

f ◦ T i(x), (2.3)

and also

{

N−1
k

Nk−1∑

i=0

δT i(x)

}

is convergent to ν ∈ MT (X). Therefore E(x, f) = 0 since

τ (x, f) =

∫

X

fdν = α(f).

A consequence of the above result is the following

Corollary 2.4. The set {f ∈ C(X) : E(x, f) = 0 for every x ∈ X} is a closed linear subspace of

C(X).

Lemma 2.5. Let T : X → X be a continuous transformation of a compact metric space. Given

x ∈ X. Then, E(x, f) = 0 for each f ∈ C(X) if and only if every ergodic measure is a limit point

of the sequence

{
1

n

n−1∑

i=0

δT i(x)

}

.

Proof. Denote by Λ the set of the limit points of the sequence

{
1

n

n−1∑

i=0

δT i(x)

}

. Suppose there is

µ ∈ ET (X) \ Λ. By Theorem 1 in [3], for every ergodic measure µ there exists an f ∈ C(X) such

that µ is the unique with the property
∫

X

fdµ = α(f).

Since E(x, f) = 0, we have
∫

X

fdµ = α(f) = τ(x, f).
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Moreover, using (2.3), there is a sequence {mk} in M(X) such that

τ(x, f) = lim
k→∞

∫

X

fdmk.

We can assume that {mk} converges to ν ∈ MT (X). Then

∫

X

fdµ =

∫

X

fdν with ν ,= µ. It is a

contradiction.

Conversely, given f ∈ C(X) there exists an ergodic measure µ such that α(f) =

∫

X

fdµ. On the

other hand, there is a sequence {Nk} satisfying

µ = lim
k→∞

N−1
k

Nk−1∑

i=0

δT i(x).

Therefore

α(f) ≤ τ (x, f) ≤ lim
k→∞

1

Nk

Nk−1∑

i=0

f ◦ T i(x) =

∫

X

fdµ = α(f),

so E(x, f) = 0.

Now, we introduce the following auxiliary application

' : T × C −→ [0, 1]

(A,F) (−→ '(A,F) = min
µ∈F

µ(A),

where T denotes the topology associated with X and C denotes the space of all closed subsets of

MT (X). We write '(A) = '(A,MT (X)). Note that '(A) can be interpreted as the capacity of an

open set (see Lemma 4.1 in [5]).

Lemma 2.6. Let T : X → X be a continuous transformation of a compact metric space. It holds

that '(A) > 0 for every non-empty open set A if and only if α(f) > 0 for each non-zero f ∈ C(X)

with f ≥ 0.

Proof. Given a non-zero f ∈ C(X) with f ≥ 0. We can find a non-empty open A and a constant

c > 0 that verify f(x) ≥ c for all x ∈ A. It follows that

α(f) ≥ min
µ∈MT (X)

∫

A

fdµ ≥ c'(A) > 0.

Hence α(f) > 0.

Conversely, let A be a non-empty open set in X . By Urysohn’s Lemma choose f ∈ C(X) with

0 ≤ f ≤ 1, f(p) = 1 and f = 0 on Ac for some p ∈ A. If '(A) = 0, there exists some ν ∈ MT (X)

such that ν(A) = 0, therefore

0 < α(f) ≤

∫

A

fdν = 0.

It is a contradiction.
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Lemma 2.7. Let T : X → X be a continuous transformation of a compact metric space. If (X,T )

is a minimal system, then '(A) > 0 for every non-empty open set A.

Proof. Since (X,T ) is minimal, for every non-empty open set A we have

X =
n⋃

i=0

T−i(A),

for some n ∈ N, therefore '(A) ≥ 1
n+1 , that is, '(A) > 0.

Lemma 2.8. Let T : X → X be a continuous transformation of a non-discrete compact metric

space. If (X,T ) is minimal, then given r ∈ [0, 1], there is an f ∈ C(X) with ‖f‖∞ = 1 such that

α(f) = r.

Proof. Note that the set B = {f ∈ C(X) : ‖f‖∞ = 1} is connected in (C(X), ‖.‖∞). Given

r ∈ (0, 1), by Lemma 2.7 and since (X,T ) is non-discrete, we obtain a non-empty open set A with

the following property 0 < '(A) < r/2. By Urysohn’s Lemma choose g ∈ C(X) with 0 ≤ g ≤ 1,

g(p) = 1 and g = 0 on Ac for some p ∈ A. Therefore

α(g) = min
µ∈MT (X)

∫

A

gdµ ≤ '(A) < r/2.

By Proposition 2.1, α is continuous on B and α(1) = 1. So, there exists f ∈ C(X) with ‖f‖∞ = 1

such that α(f) = r. Now for the remaining cases it is sufficient to consider the constant functions

f ≡ 1 and g ≡ −1. Then α(f) = 1 and α(g) = −1, it follows that there is h ∈ B such that

α(h) = 0.

If we denote

Ẽ(x,A) = τ (x,χA)− 'A,

this value represents the non-minimal mean sojourn time on A. Also we can obtain that Ẽ(x,A) ∈

[0, 1].

Recall that a point x ∈ X is periodic for T : X → X if T n(x) = x for some n ∈ N and the

minimal such n is called the period of T . A point x ∈ X is called pre-periodic if some iterate of x

is periodic. We denote by O(x) the orbit of x.

Lemma 2.9. Let T : X → X be a continuous transformation of a compact metric space. It holds

that Ẽ(x,A) ≡ 0 for every x ∈ X and A ∈ T if and only if every point in X is pre-periodic and

there is only one periodic orbit.

Proof. It is enough to prove the sufficiency. First, we claim that Ẽ ≡ 0 implies that each measure

in MT (X) is atomic. Suppose there is a non-atomic µ invariant measure. Given z ∈ X , we

can find open sets {V z
n }n∈N such that T n(z) ∈ V z

n and µ(V z
n ) < 1/2n+1. Therefore, the open
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set Az =
⋃

n V
z
n contains the orbit of z, so τ (z, Az) = 1. Thus Ẽ(z, Az) > 1/2 since '(Az) ≤

µ(Az) < 1/2. This proves our claim. Let ν be an ergodic measure. There is p ∈ X with ν(p) > 0.

By the Poincaré’s Recurrence (Theorem 1.2.4 in [8]), the point p is periodic. Given x ∈ X , if

X = O(p), then there is nothing to prove. Otherwise, the open set B = X \ O(p) satisfies 'B = 0,

so τ (x,B) = 0. This implies that O(x) ,⊂ B. Hence, there exists a periodic point p such that for

each x ∈ X there exists k ∈ N satisfying T k(x) ∈ O(p).

3 Proof of the theorems

Proof of Theorem 1.1. The proof of this result is actually contained in the Lemmas 2.2, 2.3 and

2.5.

Proof of Theorem 1.2. To prove that Item (1) implies Item (2), we use Lemma 2.7. To prove that

Item (2) implies Item (1), assume that (X,T ) is not a minimal system. There exists some point

x ∈ X whose orbit is not dense in X . We consider the non-empty open set A = X \ O(x), so

'(A) > 0. On the other hand, there are a sequence {Nk} and a measure µ ∈ MT (X) satisfying

µ = lim
k→∞

N−1
k

Nk−1∑

i=0

δT i(x),

therefore

'(A) ≤ µ(A) ≤ lim inf
k→∞

1

nk
|{0 ≤ i ≤ Nk − 1 : T i(x) ∈ A}| = 0.

It is a contradiction. Finally, the Lemma 2.6 proves the equivalence between Item (2) and Item

(3).

Proof of Theorem 1.3. Suppose that there exists r ∈ (0, 1) such that '(A,F) ,= r for every open

set A . We consider the set

Z = {B : B is open in X and 0 < '(B,F) < r}.

By Lemma 2.7, we obtain that Z is non-empty since (X,T ) is non-discrete. We partially order Z

by inclusion. Assume {Bi}i∈I ⊂ Z is a totally ordered subset of Z where I is infinite. An upper

bound for the Bi’s in Z is the open set B =
⋃

i∈I Bi. Since I is infinite, we can suppose that

N ⊂ I. We choose an increasing sequence {Aj} such that B =
⋃

j∈N
Aj . If F = {µ!}N!=1, then

there exists ) such that the set K! = {j ∈ N : '(Aj ,F) = µ!(Aj)} is infinite. Thus, given ν ∈ F

we have

ν(B) = lim
j∈K!

ν(Aj) ≥ lim
j∈K!

µ!(Aj) = µ!(B),
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then '(B,F) = µ!(B). On the other hand, since B =
⋃

j∈N
Aj using the regularity of the measure

we have that there are j ∈ N and a compact K such that K ⊂ Aj and µ!(K) ≤ µ!(Aj) < r.

So, µ!(B) ≤ r but for the hypothesis '(A,F) ,= r. Hence '(B,F) = µ!(B) < r, therefore

B ∈ Z. Zorn’s lemma now tells us that Z contains a maximal element A. Let µ ∈ F such that

µ(A) = '(A,F) < r. Given x ∈ X , there is an open set Ux with µ(Ux) < r − µ(A). Hence

'(A ∪ Ux,F) ≤ µ(A ∪ Ux) ≤ µ(A) + µ(Ux) < r.

Using the maximality of A it is concluded that Ux ⊂ A for every x ∈ X , so A = X . It implies

'(A,F) = 1 > r, which is absurd.
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ABSTRACT

In this article, we consider the following two-point discrete

fractional boundary value problem with constant coe�cient

associated with Dirichlet boundary conditions.

8
<

:
�
�
r⌫

⇢(a)u
�
(t) + �u(t) = f(t, u(t)), t 2 Nb

a+2,

u(a) = u(b) = 0,

where 1 < ⌫ < 2, a, b 2 R with b�a 2 N3, Nb
a+2 = {a+2, a+

3, . . . , b}, |�| < 1, r⌫
⇢(a)u denotes the ⌫th

-order Riemann–

Liouville nabla di↵erence of u based at ⇢(a) = a � 1, and

f : Nb
a+2 ⇥ R ! R+

.

We make use of Guo–Krasnosels’kǐı and Leggett–Williams

fixed-point theorems on suitable cones and under appropri-

ate conditions on the non-linear part of the di↵erence equa-

tion. We establish su�cient requirements for at least one, at

least two, and at least three positive solutions of the consid-

ered boundary value problem. We also provide an example

to demonstrate the applicability of established results.
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RESUMEN

En este art́ıculo consideramos el siguiente problema de valor

en la frontera de dos puntos discreto fraccional con coefi-

cientes constantes asociado a condiciones de frontera de tipo

Dirichlet

8
<

:
�
�
r⌫

⇢(a)u
�
(t) + �u(t) = f(t, u(t)), t 2 Nb

a+2,

u(a) = u(b) = 0,

donde 1 < ⌫ < 2, a, b 2 R con b � a 2 N3, Nb
a+2 = {a +

2, a+3, . . . , b}, |�| < 1, r⌫
⇢(a)u denota la nabla diferencia de

Riemann–Liouville de u de orden ⌫ basada en ⇢(a) = a� 1,

y f : Nb
a+2 ⇥ R ! R+

.

Usamos los teoremas de punto fijo de Guo–Krasnosels’kĭı

y Leggett–Williams en conos adecuados y bajo condiciones

apropiadas en la parte nolineal de la ecuación en diferen-

cias. Establecemos requerimientos suficientes para al menos

una, al menos dos, y al menos tres soluciones positivas del

problema de valor en la frontera considerado. También en-

tregamos un ejemplo para mostrar la aplicabilidad de los

resultados.

Keywords and Phrases: Nabla fractional di↵erence, boundary value problem, Dirichlet boundary conditions,

positive solution, existence, fixed-point.
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1 Introduction

Nabla fractional calculus is a branch of mathematics that deals with arbitrary order di↵erences and

sums in the backward sense. The theory of nabla fractional calculus is still in its early stages, with

the most important contributions appearing in the last two decades. Gray & Zhang [15] and Miller

& Ross in [34] first introduced the concept of nabla fractional di↵erence and sum. Atici & Eloe

[2] developed the Riemann–Liouville type nabla fractional di↵erence operator. They also studied

the nabla fractional initial value problem, and established the exponential law, product rule, and

nabla Laplace transform in this line. Several mathematicians [2, 3, 4, 5, 6, 7, 8, 16, 17, 21, 22] have

contributed to the development of the theory of discrete fractional calculus in line with the theory

of continuous fractional calculus. For historical references on continuous fractional calculus, see

[28, 31, 32]. As a result of their works, today discrete fractional calculus has turned into a fruitful

field of research in science and engineering. We refer here to recent monographs [9, 12, 29] and the

references therein, which are important resources pertaining to this field of work.

The study of boundary value problems (BVPs) has a long past and can be followed back to the

work of Euler and Taylor on vibrating strings. On the discrete fractional side, there is a sudden

growth in interest for the development of nabla fractional BVPs. Many authors have studied nabla

fractional BVPs recently. To name a few, Goar [11] and Ikram [18] worked with self-adjoint Caputo

nabla BVPs. Gholami et al. [10] obtained the Green’s function for a non-homogeneous Riemann–

Liouville nabla BVP with Dirichlet boundary conditions. Jonnalagadda [19, 20, 23] analysed some

qualitative properties of two-point non-linear Riemann–Liouville nabla fractional BVPs associated

with a variety of boundary conditions.

As pointed out earlier, many authors have studied the discrete fractional two-point boundary

value problem like in [4, 19] and recently authors in [23] have worked with general nabla fractional

di↵erence equation with constant coe�cients coupled with Dirichlet conditions, which resulted in

for the first time Green’s function in terms of discrete Mittag–Le✏er function along with a few

properties of the same. Compared to discrete Taylor monomial, discrete Mittag–Le✏er function is

an infinite series because of which it poses a challenge while proving positivity of Green’s function.

In the article, [23] the authors have overcome this challenge of proving positivity of Green’s function.

In the present article, we use the positivity of Green’s function and prove an important lemma

which helps us deal with conical mappings by proving that a ratio of infinite series is increasing or

decreasing with respect to the ratio of its coe�cient. To the best of our knowledge, no work has

been done with Leggett–Williams fixed-point theorem in the nabla setting.

We consider the following boundary value problem

8
><

>:

�
�
r⌫

⇢(a)u
�
(t) + �u(t) = f(t, u(t)), t 2 Nb

a+2,

u(a) = u(b) = 0,
(1.1)
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where 1 < ⌫ < 2, a, b 2 R with b�a 2 N3, Nb
a+2 = {a+2, a+3, . . . , b}, |�| < 1, r⌫

⇢(a)u denotes the

⌫
th-order Riemann–Liouville nabla di↵erence of u based at ⇢(a) = a� 1, and f : Nb

a+2 ⇥R ! R+.

The present paper is organized as follows: Section 2 contains preliminaries on nabla fractional

calculus. In Section 3, we establish some properties of the Green’s function associated with the

nabla fractional boundary value problem (1.1) and construct the existence of at least one, at least

two and at least three positive solutions with the help of Guo–Krasnosel’skĭı and Leggett–Williams

fixed-point theorems on suitable cones and under appropriate conditions on the non-linear part

of the di↵erence equation. Finally, we conclude this article with an example to demonstrate the

applicability of our results.

2 Preliminaries

Denote the set of all real numbers and positive integers by R and Z+, respectively. We use the

following notations, definitions and known results of nabla fractional calculus [12]. Assume empty

sums and products are 0 and 1, respectively.

Definition 2.1. For a 2 R, the sets Na and Nb
a, where b� a 2 Z+, are defined by

Na = {a, a+ 1, a+ 2, . . .}, Nb
a = {a, a+ 1, a+ 2, . . . , b}.

Let u : Na ! R and N 2 N1. The first order backward (nabla) di↵erence of u is defined by
�
ru

�
(t) = u(t) � u(t � 1), for t 2 Na+1, and the N

th-order nabla di↵erence of u is defined

recursively by
�
rN

u
�
(t) =

⇣
r
�
rN�1

u
�⌘

(t), for t 2 Na+N .

Definition 2.2 ([12]). For t 2 R\{. . . ,�2,�1, 0} and r 2 R such that (t+r) 2 R\{. . . ,�2,�1, 0},
the generalized rising function (many authors employ the Pochhammer symbol [33] to denote the

same) is defined by

t
r =

�(t+ r)

�(t)
.

Here �(·) denotes the Euler gamma function. Also, if t 2 {. . . ,�2,�1, 0} and r 2 R such that

(t+ r) 2 R \ {. . . ,�2,�1, 0}, then we use the convention that tr = 0.

Definition 2.3 ([12]). Let t, a 2 R and µ 2 R \ {. . . ,�2,�1}. The µ
th-order nabla fractional

Taylor monomial is given by

Hµ(t, a) =
(t� a)µ

�(µ+ 1)
,

provided the right-hand side exists.

We observe the following properties of the nabla fractional Taylor monomials.
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Lemma 2.4 ([18, 19]). Let µ > �1 and s 2 Na. Then the following hold:

(1) If t 2 N⇢(s), then Hµ(t, ⇢(s)) � 0 and if t 2 Ns, then Hµ(t, ⇢(s)) > 0.

(2) If t 2 Ns and �1 < µ < 0, then Hµ(t, ⇢(s)) is an increasing function of s.

(3) If t 2 Ns+1 and �1 < µ < 0, then Hµ(t, ⇢(s)) is a decreasing function of t.

(4) If t 2 N⇢(s) and µ > 0, then Hµ(t, ⇢(s)) is a decreasing function of s.

(5) If t 2 N⇢(s) and µ � 0, then Hµ(t, ⇢(s)) is a non-decreasing function of t.

(6) If t 2 Ns and µ > 0, then Hµ(t, ⇢(s)) is an increasing function of t.

(7) If 0 < v  µ, then Hv(t, a)  Hµ(t, a), for each fixed t 2 Na.

Definition 2.5 ([12]). Let u : Na+1 ! R and ⌫ > 0. The ⌫
th-order nabla sum of u is given by

�
r�⌫

a u
�
(t) =

tX

s=a+1

H⌫�1(t, ⇢(s))u(s), t 2 Na+1.

Definition 2.6 ([12]). Let u : Na+1 ! R, ⌫ > 0 and choose N 2 N1 such that N � 1 < ⌫  N .

The ⌫
th-order Riemann–Liouville nabla di↵erence of u is given by

�
r⌫

au
�
(t) =

⇣
rN

�
r�(N�⌫)

a u
�⌘

(t), t 2 Na+N .

Lemma 2.7 ([13]). Let a, b be two real numbers such that 0 < a  b and 1 < ↵ < 2. Then
(a�s)↵�1

(b�s)↵�1 is a decreasing function of s for s 2 Na�1
0 .

Lemma 2.8 ([12]). Assume the successive fractional nabla Taylor monomials are well defined.

(1) Let ⌫ > 0 and ↵ 2 R. Then, r�⌫
a H↵(t, a) = H↵+⌫(t, a), for t 2 Na.

(2) Let ⌫, ↵ 2 R and n 2 N1 such that n � 1 < ⌫  n. Then, r⌫
aH↵(t, a) = H↵�⌫(t, a), for

t 2 Na+n.

Finally, we present the definition of the nabla Mittag–Le✏er function which is the nabla analogue

of classical Mittag-Le✏er function [14, 30].

Definition 2.9 ([12]). Let ↵, �, � 2 R such that ↵ > 0 and |�| < 1. The nabla Mittag–Le✏er

function is defined by

E�,↵,�(t, a) =
1X

n=0

�
n
H↵n+�(t, a), for t 2 Na.
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Theorem 2.10 ([23]). Assume 1 < ⌫ < 2, �1 < � < 1 and h : Na+2 ! R. The unique solution

of the nabla fractional boundary value problem

8
><

>:

�
�
r⌫

⇢(a)u
�
(t) + �u(t) = h(t), t 2 Nb

a+2,

u(a) = u(b) = 0,
(2.1)

is given by

u(t) =
bX

s=a+2

G(t, s)h(s), t 2 Nb
a, (2.2)

where

G(t, s) =

8
>><

>>:

G1(t, s) =
E�,⌫,⌫�1(t, a)

E�,⌫,⌫�1(b, a)
E�,⌫,⌫�1(b, ⇢(s)), s 2 Nb

t+1,

G2(t, s) =
E�,⌫,⌫�1(t, a)

E�,⌫,⌫�1(b, a)
E�,⌫,⌫�1(b, ⇢(s))� E�,⌫,⌫�1(t, ⇢(s)), s 2 Nt

a+2.

(2.3)

Now, we state some positive properties of the Green’s function (2.3).

Lemma 2.11 ([23]). Assume 1 < ⌫ < 2 and t 2 Na+2. For each 0  � < 1, denote by

g(�) =
1X

n=0

�
n
H⌫n+⌫�3(t, ⇢(a)) (2.4)

=
1X

n=0

�
n �(t� a+ ⌫n+ ⌫ � 2)

�(t� a+ 1)�(⌫n+ ⌫ � 2)
. (2.5)

Then there exists a unique �̄ = �̄(t) 2 (0, 1) such that

g(�̄) = 0. (2.6)

Take �
⇤ = min

t2Nb
a+2

�̄(t). Then, 0 < �
⇤
< 1.

We observe the following properties of the nabla Mittag-Le✏er function

Lemma 2.12 ([23]). Assume 1 < ⌫ < 2 and 0  � < 1. Then,

(1) 0 < H⌫�1(t, ⇢(a))  E�,⌫,⌫�1(t, ⇢(a)) for t 2 Na;

(2) E�,⌫,⌫�1(t, ⇢(a)) is an increasing function with respect to t for t 2 Na;

(3) 0 < H⌫�2(t, ⇢(a))  rE�,⌫,⌫�1(t, ⇢(a)) for t 2 Na+1;

(4) rE�,⌫,⌫�1(t, ⇢(a)) is a decreasing function with respect to t for t 2 Na+1 and � 2 (0,�⇤];

(5) E�,⌫,⌫�1(t, ⇢(s))  E�,⌫,⌫�1(t, a) for t 2 Ns and s 2 Na+1;

(6) rE�,⌫,⌫�1(t, ⇢(s)) � rE�,⌫,⌫�1(t, a) for t 2 Ns, s 2 Na+1 and � 2 (0,�⇤].
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Lemma 2.13 ([27]). Let (an) and (bn) (n = 0, 1, 2, . . . ) be real numbers and let the power series

A(x) =
1X

n=0

anx
n and B(x) =

1X

n=0

bnx
n be convergent for |x| < r. If bn > 0, n = 0, 1, 2, . . . and

the sequence
⇣

an
bn

⌘

n�0
is (strictly) increasing (decreasing), then the function A(x)

B(x) is also (strictly)

increasing (decreasing) on [0, r).

Theorem 2.14 ([23]). Assume 1 < ⌫ < 2 and 0  � < 1 such that � 2 (0,�⇤]. The Green’s

function G(t, s) defined in (2.3) satisfies G(t, s) � 0 for each (t, s) 2 Nb
a ⇥ Nb

a+2. In particular,

G(a, s) = G(b, s) = 0 and G(t, s) > 0 for each (t, s) 2 Nb�1
a+1 ⇥ Nb

a+2.

3 Multiple Positive Solutions

In this section, we establish su�cient conditions on existence of at least one, at least two and at

least three positive solutions of (1.1) using Guo–Krasnosel’skĭı and Leggett–Williams fixed-point

theorems on conical shells.

Definition 3.1. Let B be a Banach space over R. A closed nonempty convex set K ⇢ B is called

a cone provided,

(i) �1u 2 K, for all u 2 K and �1 � 0.

(ii) u 2 K and �u 2 K implies u = 0.

Definition 3.2. A functional ↵2 is said to be a non-negative continuous concave functional on a

cone K of a real Banach space �, if ↵2 : K ! [0,1) is continuous and

↵2(tx+ (1� t)y) � t↵2(x) + (1� t)↵2(y),

for all x, y 2 K and t 2 [0, 1].

Definition 3.3. An operator is called completely continuous, if it is continuous and maps bounded

sets into precompact sets.

Theorem 3.4 (Guo–Krasnosel’skĭı fixed-point theorem, [24]). Let B be a Banach space and K ✓ B
be a cone. Assume that ⌦1 and ⌦2 are open sets contained in B such that 0 2 ⌦1 and ⌦1 ✓ ⌦2.

Assume further that T : K \ (⌦2 \ ⌦1) �! K is a completely continuous operator. If, either

(1) kTuk  kuk for u 2 K \ @⌦1 and kTuk � kuk for u 2 K \ @⌦2; or

(2) kTuk � kuk for u 2 K \ @⌦1 and kTuk  kuk for u 2 K \ @⌦2;

holds, then T has at least one fixed-point in K \ (⌦2 \ ⌦1).

The following results are useful for the main results of this section.
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Lemma 3.5. Let a, b be two real numbers such that 0 < a  b and 1 < ⌫ < 2. Then
E�,⌫,⌫�1(a, ⇢(s))

E�,⌫,⌫�1(b, ⇢(s))
is a decreasing function of s for s 2 Na�1

0 .

Proof. For each s 2 Na�1
0 , denote by

an = H⌫n+⌫�1(a, ⇢(s)) and bn = H⌫n+⌫�1(b, ⇢(s)), n 2 N0.

Clearly, an and bn for n 2 N0 are real numbers. Further, denote by

A(�) = E�,⌫,⌫�1(a, ⇢(s)) and B(�) = E�,⌫,⌫�1(b, ⇢(s)).

We know that the power series A(�) and B(�) are convergent for |�| < 1. Also, bn > 0, n 2 N0

and the sequence ✓
an

bn

◆

n�0

=

✓
H⌫n+⌫�1(a, ⇢(s))

H⌫n+⌫�1(b, ⇢(s))

◆

n�0

is strictly decreasing, by Lemma 2.7. Then, by Lemma 2.13, the function

A(�)

B(�)
=

E�,⌫,⌫�1(a, ⇢(s))

E�,⌫,⌫�1(b, ⇢(s))

is also strictly decreasing on [0, 1) for each s 2 Na�1
0 . The proof is complete.

Theorem 3.6. There exists a number � 2 (0, 1), such that

min
t2Nd

c

G(t, s) � �max
t2Nb

a

G(t, s) = �G(s� 1, s), (3.1)

for � 2 (0,�⇤] and c, d 2 Nb�1
a+1 such that c = a+

⇠
b� a+ 1

4

⇡
and d = a+ 3

j
b� a+ 1

4

k
.

Proof. It follows from the proof of Theorem 2.14 in [23] that for each � 2 (0,�⇤], G(t, s) is an

increasing function of t for 2 Ns�1
a and is a decreasing function of t for 2 Nb

s. Thus, we have

max
t2Nb

a

G(t, s) = G(s� 1, s) for s 2 Nb
a+2.

Consider

G(t, s)

G(s� 1, s)
=

8
>><

>>:

E�,⌫,⌫�1(t, a)

E�,⌫,⌫�1(s� 1, a)
, s 2 Nb

t+1,

E�,⌫,⌫�1(t, a)

E�,⌫,⌫�1(s� 1, a)
� E�,⌫,⌫�1(t, ⇢(s))E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, ⇢(s))E�,⌫,⌫�1(s� 1, a)
, s 2 Nt

a+2.

Now, for s > t and c  t  d, G1(t, s) is an increasing function with respect to t. Then, we have

min
t2Nd

c

G1(t, s) = G1(c, s) =
E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(b, a)
E�,⌫,⌫�1(b, ⇢(s)), s 2 Nb

t+1.

For t > s and c  t  d, G2(t, s) is a decreasing function with respect to t. Then, we have

min
t2Nd

c

G2(t, s) = G2(d, s) =
E�,⌫,⌫�1(d, a)

E�,⌫,⌫�1(b, a)
E�,⌫,⌫�1(b, ⇢(s))� E�,⌫,⌫�1(d, ⇢(s)), s 2 Nt

a+2.



CUBO
24, 3 (2022)

Positive solutions of nabla fractional boundary value problem 475

Thus,

min
t2Nd

c

G(t, s) =

8
>>>><

>>>>:

G1(c, s), for s 2 Nb
d,

min{G2(d, s), G1(c, s)}, for s 2 Nd�1
c+1 ,

G2(d, s), for s 2 Nc
a+2,

=

8
><

>:

G2(d, s), for s 2 Nr
a+2,

G1(c, s), for s 2 Nb
r,

where c < r < d. Consider

mint2Nd
c
G(t, s)

G(s� 1, s)
=

8
>><

>>:

E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(s� 1, a)
, s 2 Nb

r,

E�,⌫,⌫�1(d, a)

E�,⌫,⌫�1(s� 1, a)
� E�,⌫,⌫�1(d, ⇢(s))E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, ⇢(s))E�,⌫,⌫�1(s� 1, a)
, s 2 Nr

a+2.

Hence,

min
t2Nd

c

G(t, s) � �(s)max
t2Nb

a

G(t, s), (3.2)

where

�(s) = min


E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(s� 1, a)
,

E�,⌫,⌫�1(d, a)

E�,⌫,⌫�1(s� 1, a)
� E�,⌫,⌫�1(d, ⇢(s))E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, ⇢(s))E�,⌫,⌫�1(s� 1, a)

�
.

For s 2 Nb
r, denote by

�1(s) =
E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(s� 1, a)
� E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(b� 1, a)
.

Similarly, for s 2 Nr
a+2, we take

�2(s) =
E�,⌫,⌫�1(d, a)

E�,⌫,⌫�1(s� 1, a)
� E�,⌫,⌫�1(d, ⇢(s))E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, ⇢(s))E�,⌫,⌫�1(s� 1, a)
.

By Lemma 3.5, we see that
E�,⌫,⌫�1(d, ⇢(s))

E�,⌫,⌫�1(b, ⇢(s))
is a decreasing function for s 2 Nr

a+2. Then,

�2(s) �
1

E�,⌫,⌫�1(s� 1, a)


E�,⌫,⌫�1(d, a)�

E�,⌫,⌫�1(d, a+ 1)E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, a+ 1)

�

>
1

E�,⌫,⌫�1(d, a)


E�,⌫,⌫�1(d, a)�

E�,⌫,⌫�1(d, a+ 1)E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, a+ 1)

�
.

Thus,

min
t2Nd

c

G(t, s) � �max
t2Nb

a

G(t, s), (3.3)

where

� = min


E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(b� 1, a)
, 1� E�,⌫,⌫�1(d, a+ 1)E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, a+ 1)E�,⌫,⌫�1(d, a)

�
.
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Since G1(c, s) > 0 and G2(d, s) > 0, we have �(s) > 0 for all s 2 Nb
a+2, implying that � > 0. It

would be su�ce to prove that one of the terms
E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(b� 1, a)
, 1�E�,⌫,⌫�1(d, a+ 1)E�,⌫,⌫�1(b, a)

E�,⌫,⌫�1(b, a+ 1)E�,⌫,⌫�1(d, a)
is less than 1. It follows from Lemma 2.12 that

E�,⌫,⌫�1(c, a)

E�,⌫,⌫�1(b� 1, a)
< 1.

Therefore, we conclude that � 2 (0, 1). The proof is complete.

By Theorem 2.10, we observe that u is a solution of (1.1) if and only if u is a solution of the

summation equation

u(t) =
bX

s=a+2

G(t, s)f(s, u(s)), t 2 Nb
a. (3.4)

Note that any solution u : Nb
a ! R of (1.1) can be viewed as a real (b � a + 1)-tuple vector.

Consequently, u 2 Rb�a+1. Define the operator T : Rb�a+1 ! Rb�a+1 by

�
Tu

�
(t) =

bX

s=a+2

G(t, s)f(s, u(s)), t 2 Nb
a. (3.5)

Clearly, u is a fixed-point of T if and only if u is a solution of (1.1). We use the fact that Rb�a+1

is a Banach space equipped with the maximum norm kuk = maxt2Nb
a
|u(t)|, for any u 2 Rb�a+1.

Denote by

B = {u : Nb
a ! R | u(a) = u(b) = 0} ✓ Rb�a+1

. (3.6)

Clearly B is a Banach space equipped with the maximum norm i.e.

kuk = max
t2Nb

a

|u(t)|.

Since T is defined on a discrete finite domain, it is trivially completely continuous. Define the cone

K = {u 2 B : u(t) � 0 for t 2 Nb
a, and min

t2Nd
c

u(t) � �kuk}. (3.7)

Lemma 3.7. For � 2 (0,�⇤] the operator T maps K into itself.

Proof. Let u 2 K. Clearly, (Tu) (t) � 0, whenever u 2 K. Consider

min
t2Nd

c

(Tu) (t) = min
t2Nd

c

bX

s=a+2

G(t, s)f(s, u(s)) �
bX

s=a+2

min
t2Nd

c

[G(t, s)] f(s, u(s))

�
bX

s=a+2

�max
t2Nb

a

[G(t, s)] f(s, u(s)) � �max
t2Nb

a

bX

s=a+2

G(t, s)f(s, u(s))

= �max
t2Nb

a

�����

bX

s=a+2

G(t, s)f(s, u(s))

�����

= �kTuk.

Thus, we have T : K ! K and it is completely continuous. The proof is complete.
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Take

⌘ =
1

bX

s=a+2

G(s� 1, s)

.

Theorem 3.8. Assume f(t, u(t)) satisfies the following conditions for 0 < r1 < r2

(i) There exists a number r1 > 0 such that f(t, u(t))  ⌘r1, whenever 0  u  r1.

(ii) There exists a number r2 > 0 such that f(t, u(t)) � ⌘r2
� , whenever �r2  u  r2.

Then, for � 2 (0,�⇤] the BVP (1.1) has at least one positive solution.

Proof. We know that T : K ! K is completely continuous. Define the set

⌦1 = {u 2 K : kuk < r1}.

Clearly, ⌦1 ✓ � is an open set with 0 2 ⌦1. Since kuk = r1 for u 2 @⌦1, condition (i) holds for all

u 2 @⌦1. So, it follows that

kTuk = max
t2Nb

a

bX

s=a+2

G(t, s)f(s, u(s)) 
bX

s=a+2

max
t2Nb

a

G(t, s)f(s, u(s))  ⌘r1

bX

s=a+2

G(s� 1, s)

= r1 = kuk.

implying that kTuk  kuk whenever u 2 K \ @⌦1. On the other hand, define the set

⌦2 = {u 2 K : kuk < r2}.

Clearly, ⌦2 ✓ � is an open set and ⌦1 ✓ ⌦2. Since kuk = r2 for u 2 @⌦2, condition (ii) holds for

all u 2 @⌦2.

Thus, we have

kTuk � min
t2Nd

c

bX

s=a+2

G(t, s)f(s, u(s)) �
bX

s=a+2

min
t2Nd

c

G(t, s)f(s, u(s))

� �

bX

s=a+2

G(s� 1, s)f(s, u(s)) � ⌘r2

bX

s=a+2

G(s� 1, s)

= r2 = kuk

implying that kTuk � kuk whenever u 2 K \ @⌦2. Hence by part 1 of Theorem 3.4, T has at least

one fixed-point in K \ (⌦1\⌦1), say u0 satisfying r1 < ku0k < r2
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Theorem 3.9. Assume f(t, u(t)) satisfies the following conditions

(i) There exists a number r2 > 0 such that f(t, u(t))  ⌘r2, whenever 0  u  r2.

(ii) lim
u!0+

min
t2Nb

a

f(t, u(t))

u
= 1, lim

u!1
min
t2Nb

a

f(t, u(t))

u
= 1.

Then, for � 2 (0,�⇤] the BVP (1.1) has at least two positive solution.

Proof. Let us choose a number N > 0 such that

N�

⌘
> 1,

by condition (ii) there exists a number r
⇤
> 0 such that r

⇤
< r1 < r2 and f(t, u(t)) � Nu for

u 2 [0, r⇤] and t 2 Nb
a. Define the set ⌦r⇤ = {u 2 K : kuk < r

⇤}. It can easily be shown that

kTuk > kuk, for u 2 @⌦r⇤ \K.

Next for the same N , we can find a number R1 > 0 such that f(t, u) � Nu for u � R1 and t 2 Nb
a.

Choose R such that R = max
n
r2,

R1
�

o
. Define the set ⌦R = {u 2 K : kuk < R}. We can show

that kTuk > kuk, for u 2 @⌦R \K.

Finally define the set

⌦2 = {u 2 K : kuk < r2}.

Since kuk = r2 condition (i) holds for all u 2 @⌦2. Then, we have

kTuk = max
t2Na

b

bX

s=a+2

G(t, s)f(s, u(s)) 
bX

s=a+2

max
t2Na

b

[G(t, s)] f(s, u(s)

 r2⌘

bX

s=a+2

G(s� 1, s) = r2.

Implying kTuk  kuk, for u 2 @⌦r2 \K. Hence, we conclude that T has at least two fixed-points

say u1 2 ⌦2\⌦̂r⇤ and u2 2 ⌦R\⌦̂2, where ⌦̂ denoted the interior of the set ⌦. In particular (1.1)

has at least two positive solutions, say u1 and u2 satisfying 0 < ku1k < r2 < ku2k. The proof is

complete.

We state here the Leggett–Williams fixed-point theorem as follows. The proof can be found in [26]

and also, we would like to refer here a paper by Kwong [25] on the same.

Denote

Kc ={u 2 K : kuk < c},

K↵2(a, b) ={u 2 K : a  ↵2(u), kuk  b},

where ↵2 is defined as in Definition 3.2.
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Theorem 3.10 ([1]). Let T : K̄c ! K̄c be completely continuous and ↵2 be a non-negative

continuous concave functional on K, such that ↵2(u)  kuk, for all u 2 K̄c. Suppose there exists

0 < d < a < b  c, such that

(1) {u 2 K↵2(a, b) : ↵2(u) > a} 6= ; and ↵2(Tu) > a, for u 2 K↵2(a, b);

(2) kTuk < d, for kuk  d;

(3) ↵2(Tu) > a, for u 2 K↵2(a, c) with kTuk > b.

Then, T has at least three fixed-points u1, u2, u3 satisfying

ku1k < d, a < ↵2(u2),

and

ku3k > d and ↵2(u3) < a.

We introduce here growth conditions on the non-linear function f in line with [1].

Theorem 3.11. Suppose there exists numbers a
0
, b

0
, d

0 2 R+, where 0 < d
0
< a

0
< �b

0
< b

0, such

that f satisfies the following

(1) f(t, u(t)) >
a
0
⌘

�
, if u 2 [a0, b0];

(2) f(t, u(t)) < d
0
⌘, if u 2 [0, d0];

(3) There exists c
0 such that c0 > b

0 and if u 2 [0, c0] then f(t, u(t)) < c
0
⌘;

Then, the boundary value problem (1.1) for � 2 (0,�⇤] has at least three positive solutions.

Proof. Define a non-negative continuous concave functional ↵2 : K ! [0,1) with ↵2(u)  kuk,
for all u 2 K, by

↵2(u) = min
t2Nd

c

u(t).

Claim 1: If there exists a positive number r such that u 2 [0, r] implies f(u) < r⌘, then T : K̄r !
Kr.

Suppose that u 2 K̄r. Then,

kTuk = max
t2Nb

a

"
bX

s=a+2

G(t, s)f(s, u(s))

#


bX

s=a+2

max
t2Nb

a

[G(t, s)] f(s, u(s))

=
bX

s=a+2

G(s� 1, s)f(s, u(s))

< r⌘

bX

s=a+2

G(s� 1, s) = r.
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Thus, T : K̄r ! Kr. Hence, we have that if condition (3) holds, then there exists a number

c
0 such that c

0
> b

0 and T : K̄c0 ! Kc0 . Note that with r = d
0 and using condition (2), we

get that T : K̄d0 ! Kd0 .

Claim 2: {u 2 K↵2(a
0
, b

0) : ↵2(u) > a
0} 6= ; and ↵2(Tu) > a

0 for u 2 K↵2(a
0
, b

0).

Since u = a0+b0

2 2 {u 2 K↵2(a
0
, b

0) : ↵2(u) > a
0} 6= ;. Let u 2 K↵2(a

0
, b

0). By using condition

(1), we have

↵2(Tu) = min
t2Nd

c

"
bX

s=a+2

G(t, s)f(s, u(s))

#
�

bX

s=a+2

min
t2Nd

c

[G(t, s)] f(s, u(s))

� �

bX

s=a+2

G(s� 1, s)f(s, u(s)) > a
0

Thus, if u 2 K↵2(a
0
, b

0), then ↵2(Tu) > a
0.

Claim 3: If u 2 K↵2(a
0
, c

0) and kTuk > b
0 then ↵2(Tu) > a

0.

Suppose u 2 K↵2(a
0
, c

0) and kTuk > b
0. Then,

↵2(Tu) = min
t2Nd

c

"
bX

s=a+2

G(t, s)f(s, u(s))

#
�

bX

s=a+2

min
t2Nd

c

[G(t, s)] f(s, u(s))

� �

bX

s=a+2

max
t2Nb

a

[G(t, s)] f(s, u(s)) � �max
t2Nd

c

"
bX

s=a+2

G(t, s)f(s, u(s))

#

= �kTuk > �b
0
> a

0
.

Thus, ↵2(Tx) > a
0.

Hence all the hypothesis of the Theorem 3.10 are satisfied. Therefore, the boundary value problem

(1.1) has at least three positive solutions u1, u2 and u3 satisfying

ku1k < d
0
, a

0
< ↵2(u2),

and

ku3k > d
0 and ↵2(u3) < a

0
.

The proof is complete.
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Example

In this section, we have constructed a suitable example to illustrate the applicability of the estab-

lished results.

Example 3.12. Take ⌫ = 1.5, a = 0, b = 5, and f(t, u(t)) = 1
20

�p
u+ u

2
�
. Then, (1.1) becomes

8
><

>:

�
⇣
r1.5

⇢(0)u

⌘
(t) + �u(t) =

1

20

�p
u+ u

2
�
, t 2 N5

2,

u(0) = 0 = u(5).
(3.8)

Choose �
⇤ = 0.007. Then, we get

⌘ =
1

5X

s=2

G(s� 1, s)

=
E�,1.5,0.5(5, 0)

5X

s=2

E�,1.5,0.5(s� 1, 0)E�,1.5,0.5(5, s� 1)

= 0.2473.

By taking r2 = 2, we have

f(t, u) =
1

20

⇣p
u+ u

2
⌘
 1

20

⇣p
r2 + r

2
2

⌘
= 0.270 < ⌘r2 = 0.4946,

implying that f(t, u) satisfies conditions (i) and (ii) of Theorem 3.9. Thus, all conditions of

Theorem 3.9 are satisfied. Hence, (3.8) has at least two positive solutions u1 and u2 such that

0 < ku1k < 2 < ku2k.
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ABSTRACT

We consider a compact Lie group with bi-invariant metric,

coming from the Killing form. In this paper, we study Eins-

tein warped product space, M = M1⇥f1M2 for the cases, (i)

M1 is a Lie group (ii) M2 is a Lie group and (iii) both M1

and M2 are Lie groups. Moreover, we obtain the conditions

for an Einstein warped product of Lie groups to become a

simple product manifold. Then, we characterize the warping

function for generalized Robertson-Walker spacetime, (M =

I ⇥f1 G2,�dt2 + f2
1 g2) whose fiber G2, being semi-simple

compact Lie group of dimG2 > 2, having bi-invariant metric,

coming from the Killing form.

RESUMEN

Consideramos un grupo de Lie compacto con métrica bi-

invariante, que proviene de la forma de Killing. En este

art́ıculo estudiamos espacios productos alabeados de Eins-

tein, M = M1 ⇥f1 M2 para los casos (i) M1 es un grupo de

Lie (ii) M2 es un grupo de Lie y (iii) ambos M1 y M2 son

grupos de Lie. Más aún, obtenemos condiciones para que

un producto alabeado de Einstein de grupos de Lie sea una

variedad producto simple. Luego, caracterizamos la función

de alabeo para el espacio-tiempo generalizado de Robertson-

Walker, (M = I ⇥f1 G2,�dt2 + f2
1 g2) cuya fibra G2 es un

grupo de Lie compacto semi-simple de dimG2 > 2 con una

métrica bi-invariante, que proviene de la forma de Killing.
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1 Introduction

R. L. Bishop and B. O’Neill [3], introduced the notion of warped product space to study the

examples of complete Riemannian manifolds of negative sectional curvature. Authors proved that

the completeness of warped space is followed by the completeness of base and fiber spaces. Further,

the results for isometrically immersed warped product manifold into some Riemannian manifold

were considered in [5, 6, 7]. In [9, 19], authors studied the conditions for the warping function to

become a constant by using the relation between the scalar curvatures of a warped manifold with

its base and fiber spaces.

The concept of the warped product has been generalized to the twisted warped product [11, 28],

the doubly warped product and the multiply warped product [25, 32, 33]. A multiply warped

product is a product manifold M = B ⇥M1 ⇥M2 ⇥ · · ·⇥Mk, equipped with the metric

g = ⇡⇤(gB) + (f1 � ⇡1)
2⇡⇤

2(g1) + (f1 � ⇡1)
2⇡⇤

2(g2) + · · ·+ (f1 � ⇡1)
2⇡⇤

2(gk),

where (B, gB) and (Mi, gi), i 2 {1, . . . , k}, are pseudo-Riemannian manifolds, fi are smooth func-

tions on (Mi, gi) and ⇡i are projections from M to Mi. In particular, if B = (a, b), k = 1 and

gB = �dt2, then M is known as a generalized Robertson-Walker spacetime [1, 10, 31]. A general-

ized Robertson-Walker spacetime with a fiber of constant scalar curvature is known as a Robertson-

Walker spacetime. The simplest example for Robertson-Walker spacetime is an Einstein static uni-

verse. The product manifold M = M1 ⇥M2 with metric g = (f2 � ⇡2)2⇡⇤
1(g1) + (f1 � ⇡1)2⇡⇤

2(g2) is

known as a doubly warped product space.

A pseudo-Riemannian manifold M with metric g is an Einstein manifold provided Ric = cg, where

Ric is a Ricci curvature and c is some real constant. The Einstein metric g is of much interest,

both in geometry and physics. A warped product with a constant warping function is considered

as simply Riemannian product. In [2, p. 265], A. L. Besse proposed the question, “Does there

exist a compact Einstein warped product with non-constant warping function?”. Some answers

to the question were given in [16, 30]. If M is an Einstein warped product space of nonpositive

scalar curvature with a compact base manifold, then the warped product space is reduced to a

simply Riemannian product [16]. In [24, 26], authors studied Einstein warped product space by

using quarter and semi symmetric connections. The triviality results for Einstein warped product

space with non-compact base manifold were studied in [30].

In 1976, Milnor investigated the curvature properties of left-invariant metrics in Lie groups [20].

Most of the Lie groups carry the more than one left-invariant metric, because in [18], authors

showed that for a non-Abelian Lie group with a unique left-invariant metric up to homothety,

the group is either the hyperbolic space Hn, or Rn�3 ⇥ H3, where H3 is a Heisenberg group.

The Heisenberg group H3 has a unique Riemannian metric up to homothety, whereas it has three
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metrics in the Lorentzian case [29]. Classifications for four-dimensional nilpotent Lie groups were

considered in [4, 17]. The class of Lie groups obtaining a bi-invariant metric is smaller than that

of Lie groups with a left-invariant metric. In [14, 15], authors study the warped product Einstein

metrics on spaces of constant scalar curvature and homogeneous spaces. The classifications of

warped product Einstein metric were studied in [13]. In [8, 22], the authors study the general

helices and slant helices in three dimensional Lie group equipped with a bi-invariant metric.

In our paper, we discuss the few possible answers to the question “Does there exist a compact

Einstein warped product with non-constant warping function?” for a compact Einstein warped

product of Lie groups. We know that every compact Lie group has a bi-invariant metric and

bi-invariant metric is much easier to handle than the left invariant metric. That is why, we use

the bi-invariant metric in our paper. Now the results of the left invariant metric are still open

to study. Section 2, of this paper includes some of the basic results. The central part of our

paper is section 3, where we prove our main results for a warped product having either base

manifold or fiber manifold is a compact Lie group with bi-invariant metric, coming from the

Killing form. We show that an Einstein warped product space of nonnegative scalar curvature

with a one-dimensional base manifold (Riemannian manifold) and fiber being a compact Lie group

with bi-invariant metric, coming from the Killing form does not exist. Also, the characteristic of

warping function in generalized Robertson-Walker spacetime is studied in Theorem 3.9. Finally,

we give examples of warped products, obtained using a semi-simple compact Lie group taking

bi-invariant metric from the Killing form.

2 Preliminaries

A Lie group G1 is a smooth manifold with a group structure such that the multiplicative and

inverse maps are smooth. To study the geometry of G1, it becomes necessary to associate a left

invariant metric with it. A metric in which left multiplication behaves as an isometry is known

as a left invariant metric, and for a metric in which right multiplication behaves as an isometry is

known as a right invariant metric. Left multiplication and right multiplication on G1, are defined

as La1 : G1 7! G1, La1x1 = a1x1 and Ra1 : G1 7! G1, Ra1x1 = x1a1, for all a1, x1 2 G1. Let g1 be

the Lie algebra of G1, then an adjoint representation, Ad : G1 7! g1, of a Lie group G1 is a map

such that Ada1 : g1 7! g1 is linear isomorphism given by Ada1 = d(Ra�1
1

� La1)e1 for all a1 2 G1.

An inner product g1 on g1 is said to be Ad-invariant if

g1(Ada1X1, Ada1Y1) = g1(X1, Y1),

for all a1 2 G1 and X1, Y1 2 g1.

A metric g1, which is both left invariant and right invariant is said to be a bi-invariant metric.
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The metric g1 is bi-invariant if and only if

g1([S1,K1], T1) = g1(K1, [T1, S1]) = g1(S1, [K1, T1]),

for all S1,K1, T1 2 g1. Also, using the Koszul formula and above equation, we obtain

rS1K1 =
1

2
[S1,K1], 8 S1,K1 2 g1.

Corresponding to bi-invariant metric g1 on m1- dimensional Lie group G1, the Riemann curvature

tensor R, and the Ricci tensor Ric, are given by

R(X1, Y1)Z1 =
1

4

⇥
[X1, Y1], Z1

⇤
,

Ric(X1, Y1) =
1

4
g1
�
[X1, Ei], [Y1, Ei]

�
,

where {E1, . . . , Em1}, is an orthonormal frame for g1. From [12, p. 622], we get the existence of

bi-invariant metric on Lie group.

Proposition 2.1. Let G1 be a Lie group with Lie algebra g1 and metric g1, then g1 induces a

bi-invariant metric if and only if Ad(G1) is compact. In other words, every compact Lie group has

a bi-invariant metric.

Also, for a connected Lie group G1, the metric g1 induce a bi-invariant metric if and only if

Ada1 : g1 7! g1, is skew adjoint for all a1 2 G1, which means

g1(Ada1X1, Y1) = �g1(X1, Ada1Y1), 8 X1, Y1 2 g1.

Definition 2.2 ([2, 23]). The Killing form B : g⇥ g 7! R is a symmetric B(X1, Y1) = B(Y1, X1),

Ad(G1)-invariant B([X1, Y1], Z1) = B(X1, [Y1, Z1]) and bilinear form, defined by

B(X1, Y1) = tr(ad(X1) � ad(Y1)),

where ad(X1) : g1 7! g1 is a map, sending each Z1 to [X1, Z1], for all X1, Y1, Z1 2 g1.

A Killing form on a Lie group G1 is nondegenerate if and only if G1 is semisimple. In case of

compact semisimple Lie group, the Killing form is always negative definite. From [23, p. 304–306],

we have
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Corollary 2.3. Let G1 be a semisimple compact Lie group with bi-invariant metric g1, then

(a.1) For nondegenerate plane spanned by S and K in g1, the sectional curvature is given by

K =
1

4

⇣ g1([S,K], [S,K])

g1(S, S)g1(K,K)� g1(S,K)g1(S,K)

⌘
.

(a.2) If the metric g1 is induced from the Killing form, then G1 is an Einstein (Ric1 = � 1
4g1) and

the scalar curvature (⌧), is given by

⌧ =
1

4
dim(G).

It is clear from (a.1), that if g1 is a Riemannian metric then K � 0 and K = 0, if G1 is an Abelian

group.

Let (M1, g1) and (M2, g2) be two pseudo-Riemannian manifolds of dimensions m1, m2 and f1

be a positive smooth function on M1. Then for natural projections ⇡1 : M1 ⇥ M2 ! M1 and

⇡2 : M1 ⇥ M2 ! M2, the warped product (M = M1 ⇥f1 M2, g) is a product manifold M1 ⇥ M2

with the metric

g = ⇡⇤
1(g1) + (f1 � ⇡1)

2⇡⇤
2(g2),

where ⇤ representing the pull-back operator and f1 is a warping function on M . Whereas M1 and

M2 are known as the base, and the fiber of (M, g), respectively. Let Ric, Ric1 and Ric2 are Ricci

tensors on M , M1 and M2, respectively. Then from [23, p. 211], we have

Proposition 2.4. Let M = M1 ⇥f1 M2 be a warped product space, then Ricci tensors on M , M1

and M2, satisfies

Ric = Ric1 �
m2

f1
Hf1 +Ric2 � f ]g2, (2.1)

where f ] = �f1�f1+(m2�1)g1(grad f1, grad f1). Here grad f1, Hf1 and �f1 denote the gradient

of f1, the Hessian of f1 and the Laplacian of f1, defined as �f1 = �trHf1 .

Corollary 2.5. The warped product M = M1 ⇥f1 M2 is an Einstein with Ric = �g if and only if

(a.3) Ric1 = �g1 +
m2

f1
Hf1 ,

(a.4) (M2, g2) is an Einstein, such that Ric2 = ⌫g2, where ⌫ = f ] + �f2
1 .

3 Main results

Proposition 3.1. Let (M2, g2) be a pseudo-Riemannian manifold and (G1, g1) be a semi-simple

compact Lie group whose bi-invariant metric coming from the Killing form. Then warped product
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manifold (M = G1 ⇥f1 M2, g), is an Einstein manifold (Ric = �g) if and only if

(a.5) Hf1 = � (1 + 4�)f1
4m2

g1,

(a.6) (M2, g2) is an Einstein with Ric2 = ⌫g2, where

⌫ = �f1�f1 + (m2 � 1)g1(grad f1, grad f1) + �f2
1 .

Proof. Let (M = G1 ⇥f1 M2, g) be an Einstein manifold (Ric = �g), where (M2, g2) is a pseudo-

Riemannian manifold and (G1, g1) is a semi-simple compact Lie group taking bi-invariant metric

from the Killing form. Then from (2.1), we have

�g1 + f2
1�g2 = Ric1 �

m2

f1
Hf1 +Ric2 � f ]g2, (3.1)

where � is some constant and f ] = �f1�f1 + (m2 � 1)g1(grad f1, grad f1). Now, by restricting

the argument (horizontal and vertical vectors) on G1, M2, and taking Ric1 = � 1
4g1 in (3.1), we

get 8
><

>:

�g1 = �1

4
g1 �

m2

f1
Hf1 ,

f2
1�g2 = Ric2 � f ]g2.

(3.2)

Conversely, assume that (M = G1⇥f1 M2, g) be a warped product with conditions (a.5) and (a.6).

Then from (2.1), we get

Ric = �g1 +
m2

f1
Hf1 � m2

f1
Hf1 + ⌫g2 � f ]g2. (3.3)

Since ⌫ = �f1�f1 + (m2 � 1)g1(grad f1, grad f1) + �f2
1 , so from (3.3), we have

Ric = �(g1 + f2
1 g2) = �g. (3.4)

Proposition 3.2. Let (M1, g1) be a pseudo-Riemannian manifold and (G2, g2) be a semi-simple

compact Lie group whose bi-invariant metric coming from the Killing form. Then warped product

manifold (M = M1 ⇥f1 G2, g), is an Einstein manifold (Ric = �g) if and only if

(a.7) Ric1 = �g1 +
m2

f1
Hf1 ,

(a.8) (M2, g2) is an Einstein with Ric2 = ⌫g2, where

⌫ = �1

4
= �f1�f1 + (m2 � 1)g1(grad f1, grad f1) + �f2

1 .
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Proof. Since (G2, g2) is a semi-simple compact Lie group taking bi-invariant metric from the Killing

form, so using Ric2 = � 1
4g2 in (a.6), we have

Ric2 = �1

4
g2 = ⌫g2 = (f ] + �f2

1 )g2.

Lemma 3.3 ([16]). Let f1 be a smooth function on semi-Riemannian manifold M1, then the

divergence of Hessian tensor satisfies

div(Hf1)(X1) = Ric1(grad f1, X1)� d(�f1)(X1), (3.5)

for all X1 2 �TM1.

Theorem 3.4. Let (G1, g1) be a semi-simple compact Lie group of dimension m1 > 2 and whose

bi-invariant metric coming from the Killing form. If 4m2Hf1 + (1 + 4�)f1g1 = 0, where � 2 R,
m2 2 N and f1 is a non constant smooth function on G1, then f1 satisfy the condition

⌫ = �f1�f1 + (m2 � 1)g1(grad f1, grad f1) + �f2
1 ,

where ⌫ 2 R.

Proof. The trace of (a.5), provide us

m2

f1
�f1 +

(1 + 4�)m1

4
= 0. (3.6)

On di↵erentiating (3.6), we get

m2

f2
1

(�f1df1 � f1d(�f1)) = 0. (3.7)

By the definition of divergence and Hessian for any vector field X1 and g1-orthonormal frame

{E1, . . . , Em1} on G1, we have

div

✓
1

f1
Hf1

◆
(X1) =

X

i

✏i
⇣
DEi(

1

f1
Hf1)

⌘
(Ei, X1)

= � 1

f2
1

Hf1(grad f1, X1) +
1

f1
div(Hf1)(X1), (3.8)

where ✏i = g1(Ei, Ei). Using the fact that Ric1 = � 1
4g1, in equation (3.5), the divergence of

Hessian becomes

div(Hf1)(X1) = �1

4
g1(grad f1, X1)� d(�f1)(X1). (3.9)
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Also, from (a.5) and Hf1(grad f1, X1) = (DX1df1)(grad f1) =
1
2d(g1(grad f1, grad f1)), we have

�1

4
g1(grad f1, X1) =

m2

2f1
d(g1(grad f1, grad f1))(X1) + �df1(X1). (3.10)

In view of equations (3.9) and (3.10), the equation (3.8) becomes

div

✓
1

f1
Hf1

◆
=

1

2f2
1

⇣
(m2 � 1)d(g1(grad f1, grad f1)) + 2�1f1df1(X1)� 2f1d(�f1)

⌘
. (3.11)

But the divergence of (a.5), implies that div
⇣

1
f1
Hf1

⌘
= 0. Hence from (3.11), we get

(m2 � 1)d(g1(grad f1, grad f1)) + 2�1f1df1 � 2f1d(�f1) = 0. (3.12)

Therefore from equations (3.7) and (3.12), we obtain

d
⇣
(m2 � 1)(g1(grad f1, grad f1)) + �1f

2
1 � f1(�f1)

⌘
= d(⌫) = 0. (3.13)

Hence from equation (3.13), we can conclude that for a compact Einstein manifold (M2, g2) with

dimension m2 and Ric2 = ⌫g2, the construction of an Einstein warped manifold M = G1 ⇥f1 M2

is possible.

Corollary 3.5. Let M = G1⇥f1M2 be an Einstein warped product space with semi-simple compact

Lie group G1 of dimension m1 > 2 and whose bi-invariant metric coming from the Killing form.

Then M reduces to a simply Riemannian product.

Proof. Rearranging the equation (3.6), we have

�f1 =
(1 + 4�)m1

4m2
f1. (3.14)

As � is a constant, so for �  � 1
4 , equation (3.14) implies that �f1  0, hence f1 is constant.

Similarly if � � � 1
4 , then �f1 � 0. Since according to the weak maximum principle, if f1 is

subharmonic or superharmonic i.e. (�f1 � 0 or �f1  0), then f1 is constant [27, p. 75]. Hence

M is a simply Riemannian product.

In our next result, we prove that if fiber space of warped space is also a semi-simple compact Lie

group of dimension m2 > 2 and inherits the bi-invariant metric from the Killing form, then the

only possible values for f1 are ±1.

Corollary 3.6. Let G1 and G2 be semi-simple compact Lie groups of dimensions m1,m2 > 2 and

bi-invariant metric tensors coming from their respective Killing forms. Then M = G1 ⇥f1 G2 is

an Einstein if and only if f1 = ±1.
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Proof. Let M = G1 ⇥f1 G2 be an Einstein, then from Proposition 3.1, Corollary 3.5 and using the

fact that Ric2 = � 1
4g2, we obtain, ⌫ = � = � 1

4 . Therefore f2
1 = 1.

Now conversely assume that f1 = ±1, then Ric = Ric1 + Ric2 = � 1
4 (g1 + g2) = � 1

4g, hence

M = G1 ⇥G2 is an Einstein.

Next, we consider those warped product spaces whose base is any pseudo-Riemannian manifold

and fiber space is a semi-simple compact Lie group of dimension m2 > 2, taking bi-invariant metric

from the Killing form.

Theorem 3.7. Let M = M1 ⇥f1 G2 be an Einstein warped product space with fiber G2 as a

semi-simple compact Lie group of dimension m2 > 2 and having bi-invariant metric coming from

the Killing form. If M has negative scalar curvature, then the warped product becomes a simply

Riemannian product.

Proof. Let M = M1 ⇥f1 G2 be an Einstein warped product space with fiber G2 as a semi-simple

compact Lie group of dimension m2 > 2, having bi-invariant metric is coming from the Killing

form. Then from (a.4), we can say that

�f1�f1 + (m2 � 1)g1(grad f1, grad f1) + �f2
1 = �1

4
. (3.15)

Since M is an Einstein, therefore the trace of Ric = �g, implies that

⌧ = �(m1 +m2), (3.16)

where ⌧ is a scalar curvature of M . Now assume that p1 and p2 are maximum and minimum points

of f1 on M1. Therefore grad f1(p1) = grad f1(p2) = 0, �f1(p1) � 0 and �f1(p2)  0. From (3.16)

it is clear that ⌧  0, implies �  0, therefore

f1(p1)
2 � f1(p2)

2 =) �f1(p1)
2  �f1(p2)

2 =) �f1(p1)
2 +

1

4
 �f1(p2)

2 +
1

4
, (3.17)

where ⌫ is some constant. Since �f1(p2)f(p2)  0 and �f1(p1)f(p1) � 0, therefore from (3.15),

�f1(p2)2 +
1
4  0 and �f1(p1)2 +

1
4 � 0, gives us

�f1(p2)
2 +

1

4
 �f1(p1)

2 +
1

4
. (3.18)

Comparing equations (3.17) and (3.18), we have f1(p1) = f1(p2) for � < 0.

Theorem 3.8. Let M = I ⇥f1 G2 be an Einstein warped product space with the metric g =

dt2 + f2
1 (t)g2, where I is an open interval in R and G2 is a semi-simple compact Lie group of

dimension m2 > 2 and having bi-invariant metric coming from the Killing form. If M has non
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negative scalar curvature, then there does not exist any such f1, so that M = I ⇥f1 G2 is an

Einstein warped product space.

Proof. Let M = I⇥f1 G2 have positive scalar curvature (� > 0). Then taking f1 = e
u
2 , the Hessian

of f1,

Hf1 =
u00

2
e

u
2 +

(u0)2

4
e

u
2 .

Using the above equation in (a.7), we have

u00

2
+

(u0)2

4
= � �

m2
. (3.19)

Also, from (a.8), we get

⇣u00

2
+

(u0)2

4

⌘
+ (m2 � 1)

(u0)2

4
+ � = �1

4
e�u. (3.20)

Thus from (3.19) and (3.20), we obtain

(u0)2 = �
⇣ 1

m2 � 1
e�u +

4

m2
�
⌘
. (3.21)

The possible solutions for (3.21) (with the help of Maple), are

8
><

>:

u = � ln
⇣
� 4�(m2�1)

m2

⌘
,

u = � ln
⇣
� 4(m2�1)

m2
�
⇣
1 + tan2

�
�

q
�
m2

t+ c
q

�
m2

�⌘⌘
,

(3.22)

where c is some constant. It is clear from (3.22) that the function u is not well defined. Furthermore,

as u is a real valued function, therefore (u0)2 � 0 and �
⇣
e�u 1

m2�1 + 4
m2

�
⌘
< 0, for any point on

I. Therefore from equation (3.21), we can conclude that there does not exist any real solution for

the equation.

For � = 0, (a.7) and (a.8), imply that f 00
1 = 0 and f1f 00

1 +(m2 � 1)(f 0
1)

2 = � 1
4 , respectively. Hence

f1 = at+ b =) (m2 � 1)(a)2 = �1

4
, (3.23)

where a and b are some real constants. Thus from (3.22) and (3.23), we can say that there does

not exist any such f1 such that M = I⇥f1 G2 be an Einstein warped product space of non negative

scalar curvature.

Next, we find the characteristic of warping function in generalized Robertson-Walker spacetime,

whose fiber is semi-simple and compact Lie group of dimension m2 > 2.
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Theorem 3.9. Let M = I ⇥f1 G2 be an Einstein warped product space with the metric g =

�dt2 + f2
1 (t)g2, where I is an open interval in R and G2 is a semi-simple compact Lie group of

dimension m2 > 2 and having bi-invariant metric coming from the Killing form. Then

(i) If M is Ricci flat, then there exists a non-constant function f1 on I such that f1 = 1
2
p
m2�1

t+

b, where b is some constant.

(ii) If M has positive scalar curvature (⌧ > 0) or negative scalar curvature (⌧ < 0), then there

does not exist any such f1, so that M = I ⇥f1 G2 be an Einstein warped product space.

Proof. Let M = I⇥f1 G2 be an Einstein warped product space with the metric g = �dt2+f2
1 (t)g2,

then from Proposition 3.2, we get

f 00
1 =

�f1
m2

, and f1f
00
1 � (m2 � 1)(f 0

1)
2 + �f2

1 = �1

4
. (3.24)

From these two di↵erential equations, we obtain

(f 0
1)

2 � �(1 +m2)

m2(m2 � 1)
f2
1 =

1

4(m2 � 1)
. (3.25)

As � is constant, therefore to obtain the solutions for di↵erential equation (3.25), we have to

consider all possible values of �.

(i) If � = 0, then from (3.25), we obtain

f1 =
1

2
p
m2 � 1

t+ b, (3.26)

where b is some constant. Since f1 is also satisfying (3.24), hence in the Ricci flat manifold

case, it is possible to find a non-constant function on I.

(ii) (a) Let M be an Einstein manifold with positive scalar curvature � > 0, then from (3.25),

the possible solutions are

8
>>>>><

>>>>>:

f1 = ±
q

�m2
4�(1+m2)

,

f1 =
p

m2(m2�1)

2
p

�(1+m2)

⇣
� 1

4(m2�1)e

q
�(1+m2)

m2(m2�1) (c1�t) + e

q
�(1+m2)

m2(m2�1) (t�c1)
⌘
,

f1 =
p

m2(m2�1)

2
p

�(1+m2)

⇣
� 1

4(m2�1)e

q
�(1+m2)

m2(m2�1) (t�c1) + e

q
�(1+m2)

m2(m2�1) (c1�t)
⌘
,

(3.27)

where c1 is some constant. As m2 > 2, so f1 = ±
q

�m2
4�(1+m2)

/2 R, hence constant

solution of f1 is not possible. From second and third part of (3.27), we have

f 00
1 =

�(1 +m2)

m2(m2 � 1)
f1. (3.28)
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Equation (3.28), showing that second and third part of (3.27), is not satisfying (3.24).

Hence there does not exist such type of f1 which satisfies the equation (3.24) for � > 0.

(b) Let M be an Einstein manifold with negative scalar curvature � < 0, then (3.25),

reduced to

(f 0
1)

2 +
a(1 +m2)

m2(m2 � 1)
f2
1 =

1

4(m2 � 1)
, (3.29)

where � = �a and a is some positive real number. The solutions for di↵erential equation

(3.29), are 8
><

>:

f1 = ±
q

m2
4a(1+m2)

,

f1 = ±
q

m2
4a(1+m2)

sin
⇣q

a(1+m2)
m2(m2�1) (�t+ c1)

⌘
.

(3.30)

Since solutions obtained in (3.30), are not satisfying the equation (3.24), hence there is

no solution for (3.24).

Examples for warped product of Lie groups

The Lie groups SU(n), n � 2, and SO(n), n � 3 are examples of semi-simple compact Lie groups.

The Lie algebra su(n) of SU(n), set of n⇥ n skew hermitian matrices with zero trace. For n = 2,

the elements of su(2),

X1 =

0

@ a1◆ a2 + a3◆

�a2 + a3◆ �a1◆

1

A , a1, a2, a3 2 R.

Similarly, If Y1 2 su(2), then

Y1 =

0

@ b1◆ b2 + b3◆

�b2 + b3◆ �b1◆

1

A , b1, b2, b3 2 R.

The basis E1, E2 and E3, for su(2), can be chosen as

E1 =

0

@ 0 1

�1 0

1

A , E2 =

0

@0 ◆

◆ 0

1

A , E3 =

0

@◆ 0

0 �◆

1

A .

Hence AdX1 and AdX2 , are obtained as
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AdX1 =

0

BB@

0 �2a1 2a3

2a1 0 �2a2

�2a3 2a2 0

1

CCA , AdX2 =

0

BB@

0 �2b1 2b3

2b1 0 �2b2

�2b3 2b2 0

1

CCA .

Thus, the Killing form B(X1, Y1) on su(2), will be

B(X1, Y1) = tr(AdX1 �AdY1) = �8a1b1 � 8a2b2 � 8a3b3 = 4tr(X1Y1).

So, we can made the following examples from all the above discussions.

1. The warped product manifoldM = SU(2)⇥f1M2, with metric g = B+f2
1 g2, where (M2, g2) is

any pseudo-Riemannian manifold and non constant function f1 on SU(2), is not an Einstein.

2. The product manifoldM = SU(2)⇥SO(2), with metric g = B1+B2, is an Einstein manifold,

where B1 and B2 are Killing forms on su(2) and so(2), respectively.

Conclusion 3.10. In [21], Mustafa proved that for every compact manifold G1 there exist a metric

on it such that non trivial Einstein warped products with base G1 cannot be constructed. In our

paper, from Corollary 3.5, we can say that bi-invariant metric generated by the Killing form on

semi-simple compact Lie group G1 is one in which we cannot construct non trivial Einstein warped

product with base G1.
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[32] B. Ünal, “Multiply warped products”, J. Geom. Phys., vol. 34, no. 3–4, pp. 287–301, 2000.
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ABSTRACT

In this paper we establish some results of existence of in-

finitely many solutions for an elliptic equation involving the

p-biharmonic and the p-Laplacian operators coupled with

Navier boundary conditions where the nonlinearities depend

on two real parameters and do not satisfy any symmetric

condition. The nature of the approach is variational and the

main tool is an abstract result of Ricceri. The novelty in the

application of this abstract tool is the use of a class of test

functions which makes the assumptions on the data easier to

verify.

RESUMEN

En este art́ıculo establecemos algunos resultados sobre la ex-

istencia de infinitas soluciones para una ecuación eĺıptica que

involucra los operadores p-biarmónico y p-Laplaciano acopla-

dos con condiciones de borde de Navier, donde las nolinea-

lidades dependen de dos parámetros reales y no satisfacen

ninguna condición simétrica. La naturaleza del enfoque es

variacional y la herramienta principal es un resultado abs-

tracto de Ricceri. La novedad de la aplicación de esta he-

rramienta abstracta es el uso de una clase de funciones test

que hacen que las hipótesis sobre la data sean más fáciles de

verificar.
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1 Introduction

In this paper we investigate the existence of infinitely many solutions to the following p-biharmonic

elliptic equation with Navier conditions,

8
<

:
�2

pu��pu+ V (x)|u|p�2u = �f(x, u) + µg(x, u) in ⌦

u = �u = 0 on ⌦
(P�,µ)

where ⌦ ⇢ Rn (n > 1) is a bounded domain with smooth boundary @⌦, p > max
�
1, n

2

 
, �2

pu =

�(|�u|p�2�u) is the p-biharmonic operator, �pu = r(|ru|p�2
ru) is the p-Laplacian operator,

V 2 C(⌦) satisfying inf⌦ V > 0, f, g : ⌦ ⇥ R ! R are two Carathéodory functions with suitable

behaviors, � 2 R and µ > 0.

In the last years several authors have showed their interest in fourth-order di↵erential problems

involving biharmonic and p-biharmonic operators, motivated by the fact that this type of equations

finds applications in fields such as the elasticity theory, or more in general, in continuous mechanics.

In particular, the fourth-order elliptic equations can describe the static form change of beam or

the motion of rigid body, so they are widely applied in physics and engineering. In 1990 Lazer and

Mckenna, in a large paper in which they investigated the oscillatory phenomena that led to the

collapse of the Tacoma Narrows bridge, considered fourth-order problems with the nonlinearity

(u + 1)+ � 1; this nonlinearity is useful to study traveling waves in suspension bridges. Anyway

the same authors observed that this kind of problems are interesting also when this particular

nonlinearity is replaced by a somewhat more general function F (·, u) (see [24, 31, 32]).

As regards fourth-order di↵erential problems involving biharmonic and p-biharmonic operators,

a non-negligible part of the literature is devoted to the study of the existence of infinitely many

solutions to problems involving only the biharmonic or p-biharmonic operator (see, for instance,

[2, 4, 5, 6, 9, 10, 17, 18, 19, 29, 30, 40]) or considering also the presence of Laplacian or p-Laplacian

operator ([22, 26, 38, 42, 43]) and/or a term with a potential function ([11, 12, 13, 25, 28]); some

authors have also recently considered the case in which a nonlocal term is present ([16, 41]).

Unlike some papers concerning problems set in an unbounded domain (see [2, 4, 11, 12, 13, 18,

19, 30] and above all [25] which inspired us in the choice of this type of problem), most of the

literature is devoted to the bounded case. In this case, di↵erent approaches have been adopted for

obtaining infinitely many solutions. In a lot of papers symmetry conditions on the nonlinearities are

assumed together with the use of the symmetric mountain pass theorem of Ambrosetti Rabinowitz

(see [26, 40]) or with the use of the fountain theorem ([38, 42, 43]).

In our investigation the approach is variational. More precisely we will apply the following critical

point theorem that Ricceri established in 2000 ([34, Theorem 2.5]), recalled below for the reader’s

convenience.
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Theorem 1.1. Let X be a reflexive real Banach space, and let �, : X ! R be two sequen-

tially weakly lower semicontinuous and Gâteaux di↵erentiable functionals. Assume also that  is

(strongly) continuous and coercive. For each r > infX  , we put

'(r) := inf
x2 �1(]�1,r[)

�(x)� inf �1(]�1,r[)!
�

r � (x)

where  �1(]�1, r[)w is the closure of  �1(]�1, r[) in the weak topology. Fixed � 2 R, then

a) if {rk} is a real sequence such that lim
k!1

rk = +1 and '(rk) < �, for each k 2 N, the

following alternative holds: either � + � has a global minimum or there exists a sequence

{xk} of critical points of �+ � such that lim
k!1

 (xk) = +1;

b) if {sk} is a real sequence such that lim
k!1

sk = (inf
x
 )+ and '(sk) < � for each k 2 N,

the following alternative holds: either there exists a global minimum of  which is a local

minimum of � + � or there exists a sequence {xk} of pairwise distinct critical points of

�+ � with lim
k!1

 (xk) = inf
X
 , which weakly converges to a global minimum of  .

Since its appearance in 2000 until our days, it has been a powerful tool to get multiplicity results

for di↵erent kinds of problems. In particular, it has been widely applied to obtain theorems

of existence of infinitely many solutions to problems associated with a vast range of di↵erential

equations. In each of these applications, in order to guarantee that '(rk) < � (or '(sk) < �),

for each k 2 N, and that the functional � + � has no global minimum, it is necessary to use

some sequences of functions defined ad hoc. Generally, in these functions the norm of the variable

is raised to a suitable power which depends on the nature of the problem and that gives them

the requested regularity properties: in some applications the norm is used without power (see, for

instance, [3, 7, 14, 15, 23, 27, 39]), in some others it is raised to the second ([9, 10, 29, 33, 35, 36])

or to the third ([22, 28]) or to the fourth power ([1]); in [20, 21] the authors combined the norm

with trigonometric functions.

The choice of a particular sequence of functions inside the proof reflects heavily on the assumptions

and while there are some cases in which probably the choice is optimal, in some other cases it could

happen that a di↵erent choice of the sequence would make the result applicable in a greater number

of cases. This is the reason we have introduced an abstract class of test functions serving our

purpose. We will clarify this fact in Section 3, showing some examples. A similar line of reasoning

can be found in [8] and above all in [37] where the author does not choose the test functions

arbitrarily during the proof but he uses two generic functions whose properties are described in

the statement of his result.
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2 Preliminaries

In this section we describe the variational framework in which we will work in our investigations.

To begin with, we denote by ! := ⇡
n
2 /�

�
n
2 + 1

�
the measure of the unit ball in Rn. If X is a

Banach space, the symbol B(x, r) stands for the open ball centered at x 2 X and of radius r > 0.

Let ⌦ be a bounded smooth domain of Rn, n � 1, p > max
�
1, n

2

 
and let V 2 C(⌦) satisfy

inf⌦ V > 0. Put E = W 2,p(⌦) \W 1,p
0 (⌦); it is a reflexive Banach space when endowed with the

standard norm

kuk =

✓Z

⌦
|�u|pdx

◆ 1
p

.

Moreover, the assumptions on V assure that the position

kukV =

✓Z

⌦
(|�u|p + |ru|p + V (x)|u|p) dx

◆ 1
p

for any u 2 E, defines a norm equivalent to the standard one. Being p > n
2 , the Rellich-Kondrachov

theorem assures that E is compactly embedded in C0(⌦); in particular, there exists a constant

c1 > 0 such that

kuk1  c1 kuk  c1 kukV (2.1)

for every u 2 E. Now, motivated by the reasons that we have illustrated in the Introduction, let

us introduce the following class of functions. If {ak}, {bk}, {�k} are three real sequences with

0 < ak < bk and �k > 0, for each k 2 N, let us denote by H({ak} , {bk} , {�k}) the space of all

sequences {�k} ⇢ W 2,p(]ak, bk[) satisfying

i) 0  �k(x)  �k for a.e. x 2]ak, bk[;

ii) lim
x!a+

k

�k(x) = �k, lim
x!b�k

�k(x) = 0;

iii) lim
x!a+

k

�0
k(x) = lim

x!b�k

�0
k(x) = 0;

iv) for all j 2 {1, 2} there exists cj > 0, independent of k, such that

|�(j)
k (x)|  cj

�k

(bk � ak)j
(2.2)

for a.e. x 2]ak, bk[ and for all k 2 N.

Now, we show how the space H({ak} , {bk} , {�k}) help us to build some sequences in E that play

a crucial role in the proof of the main result.

If x0 2 ⌦, {bk} ⇢]0,+1[ such that B(x0, bk) ⇢ ⌦, for each k 2 N, and {�k} 2 H({ak} , {bk} , {�k}),

consider the function uk : ⌦! R defined by setting
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uk(x) =

8
>>>><

>>>>:

0 in ⌦ \B(x0, bk),

�k in B(x0, ak),

�k(|x� x0|) in B(x0, bk) \B(x0, ak)

for each k 2 N.

Simple computations show that, fixed k 2 N, for each i 2 {1, . . . , n}, we have

@uk

@xi
(x) =

8
>>>><

>>>>:

0 in ⌦ \B(x0, bk),

0 in B(x0, ak),

�0
k(|x� x0|)

xi � x0
i

|x� x0|
in B(x0, bk) \B(xo, ak)

and

@2uk

@x2
i

(x) =

8
>>>><

>>>>:

0 in ⌦ \B(x0, bk),

0 in B(x0, ak),

�00
k(|x� x0|)

(xi � x0
i )

2

|x� x0|
2

+ �0
k(|x� x0|)

|x� x0|
2
� (xi � x0

i )
2

|x� x0|
3

in B(x0, bk) \B(x0, ak)

Using these computations together with (2.2), we get the following inequalities

|ruk(x)| 6 |�0
k(|x� x0|)|  c1

�k

(bk � ak)
,

and

|�uk(x)| 6 |�00
k(|x� x0|)|+ |�0

k(|x� x0|)|
(n� 1)

|x� x0|
 c2

�k

(bk � ak)2
+ c1

�k

(bk � ak)

(n� 1)

ak
.

These inequalities allow us to estimate the norm of the functions uk as follows

kukk
p
V =

Z

⌦
(|�uk|

p + |ruk|
p + V (x)|uk(x)|

p) dx

=

Z

B(x0,bk)\B(x0,ak)
|�uk(x)|

pdx+

Z

B(x0,bk)\B(x0,ak)
|ruk(x)|

pdx+

Z

B(x0,bk)
V (x)|uk(x)|

pdx

 !�p
k

⇢
c2

(bk � ak)2
+

c1(n� 1)

ak(bk � ak)

�p
(bnk � ank ) +


c1

(bk � ak)

�p
(bnk � ank ) + bnk max

B(x0,bk)
V

�
.

Let us denote by C the class of all Carathéodory functions ⌘ : ⌦⇥R ! R satisfying sup|t|⇠ |⌘(·, t)| 2

L1(⌦) for all ⇠ > 0 and let f, g 2 C.
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We say that a function u 2 E is a weak solution to (P�,µ) if

Z

⌦

�
|�u|p�2�u�v + |ru|p�2

rurv + V (x)|u|p�2uv
�
dx = �

Z

⌦
f(x, u(x))v(x)dx

+ µ

Z

⌦
g(x, u(x))v(x)dx

for each v 2 E. Obviously the weak solutions to (P�,µ) are exactly the critical points in E of the

energy functional defined, for each u 2 E, by

E(u) :=
1

p
 (u) + ��F (u) + µ�G(u),

where

 (u) := kukpV , �F (u) := �

Z

⌦
F (x, u(x))dx, �G(u) := �

Z

⌦
G(x, u(x))dx,

where, for each (x, t) 2 ⌦⇥ R,

F (x, t) :=

Z t

0
f(x, s)ds, G(x, t) :=

Z t

0
g(x, s)ds.

3 Results

The first multiplicity result deals with the case in which f has a global (m� 1)-sublinear growth,

with m < p, while di↵erent cases are considered for the behaviour of function g.

Theorem 3.1. Let V 2 C(⌦) satisfy inf⌦ V > 0 and let f, g 2 C such that:

(i1) there exist 1 < m < p and h 2 L1(⌦) such that |f(x, t)|  h(x)
�
1 + |t|m�1

�
for a.e. x 2 ⌦

and for all t 2 R,

(i2) G(x, t) � 0 for a.e. x 2 ⌦ and for all t � 0,

(i3) there exists x0 2 ⌦ and ⇢ > 0, p1, p2 > 1 such that B(x0, ⇢) ✓ ⌦ and

lim inf
t!+1

R
⌦max|⇠|t G(x, ⇠)dx

tp1
:= a < +1, lim sup

t!+1

R
B(x0,⇢)

G(x, t)dx

tp2
:= b > 0.

Then the following facts hold:

(r1) if p1 < p < p2, for all � 2 R and for all µ > 0, the problem (P�,µ) admits a sequence of

non-zero weak solutions;

(r2) if p1 < p = p2, there exists µ1 > 0 such that for all � 2 R and for all µ > µ1, the problem

(P�,µ) admits a sequence of non-zero weak solutions;
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(r3) if p1 = p < p2, there exists µ2 > 0 such that for all � 2 R and for all µ 2]0, µ2[, the problem

(P�,µ) admits a sequence of non-zero weak solutions;

(r4) if p1 = p2 = p, there exists � > 1 and CV,�,⇢ > 0 such that, if

CV,�,⇢ <
b

!cp1a
, (3.1)

(the previous inequality always being satisfied whether a = 0 or b = +1) then µ1 < µ2 and

for all � 2 R and for all µ 2]µ1, µ2[, the problem (P�,µ) admits a sequence of non-zero weak

solutions.

Proof. To prove (r1), let us apply part a) of Theorem 1.1 choosing X = E,  defined as in

the Preliminaries and � = ��F + µ�G. As we have already observed the critical points of the

functional �+ 1
p are precisely the weak solution of problem (P�,µ). The functionals � and  are

sequentially weak lower semicontinuous and moreover  is strongly continuous and coercive. In

our case the function ' is defined by setting

'(r) = inf
kukp

V <r

�(u) + supkwkp
V r (��)

r � kukpV

for each r > 0. Now, we wish to find a sequence {rk}k2N such that lim
k!1

rk = +1 and '(rk) <
1
p

for each k 2 N. To this aim it su�ces to prove that for each k 2 N there exists a function uk 2 X,

with kukk
p
V < rk, such that

sup
kwkp

V rk

⇢
�

Z

⌦
F (x,w(x))dx+ µ

Z

⌦
G(x,w(x))dx

�
� �

Z

⌦
F (x, uk(x))dx+

�µ

Z

⌦
G(x, uk(x))dx <

1

p
(rk � kukk

p
V ) .

Thanks to (i3), fixed a > a, for each k 2 N there exists ↵k � k such that

Z

⌦
max
|⇠|↵k

G(x, ⇠)dx  a↵p1

k .

Now we choose uk = ✓E and

rk =
1

cp1
↵p
k.

Obviously we have lim
k!1

rk = +1. Before proving (3), observe that, for each w 2 X with kwkpV 

rk, one has

kwk1  c1 kwkV  c1r
1
p

k = ↵k

for each k 2 N. Therefore, we obtain
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�

Z

⌦
F (x,w(x))dx+ µ

Z

⌦
G(x,w(x))dx  |�|

Z

⌦
|h(x)|

✓
|w(x)|+

|w(x)|m

m

◆
dx

+ µ

Z

⌦
max
|⇠|↵k

G(x, ⇠)dx  |�|khk1

✓
↵k +

↵m
k

m

◆
+ µa↵p1

k

 |�|khk1c1r
1
p

k +
|�|

m
khk1c

m
1r

m
p

k + µacp1
1r

p1
p

k <
1

p
rk

for k large enough, being 1 < m < p and p1 < p. So, thanks to part a) of Theorem 1.1, the

functional � + 1
p has a global minimum, or there exists a sequence of weak solutions {uk} ⇢ E

such that lim
k!1

kukk = +1. This part of the proof will end if we show that the functional �+ 1
p 

has no global minimum. To this aim, using (i3), fixed 0 < b < b, we get �k 2]0,+1[ with �k � k,

such that Z

B(x0,⇢)
G(x,�k)dx � b�p2

k

for each k 2 N. After choosing � > 1 such that B(x0, �⇢) ✓ ⌦ and a sequence {�k} 2

H(⇢, �⇢, {↵k}), we consider

wk(x) =

8
>>>><

>>>>:

0, in ⌦ \B(x0, �⇢),

�k, in B(x0, ⇢),

�k(|x� x0|) in B(x0, �⇢) \B(x0, ⇢).

Using the estimation of the norm made in the previous section, we get

kwkk
p
V  !�p

k


2p�1(�n

� 1)

⇢2p�n(� � 1)2p
cp2 +

(2p�1(n� 1)p + ⇢p)(�n
� 1)

⇢2p�n(� � 1)p
cp1 + �n⇢n max

B(x0,�⇢)
V

�
.

If we put

CV,�,⇢ =
2p�1(�n

� 1)

⇢2p�n(� � 1)2p
cp2 +

(2p�1(n� 1)p + ⇢p)(�n
� 1)

⇢2p�n(� � 1)p
cp1 + �n⇢n max

B(x0,�⇢)
V

we have

�(wk) +
1

p
 (wk) = ��

Z

⌦
F (x,wk(x))dx� µ

Z

⌦
G(x,wk(x))dx+

1

p
kwkk

p
V

 |�|

Z

⌦
|h(x)|

✓
|wk(x)|+

|wk(x)|m

m

◆
dx� µ

Z

B(x0,⇢)
G(x,�k)dx+

!CV,�,⇢

p
�p
k

 |�|khk1�k + |�|khk1
�m
k

m
� µb�p2

k +
!CV,�,⇢

p
�p
k

and, since 1 < m < p < d2 and lim
k!1

�k = +1, the functional � + 1
p has no global minimum,

being lim
k!1

�(wk) +
1

p
 (wk) = �1. This concludes the proof of (r1).
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The proof of (r2) is similar. If p1 < p and p2 = p, we choose µ1 = !CV,�,⇢

pb (obviously if b = +1 we

choose µ1 = 0). Therefore, if � 2 R and µ > µ1, choosing b such that !CV,�,⇢

pµ < b < b, in a similar

way we have

�(wk) +
1

p
 (wk)  |�|khk1�k + |�|khk1

�m
k

m
�

✓
µb�

!CV,⇢,�

p

◆
�p
k

and, thanks to the choice of b, also in this case the functional � + 1
p has no global minimum.

This concludes (r2).

As for the proof of (r3), if p1 = p and p2 > p, we choose µ2 = 1
pcp1a (obviously if a = 0 we choose

µ2 = +1). Then, fixing � 2 R and 0 < µ < µ2, we can choose a such that a < a < 1
pcp1µ . Similar

computations give

�

Z

⌦
F (x,w(x))dx+ µ

Z

⌦
G(x,w(x))dx  |�|khk1c1r

1
p

k +
|�|

m
khk1c

m
1r

m
p

k + µacp1rk <
1

p
rk

for k large enough, being 1 < m < p and µacp1 < 1
p .

Finally, the proof of (r4) relies on the considerations made in the previous two cases. We have

only to prove that µ1 < µ2, but this is guaranteed by the assumption (3.1).

Now, we are interested in the existence of infinitely many weak solutions in the case that the

nonlinearities f and g have a particular form.

Theorem 3.2. Let V 2 C(⌦) satisfy inf⌦ V > 0, m < p, h 2 L1(⌦), and r 2 L1(⌦) \ {0} with

r � 0 a.e. in ⌦. Let s : R ! R be a continuous function with
R t
0 s(⇠)d⇠ � 0, for all t � 0. Moreover

assume that there exists p1, p2 > 1, ↵,� > 0 and {↵k}, {�k} satisfying lim
k!1

↵k = lim
k!1

�k = +1,

such that

max
|⇠|↵k

Z ⇠

0
s(t)dt  ↵↵p1

k ,

Z �k

0
s(t)dt � ��p2

k

for each k 2 N. Then, for the problem

8
<

:
�2

pu��pu+ V (x)|u|p�2u = �h(x)|u|m�2u+ µr(x)s(u) in ⌦

u = �u = 0 on ⌦
(P�,µ)

the following facts hold:

(r1) if p1 < p < p2, for all � 2 R and for all µ > 0, the problem (P�,µ) admits a sequence of

non-zero weak solutions;

(r2) if p1 < p = p2, there exists µ1 > 0 such that for all � 2 R and for all µ > µ1, the problem

(P�,µ) admits a sequence of non-zero weak solutions;
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(r3) if p1 = p < p2, there exists µ2 > 0 such that for all � 2 R and for all µ 2]0, µ2[, the problem

(P�,µ) admits a sequence of non-zero weak solutions;

(r4) if p1 = p2 = p, there exist x0 2 ⌦, ⇢ > 0, � > 1 and CV,�,⇢ > 0, such that, if

CV,�,⇢ <
�krkL1(B(x0,⇢))

↵!cp1krkL1(⌦)
, (3.2)

then µ1 < µ2 and for all � 2 R and for all µ 2]µ1, µ2[, the problem (P�,µ) admits a sequence

of non-zero weak solutions.

Proof. We want to apply Theorem 3.1 choosing f(x, t) = h(x)|t|m�2t and g(x, t) = r(x)s(t) for all

(x, t) 2 ⌦⇥ R. The hypotheses (i1), (i2) are obviously verified. Since r 6⌘ 0 we can choose x0 2 ⌦

and ⇢ > 0 such that B(x0, ⇢) ⇢ ⌦ and r > 0 in B(x0, ⇢). Then we have:

Z

⌦
max
|⇠|↵k

G(x, ⇠)dx =

Z

⌦
max
|⇠|↵k

 Z ⇠

0
r(x)s(t)dt

!
dx = krkL1(⌦) max

|⇠|↵k

Z ⇠

0
s(t)dt  krkL1(⌦)↵↵

p1

k

and

Z

B(x0,⇢)
G(x,�k)dx =

Z

B(x0,⇢)

 Z �k

0
r(x)s(t)dt

!
dx = krkL1(B(x0,⇢))

Z �k

0
s(t)dt � krkL1(B(x0,⇢))��

p2

k .

Therefore

lim inf
t!+1

R
⌦max|⇠|t G(x, ⇠)dx

tp1
 krkL1(⌦)↵ < +1

and

lim sup
t!+1

R
B(x0,⇢)

G(x, t)dx

tp2
� krkL1(B(x0,⇢))� > 0.

So, (i3) is also verified with a = ↵krkL1(⌦) and b = �krkL1(B(x0,⇢)). Therefore we can apply the

Theorem 3.1 and obtain the conclusions (r1)–(r4).

Now, we want to exhibit two examples. In the first one we present a function s verifying the

hypotheses of Theorem 3.2.

Example 3.3. Let p > 1, � > 1 and let s : R ! R be the function such that

S(t) =

Z t

0
s(⇠)d⇠ =

8
>>>>>>><

>>>>>>>:

0, in ]�1, 0],

�2�t3 + 3�t2, in ]0, 1],

2p(k�1)�k in

i
2k�1�

k�1
p , 2k�1�

k
p

i
k � 1,

Akt3 +Bkt2 + Ckt+Dk in

i
2k�1�

k
p , 2k�

k
p

i
k � 1
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where

Ak := �2(p�3)k+4�
(p�3)k

p
�
� � 2�p

�
, Bk := 9 · 2(p�2)k+2�

(p�2)k
p

�
� � 2�p

�
,

Ck := �3 · 2(p�1)k+3�
(p�1)k

p
�
� � 2�p

�
, Dk := 2pk�k

�
5� � 22�p

�
.

Using MATLAB by MathWorks, we have plotted the graph of the function S (for � = 2 and p = 2),

showed in the following image.

-2 0 2 4 6 8 10 12 14

0

20

40

60

80

100

120

140

160

180

200

The function s satisfies all the assumption of Theorem 3.2 with ↵ = 1, � = �, ↵k = 2k�1�
k
p and

�k = 2k�
k
p , for each k 2 N. In particular

max
|⇠|↵k

Z ⇠

0
s(t)dt =

Z 2k�1�
k
p

0
s(t)dt = 2p(k�1)�k = ↵p

k

and Z �k

0
s(t)dt = 2pk�k+1 = ��p

k

for all k 2 N.

In Theorems 3.1 and 3.2, inequalities (3.1) and (3.2) serve to assure that µ1 < µ2; moreover the

value of CV,�,⇢ depends heavily also on constants cj and then on the choice of the sequence {�k}.

Obviously, fixed the nonlinearity, the smaller the constant CV,�,⇢ the easier the inequalities (3.1)

and (3.2) will be verified. The next example is in this direction.

Example 3.4. Let p > 1, ⌦ = B(0, 1) in Rn
, x0 = 0, r 2 L1(⌦) \ 0, with r � 0, V (x) = |x|2R2 +1,

for all x 2 B(0, 1), ⇢ = 1
2 , � = 2 and {�k} ⇢]0,+1[ with limk!1 �k = +1. Let

�
�1
k

 
,
�
�2
k

 
2

H( 12 , 1, {�k}) the sequences defined by

�1
k(x) = 4�k(4x

3
� 9x2 + 6x� 1)
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and

�2
k(x) =

�k

2
cos(⇡(2x� 1) + 1)

for all x 2] 12 , 1[ and for each k 2 N. We observe that, for each x 2] 12 , 1[,

|�1
k
0
(x)|  3�k, |�1

k
00
(x)|  24�k

and then the constants cj(
�
�1
k

 
), defined in (2.2), are respectively c1(

�
�1
k

 
) = 3

2 and c2(
�
�1
k

 
) = 6.

In a similar way, for each x 2] 12 , 1[, we have

|�2
k
0
(x)|  ⇡�k, |�2

k
00
(x)|  2⇡2�k

and, in this case, the constants cj(
�
�2
k

 
) are respectively c1(

�
�2
k

 
) = ⇡

2 and c2(
�
�2
k

 
) = ⇡2

2 .

Now let us consider a sequence of functions that, in combination with the norm, raises it to the

second power; namely

�3
k(x) =

8
><

>:

�k

�
�8x2 + 8x� 1

�
in ] 12 ,

3
4 [

↵k(8x2
� 16x+ 8) in ] 34 , 1[

(3.3)

for each k 2 N. In this case

|�3
k
0
(x)|  4�k, |�3

k
00
(x)|  16�k

and then c1(
�
�3
k

 
) = 2 and c2(

�
�3
k

 
) = 4. With respect to these three sequences of test functions

the smallest CV,�,⇢ (among the three) depends on the values of n and p. For instance, for n = 3

and p = 2 the smallest CV,�,⇢ is the one in correspondence with the sequence {�3
k}; in fact, using

MATLAB again to compute these constants, one has

CV,�,⇢({�
1
k}) ⇡ 1270, CV,�,⇢({�

2
k}) ⇡ 969, CV,�,⇢({�

3
k}) = 912.

But, for instance, for n = 4 and p = 3, the smallest CV,�,⇢ is the one in correspondence with the

sequence {�2
k} being

CV,�,⇢({�
1
k}) ⇡ 73737, CV,�,⇢({�

2
k}) ⇡ 53988, CV,�,⇢({�

3
k}) = 67262.

Obviously if we consider the function s of Example 3.3, taking a posteriori � >
!cp1krkL1(⌦)CV,�,⇢

krk
L1(B(0, 1

2
)

the corresponding problem admits a sequence of non-zero weak solutions; but if � is fixed a priori,

Theorems 3.1 and 3.2 could be always applied as long as one manages to find an appropriate

sequence {�k} while it is not sure that a generic application of Theorem 1.1 can be applied because

the assumptions depends heavily by the particular sequence of test functions fixed during the proof.
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The last theorem concerns the case in which the growth exponent of nonlinearity f(x, t) is exactly

p� 1. In this situation the existence of infinite weak solutions will be obtained not for each � 2 R
but in an appropriate interval.

Theorem 3.5. Let V 2 C(⌦) satisfy inf⌦ V > 0 and let f, g 2 C such that (i2) and (i3) are

verified. Moreover, suppose that:

(̃i1) there exist h 2 L1(⌦) such that |f(x, t)| = h(x)
�
1 + |t|p�1

�
for a.e. x 2 ⌦ and for all t 2 R.

Then the following facts hold:

(r̃1) if p1 < p < p2, for all � such that |�| < 1
khk1c

p
1

(for all � if h = 0) and for all µ > 0, the

problem (P�,µ) admits a sequence of non-zero weak solutions;

(r̃2) if p1 < p = p2, there exists µ1 > 0 such that, for all µ > µ1, there exists �µ > 0 such that,

for all |�| < �µ, the problem (P�,µ) admits a sequence of non-zero weak solutions;

(r̃3) if p1 = p < p2, there exists µ2 > 0 such that, for all µ 2]0, µ2[, there exists �µ > 0 such that,

for all |�| < �µ, the problem (P�,µ) admits a sequence of non-zero weak solutions;

(r̃4) if p1 = p2 = p, there exists � > 1 and CV,�,⇢ > 0 such that, if

CV,�,⇢ <
b

!cp1a
(3.4)

then µ1 < µ2 and for all µ 2]µ1, µ2[, there exists �µ > 0 such that, for all |�| < �µ the

problem (P�,µ) admits a sequence of non-zero weak solutions.

Proof. The proof is similar to that of Theorem 3.1. In fact, computing the two main evaluations

for m = p, we get:

�

Z

⌦
F (x,w(x))dx+ µ

Z

⌦
G(x,w(x))dx  |�|khk1c1r

1
p

k +
|�|

p
khk1c

p
1rk + µacp1

1r
p1
p

k (3.5)

and

�(wk) +
1

p
 (wk)  |�|khk1�k + |�|khk1

�p
k

p
� µb�p2

k +
!CV,�,⇢

p
�p
k . (3.6)

To prove (r̃1), fix � such that |�|  1
khk1c

p
1

and µ > 0. Thanks to the choice of � and to the fact

that p1 < p then, from (3.5) we get

�

Z

⌦
F (x,w(x))dx+ µ

Z

⌦
G(x,w(x))dx <

1

p
rk (3.7)

for k large enough (remember that lim
k!1

rk = +1); moreover, from (3.6) we obtain

lim
k!1

�(wk) +
1

p
 (wk) = �1 (3.8)

because p < p2.
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To prove (r̃2), it is su�cient to choose µ1 = !CV,�,⇢

pb . Fixed µ > µ1 and b in a similar way as

done in Theorem 3.1, we define �µ = min
n

1
khk1c

p
1
, µpb�!CV,�,⇢

khk1

o
. Fixed � such that |�| < �µ,

obviously, from (3.5), we get (3.7) (for k large enough) because p1 < p and thanks to the choice of

�. Moreover, using (3.6), the choice of � and µ guarantees that (3.8) holds.

To prove (r̃3), it is su�cient to choose µ2 = 1
pcp1a . Fixed µ 2]0, µ2[ and a in a similar way as done

in Theorem 3.1, we choose �µ = 1�µpcp1a
khk1c

p
1

. Fixed � such that |�| < �µ, obviously, from (3.6), we

get (3.8) because p < p2. Moreover, using (3.5), the choice of � and µ guarantees that (3.7) holds.

In the last case, to prove (r̃4), we observe that, thanks to (3.4), we have µ1 < µ2. So, fixed

µ 2]µ1, µ2[, and choosing a and b in a similar way as done in Theorem 3.1, we define �µ =

min
n

1�µcp1a
khk1

, µpb�!CV,�,⇢

khk1

o
. Fixed � such that |�| < �µ, obviously, from (3.5), we get (3.7) (for

k large enough) because of the choice of � and µ. Moreover, using (3.6), the choice of � and µ

guarantees that (3.8) holds.

We conclude with an example related to case (r̃4) of Theorem 3.5. In this case we consider the

one-dimensional setting, providing an explicit estimate of the constant c1 in (3.4).

Example 3.6. Let n = 1, ⌦ =] � 1, 1[, p1 = p2 = p = 2, V (x) = x2 + 1 for all x 2] � 1, 1[,

h 2 L1(]�1, 1[), r 2 L1(]�1, 1[)\{0} with r � 0 in ]�1, 1[ and
R 1/2
�1/2 r(x)dx > 0. It is well-known

that, for all u 2 W 2,2(]� 1, 1[) \W 1,2
0 (]� 1, 1[), one has

max
x2]�1,1[

|u(x)| 

p
2

2
ku0

kL2(]�1,1[)

and

ku0
kL2(]�1,1[) 

2

⇡
ku00

kL2(]�1,1[) ,

so

max
x2]�1,1[

|u(x)| 

p
2

⇡
ku00

kL2(]�1,1[) 

p
2

⇡
kukV

and then c1 =
p
2

⇡ . Now choosing x0 = 0, ⇢ = 1
2 , � = 2, � >

1064krkL1(]�1,1[)

⇡2krk
L1(]� 1

2
, 1
2 [)

, and g(t, x) =

r(x)s(t) (where the function s is that of Example 3.3), assumptions (i2) and (i3) are satisfied with

a = krkL1(]�1,1[) and b = �krkL1(]� 1
2 ,

1
2 [)

. Using the sequence {�3
k} of Example 3.4 as test function,

we compute CV,�,⇢ = 266 (lower than those associated with the other two sequences). It is easy to

see that

b

!cp1a
=

�⇡2
krkL1(]� 1

2 ,
1
2 [)

8krkL1(]�1,1[)
> 266

then (3.4) is satisfied and then the fact (r̃4) holds. In particular, for all µ 2

i
266
� , ⇡2

4krkL1(]�1,1[)

h
,

there exists �µ > 0 (defined inside the proof of Theorem 3.5) such that, for all |�| < �µ the problem

(P�,µ) admits a sequence of non-zero weak solutions.
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ABSTRACT

In this paper we introduce an operator that can be thought as

a derivative of variable order, i.e. the order of the derivative

is a function. We prove several properties of this operator,

for instance, we obtain a generalized Leibniz’s formula, Rolle

and Cauchy’s mean theorems and a Taylor type polynomial.

Moreover, we obtain its inverse operator. Also, with this

derivative we analyze the existence of solutions of a nonlinear

three-point boundary value problem of “variable order”.

RESUMEN

En este art́ıculo introducimos un operador que puede ser

pensado como una derivada de orden variable, i.e. el or-

den de la derivada es una función. Demostramos varias

propiedades de este operador, por ejemplo, obtenemos una

fórmula generalizada de Leibniz, teoremas de valor medio de

Rolle y Cauchy y un polinomio de tipo Taylor. Más aún,

obtenemos su operador inverso. También con esta derivada

analizamos la existencia de soluciones de un problema no

lineal de valor en la frontera de tres puntos de “orden vari-

able”.
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1 Motivation

Derivatives of non-integer order have been studied since the celebrated question of L’Hospital to

Leibniz about the meaning of dnf
dxn when n = 1/2. There are several definitions of derivatives of frac-

tional order, e.g., derivative of Riemann-Louville, Caputo, Hadamard, Erdélyi-Kober, Grünwald-

Letnikov and Riesz, among others. Typically, these derivatives are defined using an integral form

of the classical derivative, as a consequence of it, some basic properties of the usual derivative,

as the product rule and chain rule are lost. For a more comprehensible information about these

notions we recommend [17, 20, 30].

Despite of the lack of some properties, derivatives of fractional order appear in many real world

applications as, for instance, in memory e↵ects and future dependence, control theory of dynamical

systems, nanotechnology, viscoelasticity and financial modeling see, e.g., [8, 12, 18, 19, 21, 24, 25,

31, 32]. Thus, due to this development, in the last decades a lot of research has been devoted to

the study of the existence of solutions for several kinds of boundary value problems of fractional

type, see, for instance, [2, 3, 4, 5, 9, 11, 26, 28, 29] and references therein.

In order to overcome the limitations of the classical derivative, in [16] it is introduced a new limit-

based definition of derivative, the so-called conformable fractional derivative, which can be seen as

a natural extension of the fractional derivative, although as it is stated in [7], it is best to consider

the conformable derivative in its own right, independent of fractional derivative theory. Some of

the basic properties, physical interpretation and some boundary value problems for conformable

di↵erential equations can be found in [1, 6, 10, 14, 15, 33, 34] and its references.

In this article, based on the idea of conformable fractional derivative and in ideas from [13], we

consider an extension of the conformable fractional derivative of order ↵ and develop some of

its properties. Additionally, we study the existence and uniqueness of solutions for a nonlinear

three-point boundary value problem in this new setting.

2 Derivative of variable order

We now introduce the notion of (',!)-derivative.

Definition 2.1. Let f : [a, b] �! R. The (',!)-derivative at the point x 2 (a, b) ('(x) 6= 0) is

defined as

D'
!f(x) = D'

!(f)(x) = D(',1)
! f(x) = lim

h!0

f(x+ h'(x))� f(x)

!(x+ h)� !(x)
. (2.1)

Where ! is a strictly increasing function and ' is a function. At the point x 2 (a, b) such that
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'(x) = 0 we define the (',!)-derivative as

D'
!f(x) = lim

⇠!x
D'

!f(⇠),

when the limit exists.

Taking '(x) = x1�↵ and !(x) = x we obtain the conformable fractional derivative of order ↵, cf.

[16].

Theorem 2.2. Let f, g be (',!)-di↵erentiable. Then:

(a) The function f is continuous.

(b) D'
!(a) = 0, a is a constant.

(c) D'
!(af + g) = aD'

!(f) +D'
!(g).

(d) D'
!(fg) = fD'

!(g) + fD'
!(g).

(e) D'
!

✓
f

g

◆
=

fD'
!(g)� fD'

!(g)

g2
.

(f) If f and ! are di↵erentiable, we have

D'
!(f)(t) = '(t)

f 0(t)

!0(t)
. (2.2)

(g) If f, g and ! are di↵erentiable, we have

D'
!(f � g)(t) = f 0(g(t)) ·D'

!(g)(t).

Proof. It is a matter of direct calculations.

Formula (2.2) enables us to calculate in a straightforward way some (',!)-derivatives. For example,

letting '(x) = sin(x), f(x) = cos(x), and !(x) = x, we have

D'
!'(x) = sin(x) cos(x), D'

!f(x) = � sin2(x),

whereas taking ' and f as above with !(x) = ex � 1 we get

D'
!'(x) =

sin(x) cos(x)

ex
, D'

!f(x) =
� sin2(x)

ex
.

We now introduce the n-iterated (',!)-derivative.
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Definition 2.3. By D(',n)
! f(x) we define the n-iterated (',!)-derivative of the function f , i.e.

D(',n)
! f(x) = D'

!

⇣
D(',n�1)

! f
⌘
(x),

with the convention D(',0)
! f(x) := f(x).

Theorem 2.4 (Generalized Leibniz’s formula). We have

D(',n)
! (f1f2 · · · fm) =

X

i1+i2+···+im=n

ij=0,n

n!
D(',i1)

! (f1)D
(',i2)
! (f2) · · ·D(',im)

! (fm)

i1!i2! · · · im!
, (2.3)

where we suppose that all is well-defined.

Proof. For m = 2, equation (2.3) is obtained by induction on n and using the formula for the

(',!)-derivative of the product, in this case we obtain

D(',n)
! (f1f2) =

nX

j=0

✓
n

j

◆
D(',n�j)

! (f1)D
(',j)
! (f2). (2.4)

By the well-known method to prove the multinomial theorem from the binomial theorem we can,

in the same way, obtain (2.3) from (2.4).

Theorem 2.5 (Fermat’s Theorem). Let f : [a, b] �! R have a local maximum or minimum at

x = c 2 (a, b) and D'
!(f)(c) exists. Then D'

!(f)(c) = 0.

Proof. Let us suppose, without loss of generality, that x = c is a minimum of f . We have, for

su�ciently small h 6= 0, that

sgn(h'(c))
f(c+ h'(c))� f(c)

!(c+ h)� !(c)
> 0. (2.5)

From (2.5) and the hypothesis of the existence of D'
!(f)(c) the result follows.

Theorem 2.6 (Rolle’s theorem). Let f : [a, b] �! R be a continuous function in [a, b] and

(',!)-di↵erentiable in (a, b) such that f(a) = f(b) = 0. Then there exists c 2 (a, b) such that

D'
!(f)(c) = 0.

Proof. Supposing, without loss of generality, that there exists ⇠ 2 (a, b) such that f(⇠) � 0. Then

by Weierstraß theorem, there exists c 2 (a, b) which is a maximum. Invoking Fermat’s theorem

2.5 we end the proof.
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Theorem 2.7 (Cauchy mean-value theorem). Let f, g : [a, b] �! R be both continuous on the

closed interval [a, b] and (',!)-di↵erentiable in the open interval (a, b). Then there exists a number

⇠ 2 (a, b) such that

[f(b)� f(a)]D'
!(g)(⇠) = [g(b)� g(a)]D'

!(f)(⇠). (2.6)

Proof. The proof follows, as in the classical case, from Rolle’s theorem 2.6 applied to the function

F (x) = f(x)[g(b)� g(a)]� g(x)[f(b)� f(a)].

3 Integration of variable order

Definition 3.1. Let f : [a, b] �! R. We define the (',!)-integral of the function f as

I'! (f)(t) =

Z t

a

f(⇠)

'(⇠)
d!(⇠), (3.1)

where the integral is understood in the Lebesgue-Stieltjes sense.

Notice that for f 2 L1([a, b]) and 1
' 2 L1([a, b], dw) the integral (3.1) is finite.

When f,' and !0 are continuous functions, it is straightforward the relation D'
!(I

'
! f)(t) = f(t),

since

D'
!(I

'
! f)(t) =

'(t)

!0(t)
D

 Z t

a

f(⇠)

'(⇠)
d!(⇠)

!
(t) = f(t),

using (2.2).

In the case ' and !0 are continuous functions, the following Lagrange mean-value theorem

D'
!(f)(⇠) =

f(b)� f(a)

I'! (1)(b)� I'! (1)(a)
, ⇠ 2 (a, b) (3.2)

is valid, when f : [a, b] �! R is continuous on the closed interval [a, b] and (',!)-di↵erentiable in

the open interval (a, b). The equation (3.2) follows from (2.6) taking g(x) = I'! (1)(x) (note that

I'! (1)(a) = 0, but we leave it in (3.2) just for keeping with the parallel in the classical case).

By I(',n)
! '(x) we define the n-iterated (',!)-integral of the function f , i.e.

I(',n)
! f(x) = I'! (I

(',n�1)
! f)(x),

with the convention I(',0)
! f(x) := f(x).
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4 Taylor formula

In this section we will obtain a Taylor type formula using the (',!)-derivative with a remainder

which generalizes well-know remainders, i.e. Cauchy, Lagrange, Peano, Schlömilch, among others,

cf. [22, 23, 27] for similar remainders for the classical derivative.

Theorem 4.1. Let f : I �! R be a continuous function in the open interval I and n-times

(',!)-di↵erentiable function in I. We also require that ',!0
and I(',j)

! (1)(x) are continuous

functions, for j = 1, n. Moreover, let g : I �! R be a n-times (',!)-di↵erentiable function such

that D(',j)
! g(a) = 0 for j = 1, n� 1 and D(',k)

! g(y) 6= 0 for all y di↵erent from a and x and

j = 1, n� 1. Then, for all x 2 I we have

f(x) =
nX

j=0

D(',j)
! (f)(a) I(',j)

! (1)(x) +Rn(x), (4.1)

with

Rn(x) =
g(x)� g(a)

D(',n)
! g(⇠)

⇣
D(',n)

! (f)(⇠)�D(',n)
! (f)(a)

⌘
, (4.2)

where x 6= a and ⇠ is between a and x.

Proof. We first note that, since

D(',n)
! (I(',j)

! 1)(x) =

8
>>>>><

>>>>>:

I(',j�n)
! (1)(x), j > n,

1, n = j,

0, n > j.

we have

Rn(a) = D(',1)
! (Rn)(a) = · · · = D(',n�1)

! (Rn)(a) = 0. (4.3)

By the Cauchy type finite increment formula (2.6), relations (4.3) and the hypothesis on g we have

Rn(x)�Rn(a)

g(x)� g(a)
=

D(',1)
! (Rn)(✓1)�D(',1)

! (Rn)(a)

D(',1)
! (g)(✓1)�D(',1)

! (g)(a)
= . . . =

D(',n�1)
! (Rn)(✓n�1)�D(',n�1)

! (Rn)(a)

D(',n�1)
! (g)(✓n�1)�D(',n�1)

! (g)(a)

=
D(',n)

! (Rn)(⇠)

D(',n)
! (g)(⇠)

, (4.4)

where ⇠ := ✓n. On the other hand, (',!)-di↵erentiating the equality (4.1) n-times we obtain

D(',n)
! (f)(x)�D(',n)

! (f)(a) = D(n)
! (Rn)(x) which, together with (4.4), entails (4.2).
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5 Three-point boundary value problems of variable order

Inspired in [10], we are interested in the use of the (',!)-derivative to study the solutions of the

following nonlinear boundary value problem

D'
!(D + �)x(t) = f(t, x(t)), t 2 [0, 1] (5.1)

x(0) = 0, x0(0) = ↵, x(1) = �x(⌘), (5.2)

where D'
! is the derivative of variable order, D is the ordinary derivative, f : [0, 1] ⇥ R �! R

is a known function, �, � and ↵ are real numbers, � 6= 0 and ⌘ 2 (0, 1). Notice that in virtue

of Theorem 2.2, a su�cient condition for the well posedness of equation (5.1) is, by considering

! 2 C1[0, 1], and x 2 C2[0, 1]. Thus, in the sequel we consider these conditions on the functions !

and x. In addition, in order to use the (',!)-integral, we are going to assume that ' is continuous

and bounded away from zero.

From the conditions on the functions ! and ' we conclude that the following non negative numbers

are finite

⌦ := sup
t2[0,1]

!0(t) < 1, M := sup
t2[0,1]

����
1

'(t)

���� < 1.

We will use these numbers in the sequel to establish the existence results.

First, as usual, we will consider the linear boundary value problem:

D'
!(D + �)x(t) = g(t), t 2 [0, 1], g 2 C[0, 1] (5.3)

x(0) = 0, x0(0) = ↵, x(1) = �x(⌘), ↵,�,� 2 R, � 6= 0, ⌘ 2 (0, 1). (5.4)

To obtain a solution for the boundary value problem, we apply the (',!)-integral to equation (5.3):

(D + �)x(t) + (D + �)x(0) = I'! (g)(t), (5.5)

where, using the boundary condition (5.4), (D + �)x(0) = ↵. Then, equation (5.5) simplifies as

(D + �)x(t) + ↵ = I'! (g)(t). (5.6)

Let y(t) = e�tx(t), Then we rewrite (5.6) as

Dy(t) = e�tI'! (g)(t)� ↵e�t.

Integrating from 0 to t we obtain

y(t)� y(0) =

Z t

0
e�sI'! (g)(s) ds�

↵

�
(e�t � 1)
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y(t) =

Z t

0
e�s
Z s

0

g(r)

'(r)
!0(r) dr ds� ↵

�
(e�t � 1), (y(0) = x(0) = 0).

Now, notice that

Z t

0
e�s
Z s

0

g(r)

'(r)
!0(r) dr ds =

e�t

�

Z t

0

g(s)

'(s)
!0(s) ds� 1

�

Z t

0

e�sg(s)

'(s)
!0(s) ds, 0  s  t  1.

From here we have that

y(t) =
e�t

�

Z t

0

g(s)

'(s)
!0(s) ds� 1

�

Z t

0

e�sg(s)

'(s)
!0(s) ds� ↵

�
(e�t � 1), 0  s  t  1.

Thus,

x(t) =
1

�

Z t

0

g(s)

'(s)
!0(s) ds� e��t

�

Z t

0

e�sg(s)

'(s)
!0(s) ds+

↵

�
(e��t � 1).

Finally, from the condition �x(⌘) = x(1) we get

�

�

Z ⌘

0

g(s)

'(s)
(1� e�(s�⌘))!0(s) ds+

↵�

�
(e��⌘ � 1)� 1

�

Z 1

0

g(s)

'(s)
(1� e�(s�1)) ds� ↵

�
(e�� � 1) = 0.

Therefore, introducing this equality into the formula of function x above, we obtain the following

expression for x satisfying boundary value problem (5.3)–(5.4)

x(t) =
1

�

Z t

0

g(s)

'(s)
(1� e�(s�t))!0(s) ds+

�

�

Z ⌘

0

g(s)

'(s)

⇣
1� e�(s�⌘)

⌘
!0(s) ds

� 1

�

Z 1

0

g(s)

'(s)

⇣
1� e�(s�1)

⌘
!0(s) ds+

↵

�

⇣
e��t � e�� + �e��⌘ � �

⌘
.

Notice that actually we just proved the following result.

Theorem 5.1. The linear boundary value problem (5.3)–(5.4) has a unique solution given by

x(t) =
1

�

Z t

0

g(s)

'(s)
!0(s)k(s, t) ds+

�

�

Z ⌘

0

g(s)

'(s)
!0(s)k(s, ⌘) ds� 1

�

Z 1

0

g(s)

'(s)
k(s, 1)!0(s) ds

+
↵

�

⇣
e��t � e�� + �e��⌘ � �

⌘
.

where, k(s, t) = 1� e�(s�t)
.

Now, we are going to analyze the existence of solutions for the nonlinear boundary value problem:

D'
!(D + �)x(t) = f(t, x(t)), t 2 [0, 1], � 2 (�1,1) \ {0} (5.7)

x(0) = 0, x0(0) = ↵, x(1) = �x(⌘). (5.8)

As in Theorem 5.1, we can transform boundary value problem (5.7)–(5.8) into the nonlinear
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Hammerstein-Volterra integral equation

x(t) =
1

�

Z t

0

f(s, x(s))

'(s)
k(s, t)!0(s) ds+

�

�

Z ⌘

0

f(s, x(s))

'(s)
k(s, ⌘)!0(s) ds

� 1

�

Z 1

0

f(s, x(s))

'(s)
k(s, 1)!0(s) ds+

↵

�

⇣
e��t � e�� + �e��⌘ � �

⌘
.

where, k(s, t) = 1� e�(s�t).

In order to investigate the existence of a solution for this integral equation, we analyze it as a fixed

point problem; that is, letting

T : (C2[0, 1], k · k1) �! (C2[0, 1], k · k1)

x(t) 7�! Tx(t)

Tx(t) :=
1

�

Z t

0

f(s, x(s))

'(s)
k(s, t)!0(s) ds+

1

�

Z 1

0

f(s, x(s))

'(s)

⇣
�(0,⌘)(s)�k(s, ⌘)� k(s, 1)

⌘
!0(s) ds

+
↵

�

⇣
e��t � e�� + �e��⌘ � �

⌘
, (5.9)

(with �(0,⌘)(s) the characteristic function of the interval (0, ⌘)), we have that the existence of the

solution of the integral equation is equivalent to the existence of a fixed point of the operator T .

To assure that the operator T applies C2[0, 1] into itself, we assume that f(t, x(t)) is continuous

and di↵erentiable in the first variable.

We are going to use metric fixed point theory (Banach’s contraction principle) to provide conditions

to guarantee that the boundary value problem (5.7)–(5.8) has a unique solution.

Theorem 5.2. Let f : [0, 1] ⇥ R �! R be a continuous and di↵erentiable in the first variable

function satisfying that

|f(t, x)� f(t, y)|  K|x� y|, K > 0, for all t 2 [0, 1], x, y 2 R.

Then, the nonlinear boundary value problem (5.7)–(5.8) has a unique solution provide that

(|�|+ 1)MK⌦

|�| <
1

4
,

where M := supt2[0,1]
1

|'(t)| and ⌦ := supt2[0,1] w
0(t).

Proof. As we saw, it is su�cient to show that the operator T defined by the formula (5.9) has a

unique fixed point. Let x and y be two functions in C2[0, 1]. Then,
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|Tx(t)� Ty(t)| =

�����
1

�

Z t

0

(f(s, x(s))� f(s, y(s))

'(s)
k(s, t)!0(s) ds

+
1

�

Z 1

0

(f(s, x(s))� f(s, y(s))

'(s)

⇣
�(0,⌘)(s)�k(s, ⌘)� k(s, 1)

⌘
!0(s) ds

�����

 1

|�|

Z t

0

|k(s, t)|
|'(s)| |f(s, x(s))� f(s, y(s))|!0(s) ds

+
1

|�|

Z 1

0

����(0,⌘)(s)�k(s, ⌘)� k(s, 1)
���

|'(s)| |f(s, x(s))� f(s, y(s))|!0(s) ds.

On the other hand,

|k(s, t)| = |1� e�(s�t)|  1 + e�(s�t).

Notice that for �1 < � < 0, the inequality |ex � 1| < 7/4|x|, for 0 < |x| < 1, gives us the estimate

|1� e�(s�t)| < 7

4
�(s� t) <

7

4
< 2.

Then,

sup
s2[0,t]

(1 + e�(s�t))  2, �1 < � < 0.

Now, for � > 0,

sup
s2[0,t]

(1 + e�(s�t)) = 1 + e��t  2, for any t 2 [0, 1].

Therefore, we obtain the following bound

|k(s, t)|  2. (5.10)

Moreover,

����(0,⌘)(s)�k(s, ⌘)� k(s, 1)
��� =

�����(0,⌘)(s)�e
�(s�⌘) + e�(s�1) + �(0,⌘)(s)� � 1

���

 |� �(0,⌘)(s)�e
�(s�⌘)|+ |e�(s�1)|+ |�|+ 1,

where, for �1 < � < 0, we have that

sup
s2[0,⌘]

e�(s�⌘) = 1, sup
s2[0,1]

e�(s�1) = 1.

In the case � > 0, we get

sup
s2[0,⌘]

e�(s�⌘) = e��⌘  1, sup
s2[0,1]

e�(s�1) = e��  1.
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With these bounds we obtain the following estimation

����(0,⌘)(s)�k(s, ⌘)� k(s, 1)
���  2(|�|+ 1). (5.11)

We introduce the bounds (5.10) and (5.11) into the di↵erence |Tx(t)� Ty(t)|:

|Tx(t)� Ty(t)|  2

|�|

Z t

0

1

|'(s)| |f(s, x(s))� f(s, y(s))|!0(s) ds

+
2(|�|+ 1)

|�|

Z 1

0

1

|'(s)| |f(s, x(s))� f(s, y(s))|!0(s) ds. (5.12)

Since f(s, x(s)) is Lipschitz in the second variable, then

|Tx(t)� Ty(t)|  2

|�|

Z t

0

K

|'(s)| |x(s)� y(s)|!0(s) ds+
2(|�|+ 1)

|�|

Z 1

0

K

|'(s)| |x(s)� y(s)|!0(s) ds

 2(|�|+ 1)

|�|

Z t

0

K

|'(s)| |x(s)� y(s)|!0(s) ds

+
2(|�|+ 1)

|�|

Z 1

0

K

|'(s)| |x(s)� y(s)|!0(s) ds.

Taking the maximum over t 2 [0, 1] we obtain

kTx� Tyk1  2
2(|�|+ 1)

|�| KM⌦kx� yk1.

Therefore, T is a contraction operator, since µ = 2 2(|�|+1)
|�| KM⌦ < 1. Thus from the Banach

contraction principle, T has a unique fixed point as desired.

Now, we are going to use topological fixed point theory, more precisely Schaefer’s fixed point

theorem, to establish the existence of at least one solution of boundary value problem (5.7)–(5.8),

dropping the Lipschitzianity of the function f .

First, we prove that the operator T is compact.

Theorem 5.3. The operator T : (C2[0, 1], k · k1) �! (C2[0, 1], k · k1) is compact.

Proof. We start by proving the continuity of T . Let (xn) ⇢ C2[0, 1], x 2 C2[0, 1] be such that

kxn � xk1 ! 0. We have to show that kTxn � Txk1 ! 0. Fixed " > 0, there exists K � 0 such

that

kxnk1  K, 8n 2 N

kxk1  K.

Since f : [0, 1]⇥ [�K,K] �! R is continuous, then it is uniformly continuous on [0, 1]⇥ [�K,K].
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Thus there exists �(") > 0 such that

|f(s1, x(s1))� f(s2, y(s2))|  ",

for every (s1, x(s1)), (s2, y(s2)) 2 [0, 1]⇥ [�K,K] such that k(s1 � s2, x(s1)� y(s2))k2 < �(").

From the fact that kxn � xk1 ! 0, it follow that there exists N(") 2 N such that

sup
t2[0,1]

|xn(t)� x(t)| < �,

for every n � N("). Consequently, from (5.12),

kTxn � Txk1 = sup
t2[0,1]

|Txn(t)� Tx(t)|

 sup
t2[0,1]

(
2

|�|

Z t

0

|f(s, xn(s))� f(s, x(s))|
|'(s)| !0(s) ds

+
2(|�|+ 1)

|�|

Z 1

0

|f(s, xn(s))� f(s, x(s))|
|'(s)| !0(s) ds

)

<
2|�|+ 4

|�| M⌦", M := sup
t2[0,1]

1

|'(t)| , ⌦ := sup
t2[0,1]

!0(t).

Therefore, the operator T is continuous. To prove the compactness we consider a bounded set

X ⇢ C2[0, 1] and we will show that T (X) is relatively compact in (C2[0, 1], k · k1) by using the

Arzela-Ascoli theorem. Let K � 0 be such that

kxk1  K,

for every x 2 X.

From the bounds (5.10) and (5.11) we have

|Tx(t)|  1

|�|

Z t

0

|f(s, x(s))|
|'(s)| |k(s, t)|!0(s) ds+

1

|�|

Z 1

0

|f(s, x(s))|
|'(s)| |�(0,⌘)�k(s, ⌘)� k(s, 1)|!0(s) ds

+

����
↵

�

���� |e
��t � e�� + �e��⌘ � �|

2M⌦

|�|

Z t

0
|f(s, x(s))| ds+ 2(|�|+ 1)

|�| M⌦

Z 1

0
|f(s, x(s))| ds

+

����
↵

�

���� |e
��t � e�� + �e��⌘ � �|

2|�|+ 4

|�| M⌦

Z 1

0
|f(s, x(s))| ds+

����
↵

�

���� |e
��t � e�� + �e��⌘ � �|.
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We obtain a upper bound for |e��t � e�� + �e��⌘ � �|, namely

|e��t � e�� + �e��⌘ � �|  �, t 2 [0, 1],

where

� :=

8
><

>:

(|�|+ 1)e��, �1 < � < 0

2(|�|+ 1), � > 0.

On the other hand, since the function f is uniformly continuous on the compact set [0, 1]⇥[�K,K],

then there exists, and it is finite, the positive number

RK = kfk1 = sup
x2X

sup
s2[0,1]

|f(s, x(s))| < 1, (s, x(s)) 2 [0, 1]⇥ [�K,K].

Thus, we have

kTxk1  2|�|+ 4

|�| M⌦RK +

����
↵

�

�����, (5.13)

for every x 2 X. That means, the set T (X) is bounded in C2[0, 1]. Now, if t1, t2 2 [0, 1], are such

that t1  t2 and satisfy |t1 � t2| < �, then

|Tx(t1)� Tx(t2)| =

�����
1

�

Z t1

0

f(s, x(s))

'(s)
!0(s) ds� 1

�

Z t2

0

f(s, x(s))

'(s)
!0(s) ds� ↵

�
e��t1 +

↵

�
e��t2

�����

=

�����
1

�

Z t2

t1

f(s, x(s))

'(s)
!0(s) ds+

↵

�
(e��t2 � e��t1)

�����

! 0, as |t1 � t2| ! 0

for every x 2 X, so the set T (X) ⇢ C2[0, 1] satisfies the hypotheses of Arzela-Ascoli’s theorem, so

T (X) is relatively compact in C2[0, 1]. Therefore, the operator T is compact.

Now, we establish the following existence result.

Theorem 5.4. Let f : [0, 1] ⇥ R �! R be a continuous and di↵erentiable in the first variable

function, and let us assume that there exist C,D � 0 and q 2 (0, 1) such that

|f(s, r)|  C|r|q +D.

For every (s, r) 2 [0, 1] ⇥ R. Then, the nonlinear boundary value problem (5.7)–(5.8) has at least

one solution.

Proof. The theorem is proved once we assure the existence of at least a fixed point of the operator

T . Let

S = {x 2 C2[0, 1] : 9� 2 [0, 1] such that x = �Tx}.
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To apply Schaefer’s fixed point theorem we should show that S is bounded. Let x 2 S,

kxk1 =�kTxk1.

Now, from (5.13) we have

|Tx(t)|  2|�|+ 4

|�|

Z 1

0

|f(s, x(s))|
|'(s)| !0(s) ds+

����
↵

�

�����  2|�|+ 4

|�| M⌦(Ckxkq1 +D) +

����
↵

�

����� < 1.

Then

kxk1 = �kTxk1  �
2|�|+ 4

|�| M⌦(Ckxkq1 +D) +

����
↵

�

������ < 1.

This inequality and the fact q 2 (0, 1) shows that S is bounded. Thus, from Schaefer’s fixed point

theorem, the operator T has a fixed point, which implies that boundary value problem (5.7)–(5.8)

has a solution.

Notice from the proof of the theorem above, that we can use the functions ' and ! given in the

definition of the (',!)-derivative to rewrite Theorem 5.4 as:

Theorem 5.5. Let f : [0, 1] ⇥ R �! R be a continuous and di↵erentiable in the first variable

function, and let us assume that there exist C,D � 0 and q 2 (0, 1) such that

|f(s, r)|
|'(s)| !0(s)  C|r|q +D.

For every (s, r) 2 [0, 1] ⇥ R. Then, the nonlinear boundary value problem (5.7)–(5.8) has at least

one solution.

Schaefer’s theorem is a consequence of the Schauder fixed point theorem, which is a localization

fixed point result. We will use Schauder’s theorem to give a localization result for the solutions of

boundary value problem (5.7)–(5.8).

Theorem 5.6. Let f : [0, 1] ⇥ R �! R be a continuous and di↵erentiable in the first variable

function and, in addition, let us assume that f 2 L1([0, 1] ⇥ R). Let B(r) be the closed ball with

radius r. Then, the nonlinear boundary value problem (5.7)–(5.8) has at least one solution for

every closed ball B(r) such that

r � 2|�|+ 4

|�| M⌦kfk1 +
����
↵

�

�����, (5.14)

with,

� :=

8
><

>:

(|�|+ 2)e��, �1 < � < 0

2(|�|+ 1), � > 0
, M := sup

t2[0,1]

����
1

'(t)

���� , ⌦ = sup
t2[0,1]

!0(t).
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Proof. Since the operator T is continuous and compact, we can apply Schauder’s fixed point

theorem, once we prove that T (B(r)) ⇢ B(r).

From (5.13) and the hypotheses, we have

|Tx(t)|  2|�|+ 4

|�|

Z 1

0

|f(s, x(s))|
|'(s)| !0(s) ds+

����
↵

�

����� (5.15)

 2|�|+ 4

|�| M⌦kfk1 +
����
↵

�

�����

 r.

Thus, kTxk1  r. Consequently T (B(r)) ⇢ B(r). Finally, from Schauder’s theorem, T has a

fixed point, as so boundary value problem (5.7)–(5.8) has at least one solution, for every closed

ball B(r) with radius r as in (5.14).

We can control the growth behavior of the nonlinear function f and still guarantee the existence of

solutions for BVP (5.7)–(5.8). Some of these behaviors, as we will see, can be controlled in terms

of the functions ' and ! given in the definition of the (',!)-derivative, which can be interpreted

as behaviors scaled for the (',!)-derivative.

The main idea is to replace the integral term (5.15) with some condition which allows found a

bound for it. For instance if we assume that f is uniformly bounded by A > 0 on [0, 1]⇥ R, then
use the estimate |f(s, x(s))|  A in (5.15) and obtain the radius r � 2|�|+4

|�| M⌦AK +
��↵
�

���.

If we assume that |f(s, y)|  A |'(s)|
w0(s) , for some A > 0, for all (s, x) 2 [0, 1] ⇥ R, the integral term

is less or equal to A and the radius is r � 2|�|+4
|�| A+

��↵
�

���.

Finally, if |f(s, x(s))|  |�|
2(|�|+ 2)M⌦

s|x(s)|, and we assume that

����
↵

�

�����  r

2
, for each r > 0 given.

Then, estimate (5.15) is rewrite as

|Tx(t)|  kxk1
2

+

����
↵

�

�����  r

2
+

r

2
= r.

This proves that T applies any ball of radius r into itself. Therefore, we conclude that BVP

(5.7)–(5.8) as at leat one solution on each ball of radius r.

In similar fashion it can be proved that for

|f(s, y)|  |�|
4(|�|+ 2)M⌦( |an|

n+1 + · · ·+ |a0|)
|ansn + · · ·+ a0|)|x(s)|,
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and ����
↵

�

�����  r

2
, for each r > 0,

the same conclusion holds.
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ABSTRACT

This work is a part of a recent wave of studies on inequali-

ties which relate the uniform-norm of a univariate complex

coe�cient polynomial to its derivative on the unit disk in

the plane. When there is a limit on the zeros of a polyno-

mial, we develop some additional inequalities that relate the

uniform-norm of the polynomial to its polar derivative. The

obtained results support some recently established Erdős-

Lax and Turán-type inequalities for constrained polynomials,

as well as produce a number of inequalities that are sharper

than those previously known in a very large literature on this

subject.

RESUMEN

Este trabajo es parte de una reciente ola de estudios sobre

desigualdades que relacionan la norma uniforme de un poli-

nomio univariado con coeficientes complejos con su derivada

en el disco unitario en el plano. Cuando existe un ĺımite sobre

los ceros de un polinomio, desarrollamos algunas desigual-

dades adicionales que relacionan la norma uniforme del poli-

nomio con su derivada polar. Los resultados obtenidos satis-

facen desigualdades de tipo Erdős-Lax y Turán para poli-

nomios restringidos recientemente establecidas, y también

producen desigualdades que son más estrictas que aquellas

conocidas previamente en la larga literatura dedicada a este

tema.
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1 Introduction

Experimental data is converted into mathematical notation and mathematical models in scientific

inquiries. In order to solve these, it may be necessary to know how large or small the maximum

modulus of the derivative of an algebraic equation can be in terms of maximum modulus of the

polynomial. In practise, setting boundaries for these circumstances is crucial. The only informa-

tion available in the literature is in the form of approximations, and there are no closed formulae

for calculating these limitations precisely. These approximate boundaries are quite accurate when

computed e↵ectively adequate for the demands of investigators and scientists. As a result, there

is a constant desire to find boundaries that are superior to those described in the literature. We

were inspired to write this note because there is a need for updated and more precise bounds. The

inequalities for polynomials and their derivatives, which generalise the classical inequalities for

di↵erent norms and with di↵erent constraints on utilising various methods of geometric function

theory, are a fertile topic in analysis. In the literature, for proving the inverse theorems in approx-

imation theory, many inequalities in both directions relating the norm of the derivative and the

polynomial itself play a significant role and, of course, have their own intrinsic appeal. As shown

by various recent studies, numerous research papers have been published on these inequalities for

constrained polynomials (for example, see [11, 13, 17, 19, 20, 21]). We begin with the well-known

Bernstein inequality [4] for the uniform norm on the unit disk in the plane: namely, if P (z) is a

polynomial of degree n, then

max
|z|=1

|P 0(z)|  nmax
|z|=1

|P (z)|. (1.1)

If we only consider polynomials without zeros in |z| < 1, the above inequality (1.1) can then be

emphasised. In fact, Erdős conjectured and later Lax [14] proved that, if P (z) 6= 0 in |z| < 1, then

max
|z|=1

|P 0(z)|  n

2
max
|z|=1

|P (z)|. (1.2)

The inequality (1.2) is sharp and equality holds if P (z) has all of its zeros on |z| = 1.

When there is a restriction on the polynomial’s zeros, Turán’s classical inequality [25] o↵ers a lower

bound estimate for the size of the derivative of the polynomial on the unit circle in relation to the

size of the polynomial. It states that if P (z) is a polynomial of degree n having all its zeros in

|z|  1, then

max
|z|=1

|P 0(z)| � n

2
max
|z|=1

|P (z)|. (1.3)



CUBO
24, 3 (2022)

Estimates for the polar derivative of a constrained polynomial... 543

Aziz and Dawood [2] improved inequality (1.3) to take the form

max
|z|=1

|P 0(z)| � n

2

⇢
max
|z|=1

|P (z)|+ min
|z|=1

|P (z)|
�
. (1.4)

Any polynomial that has all of its zeros on |z| = 1 holds true for (1.3) and (1.4).

The inequalities (1.3) and (1.4) have been generalised and expanded in a number of ways over

time. For a polynomial P (z) of degree n having all its zeros in |z|  k, k � 1, Govil [8], proved

that

max
|z|=1

|P 0(z)| � n

1 + kn
max
|z|=1

|P (z)|. (1.5)

As is easy to see that (1.5) becomes an equality if P (z) = zn + kn, one would expect that if we

exclude the class of polynomials having all zeros on |z| = k, then it may be possible to improve

the bound in (1.5). In this direction, it was shown by Govil [10] that if P (z) is a polynomial of

degree n having all its zeros in |z|  k, k � 1, then

max
|z|=1

|P 0(z)| � n

1 + kn

⇢
max
|z|=1

|P (z)|+ min
|z|=k

|P (z)|
�
. (1.6)

As an extension of (1.2), Malik [15] proved that, if P (z) 6= 0 in |z| < k, k � 1, then

max
|z|=1

|P 0(z)|  n

1 + k
max
|z|=1

|P (z)|. (1.7)

The result is sharp and equality in (1.7) holds for P (z) = (z + k)n.

On the other hand, if P (z) 6= 0 in |z| < k, k  1, the precise estimate of maximum of |P 0(z)|
on |z| = 1 does not seem to be known in general, and this problem is still open. However, some

special cases in this direction have been considered by many people where some partial extensions

of (1.2) are established. In 1980, it was shown by Govil [9] that if P (z) is a polynomial of degree

n and P (z) 6= 0 in |z| < k, k  1, then

max
|z|=1

|P 0(z)|  n

1 + kn
max
|z|=1

|P (z)|, (1.8)

provided |P 0(z)| and |Q0(z)| attain their maximum at the same point on |z| = 1, where Q(z) =

znP (1/z). Under the same hypothesis as in (1.8), Aziz and Ahmad [1] established an improved

inequality in the form

max
|z|=1

|P 0(z)|  n

1 + kn

⇢
max
|z|=1

|P (z)|� min
|z|=k

|P (z)|
�
. (1.9)

In the literature, more generalised variations of Bernstein and Turán inequalities have emerged,
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in which the underlying polynomial is replaced with more general classes of functions. One such

generalisation is moving from the domain of ordinary derivatives of polynomials to the domain of

their polar derivatives. Before drawing any more conclusions, let us first discuss the idea of the

polar derivative. For a polynomial P (z) of degree n, we define

D�P (z) := nP (z) + (� � z)P 0(z),

the polar derivative of P (z) with respect to the point �. The polynomial D�P (z) is of degree at

most n� 1 and it generalizes the ordinary derivative in the sense that

lim
�!1

⇢
D�P (z)

�

�
= P 0(z),

uniformly with respect to z for |z|  R, R > 0.

The comprehensive books by Marden [16], Milovanović et al. [18], Rahman and Schmeisser [23],

and the most recent one by Gardner et al. [7] all provide access to the extensive literature on the

polar derivative of polynomials.

In 1998, Aziz and Rather [3] established the polar derivative analogue of (1.5) by proving that if

P (z) is a polynomial of degree n having all its zeros in |z|  k, k � 1, then for every � 2 C with

|�| � k,

max
|z|=1

|D�P (z)| � n

✓
|�|� k

1 + kn

◆
max
|z|=1

|P (z)|. (1.10)

In the same publication, Aziz and Rather extended the inequality (1.4) to the polar derivative of

a polynomial. In fact, they proved that if P (z) is a polynomial of degree n having all its zeros in

|z|  1, then for any complex number � with |�| � 1,

max
|z|=1

|D�P (z)| � n

2

⇢
(|�|� 1)max

|z|=1
|P (z)|+ (|�|+ 1) min

|z|=1
|P (z)|

�
. (1.11)

The corresponding polar derivative analogue of (1.6) and a refinement of (1.10) was given by

Dewan et al. [5]. They proved that if P (z) is a polynomial of degree n having all its zeros in

|z|  k, k � 1, then for any complex number � with |�| � k,

max
|z|=1

|D�P (z)| � n

1 + kn

⇢
(|�|� k) max

|z|=1
|P (z)|+

✓
|�|+ 1

kn�1

◆
min
|z|=k

|P (z)|
�
. (1.12)

Singh and Chanam [24] most recently developed the following generalisation and strengthening of

(1.10).
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Theorem A. Let P (z) = zs
n�sX

⌫=0

a⌫z
⌫
, 0  s  n, be a polynomial of degree n having all its zeros

in |z|  k, k � 1, then for every complex number � with |�| � k,

max
|z|=1

|D�P (z)| � (|�|� k)

⇢
n+ s

1 + kn
+

k(n�s)/2
p

|an�s|�
p

|a0|
(1 + kn)k(n�s)/2

p
|an�s|

�
max
|z|=1

|P (z)|. (1.13)

The improvement of inequality (1.8) as a result of Govil [9] was demonstrated by Singh and Chanam

in the same paper in the form of the subsequent outcome.

Theorem B. Let P (z) =
nX

⌫=0

a⌫z
⌫
be a polynomial of degree n having no zeros in |z| < k, k  1,

and let Q(z) = znP (1/z). If |P 0(z)| and |Q0(z)| attain their maximum at the same point on

|z| = 1,

max
|z|=1

|P 0(z)| 

8
<

:
n

1 + kn
�

⇣p
|a0|� kn/2

p
|an|

⌘
kn

(1 + kn)
p

|a0|

9
=

;max
|z|=1

|P (z)|. (1.14)

The result is sharp and equality holds in (1.14) for P (z) = zn + kn.

The study of these inequalities for a certain class of polynomials having a zero of order s � 0 at the

origin is continued in this paper, and we set some new upper and lower bounds for the derivative

and polar derivative of a polynomial on the unit disk while taking into account the location of the

zeros and extremal coe�cients of the underlying polynomial.

2 Main results

We begin this section by proving the following Turán-type inequality giving generalisations and

refinements of (1.10)–(1.13) and related inequalities.

Theorem 2.1. Let P (z) = zs
n�sX

⌫=0

a⌫z
⌫
, 0  s  n, be a polynomial of degree n having all its zeros

in |z|  k, k � 1, then for every complex number � with |�| � k,

max
|z|=1

|D�P (z)| � n

1 + kn

⇢
(|�|� k) max

|z|=1
|P (z)|+

✓
|�|+ 1

kn�1

◆
mk

�

+

✓
|�|� k

1 + kn

◆⇢
s+

p
kn�s|an�s|�mk �

p
|a0|p

kn�s|an�s|�mk

�✓
max
|z|=1

|P (z)|� mk

kn

◆
, (2.1)

where mk = min|z|=k |P (z)|.

Setting s = 0 in (2.1), we get the following refinement of (1.12) and hence of (1.10) and (1.11) as

well.
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Corollary 2.2. Let P (z) =
nX

⌫=0

a⌫z
⌫
be a polynomial of degree n having all its zeros in |z|  k,

k � 1, then for every complex number � with |�| � k,

max
|z|=1

|D�P (z)| � n

1 + kn

⇢
(|�|� k) max

|z|=1
|P (z)|+

✓
|�|+ 1

kn�1

◆
mk

�

+

✓
|�|� k

1 + kn

◆⇢p
kn|an|�mk �

p
|a0|p

kn|an|�mk

�✓
max
|z|=1

|P (z)|� mk

kn

◆
, (2.2)

where mk is as defined in Theorem 2.1.

By taking k = 1 in (2.2), we easily get a refinement of (1.11). If we divide both sides of (2.1) and

(2.2) by |�| and let |�| ! 1, we get the following results:

Corollary 2.3. Let P (z) = zs
n�sX

⌫=0

a⌫z
⌫ , 0  s  n, be a polynomial of degree n having all its zeros

in |z|  k, k � 1, then

max
|z|=1

|P 0(z)| � n

1 + kn

✓
max
|z|=1

|P (z)|+mk

◆

+

(
s

1 + kn
+

p
kn�s|an�s|�mk �

p
|a0|

(1 + kn)
p

kn�s|an�s|�mk

)✓
max
|z|=1

|P (z)|� mk

kn

◆
, (2.3)

where mk is as defined in Theorem 2.1. Equality in (2.3) holds for P (z) = zn + kn.

Corollary 2.4. Let P (z) =
nX

⌫=0

a⌫z
⌫
be a polynomial of degree n having all its zeros in |z|  k,

k � 1, then

max
|z|=1

|P 0(z)| � n

1 + kn

✓
max
|z|=1

|P (z)|+mk

◆

+

p
kn|an|�mk �

p
|a0|

(1 + kn)
p
kn|an|�mk

✓
max
|z|=1

|P (z)|� mk

kn

◆
, (2.4)

where mk is as defined in Theorem 2.1. Equality in (2.4) holds for P (z) = zn + kn.

Remark 2.5. It is clear that, in general for any polynomial of degree n of the form P (z) =

zs(a0+a1z+ · · ·+an�szn�s), 0  s  n, having all its zeros in |z|  k, k � 1, the inequality (2.1)

improves the inequality (1.13) considerably, excepting the case when P (z) has a zero on |z| = k.

For the class of polynomials having a zero on |z| = k, the inequality (2.2) will give bounds that

are sharper than the bound obtained from the inequality (1.12). One can also observe that the

inequality (2.4) improves inequality (1.6) considerably when
p

kn|an|�mk �
p

|a0| 6= 0.

As an application of Corollary 2.4, we prove the following result for the class of polynomials having

no zeros in |z| < k, k  1, which in turn provides a generalization and refinement to Theorem B.
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Theorem 2.6. Let P (z) =
nX

⌫=0

a⌫z
⌫
be a polynomial of degree n having no zeros in |z| < k, k  1,

and let Q(z) = znP (1/z). If |P 0(z)| and |Q0(z)| attain their maximum at the same point on

|z| = 1, then for every complex number � with |�| � 1,

max
|z|=1

|D�P (z)| n(|�|+ kn)

1 + kn
max
|z|=1

|P (z)|� nmk(|�|� 1)

1 + kn

�
(|�|� 1)

⇣p
|a0|�mk � kn/2

p
|an|

⌘
kn

(1 + kn)
p
|a0|�mk

⇢
max
|z|=1

|P (z)|�mk

�
, (2.5)

where mk is as defined in Theorem 2.1. Equality in (2.5) holds for P (z) = zn+kn, with real � � 1.

If we divide both sides of inequality (2.5) by |�| and let |�| ! 1, we get the following result.

Corollary 2.7. Let P (z) =
nX

⌫=0

a⌫z
⌫
be a polynomial of degree n having no zeros in |z| < k, k  1,

and let Q(z) = znP (1/z). If |P 0(z)| and |Q0(z)| attain their maximum at the same point on |z| = 1,

then

max
|z|=1

|P 0(z)|  n

1 + kn
max
|z|=1

|P (z)|� nmk

1 + kn

�

⇣p
|a0|�mk � kn/2

p
|an|

⌘
kn

(1 + kn)
p

|a0|�mk

⇢
max
|z|=1

|P (z)|�mk

�
, (2.6)

where mk is as defined in Theorem 2.1. Equality in (2.6) holds for P (z) = zn + kn.

Remark 2.8. It may be remarked here that, in general for any polynomial of degree n of the

form P (z) = a0 + a1z + a2z2 + · · · + anzn, having no zeros in |z| < k, k  1, the inequality (2.6)

improves the inequality (1.14), excepting the case when P (z) has a zero on |z| = k. For the class

of polynomials having a zero on |z| = k, the inequality (2.5) sharpens a result of Mir and Breaz

[20, Corollary 2] considerably.

3 Lemmas

In order to prove our results, we need the following lemmas. The first lemma is a simple deduction

from the Maximum Modulus Principle (see [22]).

Lemma 3.1. If P (z) is a polynomial of degree at most n, then for R � 1,

max
|z|=R

|P (z)|  Rn max
|z|=1

|P (z)|.

The following lemma is due to Dewan and Upadhye [6].
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Lemma 3.2. If P (z) is a polynomial of degree n having all zeros in |z|  k, k � 1, then

max
|z|=k

|P (z)| � 2kn

1 + kn
max
|z|=1

|P (z)|+ kn � 1

kn + 1
min
|z|=k

|P (z)|.

Lemma 3.3. If P (z) = zs
n�sX

⌫=0

a⌫z
⌫ , 0  s  n, is a polynomial of degree n having all zeros in

|z|  1, then for any complex number � with |�| � 1 and |z| = 1,

|D�P (z)| � (|�|� 1)

⇢
n+ s

2
+

p
|an�s|�

p
|a0|

2
p
|an�s|

�
|P (z)|.

The above lemma is due to Singh and Chanam [24].

Lemma 3.4. If P (z) = zs
n�sX

⌫=0

a⌫z
⌫
, 0  s  n, is a polynomial of degree n having all zeros in

|z|  1, then for any complex number � with |�| � 1 and |z| = 1,

|D�P (z)| �n

2

✓
(|�|� 1)|P (z)|+ (|�|+ 1)m1

◆

+

✓
|�|� 1

2

◆(
s+

p
|an�s|�m1 �

p
|a0|p

|an�s|�m1

)
(|P (z)|�m1) ,

where m1 = min|z|=1 |P (z)|.

Proof. By hypothesis P (z) = zs
n�sX

⌫=0

a⌫z
⌫ , 0  s  n, has all its zeros in |z|  1. If the polynomial

h(z) =
n�sX

⌫=0

a⌫z
⌫ has a zero on |z| = 1, then m1 = min|z|=1 |P (z)| = 0 and the result follows by

Lemma 3.3 in this case. Henceforth, we assume that all the zeros of P (z) = zsh(z) lie in |z| < 1,

so that m1 > 0. Therefore, we have m1  |P (z)| for |z| = 1. This implies for any complex number

µ with |µ| < 1, that

m1|µzn| < |P (z)| for |z| = 1.

Since all the zeros of P (z) lie in |z| < 1, it follows by Rouché’s theorem that all the zeros of

P (z)� µm1z
n = zs

✓
a0 + a1z + · · ·+ (an�s � µm1)z

n�s

◆

also lie in |z| < 1. Hence, by Lemma 3.3, we get for |�| � 1 and |z| = 1,

|D�(P (z)� µm1z
n)| � (|�|� 1)

⇢
n+ s

2
+

p
|an�s � µm1|�

p
|a0|

2
p

|an�s � µm1|

�
|P (z)� µm1z

n|. (3.1)
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For every µ 2 C, we have

|an�s � µm1| � |an�s|� |µ|m1,

and since the function  (x) =

�p
x�

p
|a0|

�
p
x

, x > 0, is a non-decreasing function of x, it follows from

(3.1) that for every µ with |µ| < 1 and |z| = 1,

|D�(P (z)� µm1z
n)| � (|�|� 1)

⇢
n+ s

2
+

p
|an�s|� |µ|m1 �

p
|a0|

2
p
|an�s|� |µ|m1

�
|P (z)� µm1z

n|. (3.2)

It is a simple deduction of Laguerre theorem (see [16, p. 52]) on the polar derivative of a polynomial

that for any � with |�| � 1, the polynomial

D�(P (z)� µm1z
n) = D�P (z)� µ�nm1z

n�1

has all its zeros in |z| < 1. This implies that

|D�P (z)| � m1n|�||z|n�1 for |z| � 1. (3.3)

Now choosing the argument of µ suitably on the left hand side of (3.2) such that

��D�P (z)� µ�nm1z
n�1

�� = |D�P (z)|� |µ||�|nm1 for |z| = 1,

which is possible by (3.3), we get for |z| = 1

|D�P (z)|�m1n|µ||�| � (|�|� 1)

⇢
n+ s

2
+

p
|an�s|� |µ|m1 �

p
|a0|

2
p
|an�s|� |µ|m1

��
|P (z)|� |µ|m1

�
. (3.4)

If in (3.4), we make |µ| ! 1, we easily get for |z| = 1,

|D�P (z)| � n

2

✓
(|�|� 1)|P (z)|+ (|�|+ 1)m1

◆

+

✓
|�|� 1

2

◆(
s+

p
|an�s|�m1 �

p
|a0|p

|an�s|�m1

)
(|P (z)|�m1) .

This completes the proof of Lemma 3.4.

Lemma 3.5. If P (z) is a polynomial of degree n and, Q(z) = znP (1/z), then on |z| = 1,

|P 0(z)|+ |Q0(z)|  nmax
|z|=1

|P (z)|.

The above lemma is due to Govil and Rahman [12].
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4 Proofs of the main results

Proof of Theorem 2.1. Recall that P (z) has all its zeros in |z|  k, k � 1, therefore, all the zeros

of the polynomial E(z) = P (kz) lie in |z|  1. Applying Lemma 3.4 to the polynomial E(z) and

noting that |�|/k � 1, we get

max
|z|=1

��D�/kE(z)
�� � n

2

⇢✓
|�|
k

� 1

◆
max
|z|=1

|E(z)|+
✓
|�|
k

+ 1

◆
m⇤

�

+

✓
|�|
k

� 1

◆⇢
s

2
+

p
kn�s|an�s|�m⇤ �

p
|a0|

2
p
kn�s|an�s|�m⇤

�✓
max
|z|=1

|E(z)|�m⇤
◆
, (4.1)

where m⇤ = min|z|=1 |E(z)| = min|z|=1 |P (kz)| = min|z|=k |P (z)| = mk.

The above inequality (4.1) is equivalent to

max
|z|=1

����nP (kz) +

✓
�

k
� z

◆
kP 0(kz)

���� �
n

2

⇢✓
|�|� k

k

◆
max
|z|=1

|P (kz)|+
✓
|�|
k

+ 1

◆
mk

�

+

✓
|�|� k

k

◆⇢
s

2
+

p
kn�s|an�s|�mk �

p
|a0|

2
p
kn�s|an�s|�mk

�

⇥
✓
max
|z|=1

|P (kz)|�mk

◆
.

The last inequality yields

max
|z|=k

|D�P (z)| � n

2

⇢✓
|�|� k

k

◆
max
|z|=k

|P (z)|+
✓
|�|
k

+ 1

◆
mk

�

+

✓
|�|� k

k

◆⇢
s

2
+

p
kn�s|an�s|�mk �

p
|a0|

2
p
kn�s|an�s|�mk

�✓
max
|z|=k

|P (z)|�mk

◆
. (4.2)

Since D�P (z) is a polynomial of degree at most n� 1, we have by Lemma 3.1 for R = k � 1,

max
|z|=k

|D�P (z)|  kn�1 max
|z|=1

|D�P (z)|.

On using this and Lemma 3.2, the above inequality (4.2) clearly gives

kn�1 max
|z|=1

|D�P (z)| � n

2

⇢✓
|�|� k

k

◆✓
2kn

1 + kn
max
|z|=1

|P (z)|+
✓
kn � 1

kn + 1

◆
mk

◆
+

✓
|�|
k

+ 1

◆
mk

�

+

✓
|�|� k

k

◆⇢
s

2
+

p
kn�s|an�s|�mk �

p
|a0|

2
p
kn�s|an�s|�mk

�

⇥
⇢

2kn

1 + kn
max
|z|=1

|P (z)|+
✓
kn � 1

kn + 1

◆
mk �mk

�
.
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After rearranging the terms, we get

max
|z|=1

|D�P (z)| � n

1 + kn

⇢
(|�|� k) max

|z|=1
|P (z)|+

✓
|�|+ 1

kn�1

◆
mk

�

+

✓
|�|� k

1 + kn

◆⇢
s+

p
kn�s|an�s|�mk �

p
|a0|p

kn�s|an�s|�mk

�✓
max
|z|=1

|P (z)|� mk

kn

◆
,

which is exactly (2.1). This completes the proof of Theorem 2.1.

Proof of Theorem 2.6. Let Q(z) = znP (1/z). Since P (z) =
nX

⌫=0

a⌫z
⌫ 6= 0 in |z| < k, k  1, the

polynomial Q(z) of degree n has all its zeros in |z| 6 1/k, 1/k � 1. On applying inequality (2.4)

of Corollary 2.4 to Q(z), we get

max
|z|=1

|Q0(z)| � n

1 + 1
kn

✓
max
|z|=1

|Q(z)|+m0
k

◆

+

q
1
kn |a0|�m0

k �
p

|an|

(1 + 1
kn )

q
1
kn |a0|�m0

k

⇢
max
|z|=1

|Q(z)|� knm0
k

�
. (4.3)

Now,

m0
k = min

|z|=1/k
|Q(z)| = min

|z|=1/k

�����z
nP

✓
1

z

◆����� =
1

kn
min
|z|=k

|P (z)| = mk

kn

and

max
|z|=1

|Q(z)| = max
|z|=1

|P (z)|.

Using these observations in (4.3), we get

max
|z|=1

|Q0(z)| � nkn

1 + kn

✓
max
|z|=1

|P (z)|+ mk

kn

◆

+

✓p
|a0|�mk � kn/2

p
|an|

◆
kn

(1 + kn)
p

|a0|�mk

⇢
max
|z|=1

|P (z)|�mk

�
. (4.4)

Since |P 0(z)| and |Q0(z)| attain maximum at the same point on |z| = 1, we have

max
|z|=1

(|P 0(z)|+ |Q0(z)|) = max
|z|=1

|P 0(z)|+ max
|z|=1

|Q0(z)|. (4.5)

On combining (4.4), (4.5) and Lemma 3.5, we get

nmax
|z|=1

|P (z)| � max
|z|=1

|P 0(z)|+ nkn

1 + kn

✓
max
|z|=1

|P (z)|+ mk

kn

◆

+

�p
|a0|�mk � kn/2

p
|an|

�
kn

(1 + kn)
p
|a0|�mk

⇢
max
|z|=1

|P (z)|�mk

�
,



552 G. V. Milovanović, A. Mir & A. Hussain CUBO
24, 3 (2022)

which gives

max
|z|=1

|P 0(z)|  nmax
|z|=1

|P (z)|� nkn

1 + kn

✓
max
|z|=1

|P (z)|+ mk

kn

◆

�

⇣p
|a0|�mk � kn/2

p
|an|

⌘
kn

(1 + kn)
p

|a0|�mk

⇢
max
|z|=1

|P (z)|�mk

�
. (4.6)

Also, it is easy to verify that for |z| = 1,

|Q0(z)| = |nP (z)� zP 0(z)|. (4.7)

Note that for any complex number �, and |z| = 1, we have

|D�P (z)| = |nP (z) + (� � z)P 0(z)|  |nP (z)� zP 0(z)|+ |�||P 0(z)|,

which gives by (4.7) and |�| � 1, that

|D�P (z)|  |Q0(z)|+ |�||P 0(z)| = |Q0(z)|+ |P 0(z)|� |P 0(z)|+ |�||P 0(z)|

 nmax
|z|=1

|P (z)|+ (|�|� 1)|P 0(z)| (by Lemma 3.5)

 nmax
|z|=1

|P (z)|+ (|�|� 1)max
|z|=1

|P 0(z)|. (4.8)

Inequality (4.8), in conjunction with (4.6), gives for |z| = 1,

|D�P (z)|  n|�|max
|z|=1

|P (z)|� nkn(|�|� 1)

1 + kn

✓
max
|z|=1

|P (z)|+ mk

kn

◆

�
(|�|� 1)

✓p
|a0|�mk � kn/2

p
|an|

◆
kn

(1 + kn)
p
|a0|�mk

⇢
max
|z|=1

|P (z)|�mk

�
,

which is equivalent to (2.5). This completes the proof of Theorem 2.6.
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polynômes de degré donné, Mémoires de l’Académie Royale de Belgique 4, Brussels: Hayez,

imprimeur des académies royales, 1912.

[5] K. K. Dewan, N. Singh, A. Mir and A. Bhat, “Some inequalities for the polar derivative of a

polynomial”, Southeast Asian Bull. Math., vol. 34, no. 1, pp. 69–77, 2010.

[6] K. K. Dewan and C. M. Upadhye, “Inequalities for the polar derivative of a polynomial”,

JIPAM. J. Inequal. Pure Appl. Math., vol. 9, no. 4, Article 119, 9 pages, 2008.

[7] R. B. Gardner, N. K. Govil and G. V. Milovanović, Extremal problems and inequalities of
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[21] A. Mir and I. Hussain, “On the Erdős-Lax inequality concerning polynomials”, C. R. Math.

Acad. Sci. Paris, vol. 355, no. 10, pp. 1055–1062, 2017.
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