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Stojan Radenović
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ABSTRACT

In this paper, we study the p-Laplacian problems in the case

where p depends on the solution itself. We consider two

situations, when p is a local and nonlocal quantity. By using

a singular perturbation technique, we prove the existence of

weak solutions for the problem associated to the following

equation







−div(|∇u|p(u)−2∇u) + |u|p(u)−2u = f in Ω

u = 0 on ∂Ω,

and also for its nonlocal version. The main goal of this paper

is to extend the results established by M. Chipot and H. B.

de Oliveira (Math. Ann., 2019, 375, 283-306).

RESUMEN

En este art́ıculo, estudiamos los problemas p-Laplacianos en

el caso donde p depende de la solución misma. Consideramos

dos situaciones, cuando p es una cantidad local y no-local.

Usando una técnica de perturbación singular, demostramos

la existencia de soluciones débiles para el problema asociado

a la siguiente ecuación







−div(|∇u|p(u)−2∇u) + |u|p(u)−2u = f en Ω

u = 0 sobre ∂Ω,

y también para su versión no-local. El principal objetivo de

este art́ıculo es extender los resultados establecidos por M.

Chipot y H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
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1 Introduction

The study of partial differential equations involving the p-Laplacian generalised several types of

problems not only in physics, but also in biophysics, plasma physics, and in the study of chemical

reactions. These problems appear, for example, in a general reaction-diffusion system:

ut = − div
(

a|∇u|p(·)−2∇u
)

+ |u|p(·)−2u,

where a ∈ R+ is a positive constant, the function u generally describes the concentration, the

term div
(

a|∇u|p(·)−2∇u
)

corresponds to the diffusion with coefficient D(u) = a|∇u|p(·)−2, and

|u|p(·)−2u is the reaction term related to source and loss processes. In general, the reaction term

has a polynomial form with respect to the concentration u.

Because of the importance of this kind of problems, many authors have investigated the existence

and uniqueness of their different types of solutions [1, 4, 10].

Our main interest in this work is to extend these results to the case when p may depend both

on the space variable x and on the unknown solution u. We first consider the case where the

dependency of p on u is a local quantity. Namely, we study the following problem











−div(|∇u|p(u)−2∇u) + |u|p(u)−2u = f in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain of RN , N ≥ 2, f is a given data and p is the nonlinear exponent

function p : R → [1,+∞) such that

p is continuous and 1 < r ≤ p ≤ s < ∞ for some constants r, s. (1.2)

In the second part of this work, we consider also the following nonlocal problem











−div(|∇u|p(b(u))−2∇u) + |u|p(b(u))−2u = f in Ω

u = 0 on ∂Ω,
(1.3)

where p : R −→ [1,+∞) and b : W 1,r
0 (Ω) −→ R are the functions involved in the exponent of

nonlinearity, for some constant exponent r such that 1 < r < ∞.

The fact that in reality physical measurements of certain quantities are not made in a punctual

way but through local averages is always the motivation to study non-local problems. This kind

of problems appear in the applications of some numerical techniques for the total variation image

restoration method that have been used in some restoration problems of mathematical image
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processing and computer vision [5, 6, 17]. J. Türola in [17] presented several numerical examples

suggesting that the consideration of exponents p = p(u) preserves the edges and reduces the noise

of the restored images u. A numerical example suggesting a reduction of noise in the restored

images u when the exponent of the regularization term is p = p(|∇u|) is presented in [5]. To our

best knowledge, there are only a few important contributions concerning the well-posedness of the

solutions of this p(u)-Laplacian problems. The study of these problems was recently developed by

Andreianov et al. [3]. They established the partial existence and uniqueness result to the weak

solution in the cases of homogeneous Dirichlet boundary condition for the following problem











−div(|∇u|p(u)−2∇u) + u = f in Ω,

u = 0 on ∂Ω.

S. Ouaro and N. Sawadogo in [14] and [15] considered the following nonlinear Fourier boundary

value problem






b(u)− div a(x, u,∇u) = f in Ω

a(x, u,∇u) · η + λu = g on ∂Ω.

The existence and uniqueness results of entropy and weak solutions are established by an approx-

imation method and convergent sequences in terms of Young measure.

We were inspired by the work of M. Chipot and H. B. de Oliveira in [7], where the authors have

proved the existence of the p(u)-problem (1.1) without the second term in the left-hand side, the

existence proofs of [2] and [7] are based on the Schauder fixed-point theorem. They considered for

the first time in the literature the nonlocal exponent of nonlinearity p as we consider here.

This paper is organized as follows. In Section 2 we introduce the basic assumptions and we recall

some definitions and basic properties of generalised Sobolev spaces. Section 3 is devoted to show

the existence of a solution to the local problem (1.1) using a singular perturbation technique. In

Section 4, we prove the existence of weak solutions to the nonlocal problem (1.3) by using the

Minty trick together with the technique of Zhikov (see [18]) for passing to the limit in our sequence

of p(un)-Laplacian problems .

2 Preliminaries

The fact that the function p depends on the solution u and therefore it depends on the space

variable x, allows us to look for the weak solutions in a Sobolev space with variable exponents.

Let Ω be a bounded domain of RN with ∂Ω Lipschitz-continuous, we say that a real-valued con-
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tinuous function p(·) is log-Hölder continuous in Ω (for more details, see [9]) if

∃C > 0 : |p(x) − p(y)| ≤
C

ln
(

1
|x−y|

) ∀x, y ∈ Ω, |x− y| <
1

2
. (2.1)

For any Lebesgue-measurable function p : Ω → [1, ∞), we define

p− := ess inf
x∈Ω

p(x) , p+ := ess sup
x∈Ω

p(x), (2.2)

and we introduce the variable exponent Lebesgue space by:

Lp(·)(Ω) =

{

u : Ω → R / ρp(·)(u) :=

∫

Ω
|u(x)|p(x)dx < ∞

}

. (2.3)

Equipped with the Luxembourg norm

‖u‖p(·) := inf
{

λ > 0 : ρp(·)
(u

λ

)

≤ 1
}

, (2.4)

Lp(·)(Ω) becomes a Banach space. If

1 < p− ≤ p+ < ∞, (2.5)

Lp(·)(Ω) is separable and reflexive. The dual space of Lp(·)(Ω) is Lp′(·)(Ω), where p′(x) is the

generalised Hölder conjugate of p(x),

1

p(x)
+

1

p′(x)
= 1.

The next proposition shows that there is a gap between the modular and the norm in Lp(·)(Ω).

Proposition 2.1 (See [11]). If (2.5) holds, for u ∈ Lp(x)(Ω), then the following assertions hold

min
{

‖u‖p−

p(·), ‖u‖p+

p(·)

}

≤ ρp(·)(u) ≤ max
{

‖u‖p−

p(·), ‖u‖p+

p(·)

}

,

min
{

ρp(·)(u)
1

p
− , ρp(·)(u)

1
p+

}

≤ ‖u‖p(·) ≤ max
{

ρp(·)(u)
1

p
− , ρp(·)(u)

1
p+

}

, (2.6)

‖u‖p−

p(·) − 1 ≤ ρp(·)(u) ≤ ‖u‖p+

p(·) + 1. (2.7)
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Proposition 2.2 (Generalised Hölder’s inequality. See [13]).

- For any functions u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have:

∫

Ω
uv dx ≤

(

1

p−
+

1

p′−

)

‖u‖p(·)‖v‖p′(·) ≤ 2‖u‖p(·)‖v‖p′(·).

- For all p satisfying (2.5), we have the following continuous embedding,

Lp(·)(Ω) ↪→ Lr(·)(Ω) whenever p(x) ≥ r(x) for a.e. x ∈ Ω. (2.8)

In generalised Lebesgue spaces, there holds a version of Young’s inequality,

|uv| ≤ δ
|u|p(x)

p(x)
+ C(δ)

|v|p
′(x)

p(x)
,

for some positive constant C(δ) and any δ > 0.

We define also the generalised Sobolev space by

W 1,p(·)(Ω) := {u ∈ Lp(·)(Ω) : ∇u ∈ Lp(·)(Ω)},

which is a Banach space with the norm

‖u‖1,p(·) := ‖u‖p(·) + ‖∇u‖p(·). (2.9)

The space W 1,p(·)(Ω) is separable and is reflexive when (2.5) is satisfied. We also have

W 1,p(·)(Ω) ↪→ W 1,r(·)(Ω) whenever p(x) ≥ r(x) for a.e. x ∈ Ω. (2.10)

Now, we introduce the following function space

W 1,p(·)
0 (Ω) := {u ∈ W1,1

0 (Ω) : ∇u ∈ Lp(·)(Ω)},

endowed with the following norm

‖u‖
W

1,p(·)
0 (Ω)

:= ‖u‖1 + ‖∇u‖p(·). (2.11)

If p ∈ C(Ω), then the norm inW 1,p(·)
0 (Ω) is equivalent to ‖∇u‖p(·).When p is log-Hölder continuous,

then C∞
0 (Ω) is dense in W 1,p(.)

0 (Ω).

If p is a measurable function in Ω satisfying 1 ≤ p− ≤ p+ < N and the log-Hölder continuity
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property (2.1), then

‖u‖p∗(·) ≤ C‖∇u‖p(·) ∀u ∈ W 1,p(·)
0 (Ω),

for some positive constant C, where

p∗(x) :=











Np(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N.

On the other hand, if p satisfies (2.1) and p− > N , then

‖u‖∞ ≤ C‖∇u‖p(·) ∀u ∈ W 1,p(·)
0 (Ω) ,

where C is another positive constant.

Lemma 2.3 ([7]). Assume that

1 < r ≤ pn(x) ≤ s < ∞ ∀n ∈ N,

for a.e. x ∈ Ω, for some constants r and s,
(2.12)

pn → p a.e. in Ω, as n → ∞, (2.13)

∇un → ∇u in L1(Ω)N , as n → ∞, (2.14)

‖|∇un|
pn(x)‖1 ≤ C, for some positive constant C not depending on n. (2.15)

Then ∇u ∈ Lp(·)(Ω)N and

lim inf
n→∞

∫

Ω
|∇un|

pn(x)dx ≥

∫

Ω
|∇u|p(x)dx. (2.16)

Lemma 2.4 ([8, 12]). For all ξ, η ∈ RN , the following assertions hold true:

2 ≤ p < ∞ ⇒
1

2p−1
|ξ − η|p ≤

(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η), (2.17)

1 < p < 2 ⇒ (p− 1)|ξ − η|2 ≤
(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η) (|ξ|p + |η|p)
2−p
p . (2.18)
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3 Existence for the local problem

In this section, we prove the existence of weak solutions for the local problem (1.1). Firstly, we

define the following space:

W 1,p(u)
0 (Ω) :=

{

u ∈ W 1,1
0 (Ω) :

∫

Ω
|∇u|p(u)dx < ∞

}

such that 1 < p(u) < ∞ for all u ∈ R.

It is a Banach space for the norm ‖u‖
W

1,p(·)
0 (Ω)

defined at (2.11) which is equivalent to ‖∇u‖p(u)

when p(u) ∈ C(Ω). Since p is continuous then from the fact that 1 < r ≤ p, W 1,p(u)
0 (Ω) is separable

and reflexive.

Definition 3.1. Assume that p verifies (1.2) and

f ∈ W−1,r′(Ω). (3.1)

A function u ∈ W 1,p(u)
0 (Ω) is said to be a weak solution to the problem (1.1), if

∫

Ω
|∇u|p(u)−2∇u ·∇v dx +

∫

Ω
|u|p(u)−2uv dx = 〈f, v〉 ∀v ∈ W 1,p(u)

0 (Ω),

where 〈·, ·〉 denotes the duality pairing between (W 1,p(u)
0 (Ω))′ and W 1,p(u)

0 (Ω).

Theorem 3.2. Assume that (1.2) and (3.1) hold together with

N < r ≤ p(u) ≤ s < +∞ (3.2)

and

p : R −→ [1,+∞) is a Lipschitz-continuous function. (3.3)

Then there exists at least one weak solution to problem (1.1) in the sense of Definition 3.1.

The proof of Theorem 3.2 is divided into several steps.

Step 1: Approximate problems

For each ε > 0, we consider the following auxiliary problem (namely, the regularized problem)











−div(|∇u|p(u)−2∇u) + |u|p(u)−2u+ ε
(

|u|s−2u− div(|∇u|s−2∇u)
)

= f in Ω,

u = 0 on ∂Ω,
(3.4)
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where

N < r ≤ p(u) ≤ s < ∞ ∀u ∈ R.

Proposition 3.3. For each ε > 0, the problem (3.4) admits a weak solution uε.

Proof. Let w ∈ L2(Ω), then

N < r ≤ p(w) ≤ s < ∞ for a.e. x ∈ Ω. (3.5)

Recalling that f ∈ W−1,r′(Ω) ⊂ W−1,s′(Ω). Now, we focus on the operator Tε : W 1,s
0 (Ω) →

W−1,s′(Ω) defined by

〈Tε(u), v〉 =

∫

Ω

(

|∇u|p(w)−2∇u ·∇vdx + |u|p(w)−2uv
)

dx+ε

[
∫

Ω

(

|∇u|s−2∇u ·∇vdx+ |u|s−2uv
)

dx

]

,

for all u, v ∈ W 1,s
0 (Ω). We can establish that:

(i) Tε is continuous, bounded;

(ii) Tε is strictly monotone (the strict monotonicity follows by Lemma 2.4);

(iii) Tε is coercive.

According to (i), (ii) and (iii), the operator Tε is continuous, strictly monotone (hence, maximal

monotone too), and coercive. It follows that Tε is a strictly monotone surjective operator (see

Corollary 2.8.7, p. 135, [16]). Therefore, there exists a unique solution uw ∈ W 1,s
0 (Ω) such that

∫

Ω
|∇uw|

p(w)−2∇uw ·∇vdx+

∫

Ω
|uw|

p(w)−2uwvdx+

ε

(
∫

Ω
|∇uw|

s−2∇uw ·∇vdx +

∫

Ω
|uw|

s−2uwvdx

)

= 〈f, v〉 ∀v ∈ W 1,s
0 (Ω). (3.6)

We take v = uw in (3.6) to derive that

∫

Ω
|∇uw|

p(w)dx +

∫

Ω
|uw|

p(w)dx+ ε

(
∫

Ω
|uw|

sdx+

∫

Ω
|∇uw|

sdx

)

≤ ‖f‖−1,r′‖∇uw‖r ≤ C‖∇uw‖s,

where C = C(r, s,Ω, f), and ‖·‖−1,r′ is the operator norm associated to the norm ‖∇·‖r. Therefore

ε‖uw‖
s
1,s ≤ C‖∇uw‖s ≤ C‖uw‖1,s.

Hence

‖uw‖1,s ≤ C, (3.7)
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where C = C(r, s,Ω, ε, f) is a positive constant without w-dependence. From the fact that s >

N ≥ 2, we can deduce that

‖uw‖L2(Ω) ≤ C. (3.8)

Next, we introduce the self-map T : B → B defined by T (w) = uw, over the set

B :=
{

v ∈ L2(Ω) : ‖v‖L2(Ω) ≤ C
}

.

The compact embedding W 1,s
0 (Ω) ↪→ L2(Ω) implies that T (B) is relatively compact in B. Appeal-

ing to the Schauder fixed-point theorem, we know that the continuity of T is required in obtaining

a fixed point of T .

With the assumption that we work on a sequence {wn} in L2(Ω) satisfying

wn → w in L2(Ω) as n → ∞, (3.9)

we denote by un, for all n ∈ N, the solution of (3.6) related to w := wn. Therefore, the inequality

in (3.7) leads to

‖un‖1,s ≤ C, for some positive constant (without n-dependence) .

Passing to a subsequence if necessary (namely again {un}), for a certain u ∈ W 1,s
0 (Ω) we get

un ⇀ u in W 1,s
0 (Ω), as n → ∞, (3.10)

un → u in L2(Ω), as n → ∞. (3.11)

We return to (3.6), so that considering (un, wn) instead of (u,w), we get

∫

Ω

(

|∇un|
p(wn)−2∇un + ε|∇un|

s−2∇un

)

·∇v dx+ (3.12)
∫

Ω

(

|un|
p(wn)−2un + ε|un|

s−2un

)

v dx = 〈f, v〉 ∀v ∈ W 1,s
0 (Ω).

Since the operator on the left-hand side of (3.12) is monotone, then

∫

Ω

(

|∇un|
p(wn)−2∇un + ε|∇un|

s−2∇un

)

·∇(un − v)dx+ (3.13)
∫

Ω

(

|un|
p(wn)−2un + ε|un|

s−2un

)

(un − v)dx−
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∫

Ω

(

|∇v|p(wn)−2∇v + ε|∇v|s−2∇v
)

·∇(un − v)dx−
∫

Ω

(

|v|p(wn)−2v + ε|v|s−2v
)

(un − v)dx ≥ 0 ∀v ∈ W 1,s
0 (Ω).

Considering (3.12) with v = un − v as a test function, we use (3.13) to get

〈f, un − v〉 −

∫

Ω

(

|∇v|p(wn)−2∇v + ε|∇v|s−2∇v
)

·∇(un − v)dx− (3.14)
∫

Ω

(

|v|p(wn)−2v + ε|v|s−2v
)

(un − v)dx ≥ 0 ∀v ∈ W 1,s
0 (Ω).

The convergence in (3.9) implies

wn → w a.e. in Ω, as n → ∞.

Since p is a continuous function, we can apply Lebesgue’s theorem (in Ls′(Ω)N ), therefore

|∇v|p(wn)−2∇v → |∇v|p(w)−2∇v strongly in Ls′(Ω)d, as n → ∞ (3.15)

and

|v|p(wn)−2v → |v|p(w)−2v strongly in Ls(Ω), as n → ∞, (3.16)

for all v ∈ W 1,s
0 (Ω). Finally, by the weak convergence in (3.10) and using (3.15) and (3.16) we can

pass to the limit in (3.14) to obtain

〈f, u− v〉 −

∫

Ω

(

|∇v|p(w)−2∇v + ε|∇v|s−2∇v
)

·∇(u − v)dx−
∫

Ω

(

|v|p(w)−2v + ε|v|s−2v
)

(u − v)dx ≥ 0 ∀v ∈ W 1,s
0 (Ω). (3.17)

Next, choosing v = u± δϕ, where ϕ ∈ W 1,s
0 (Ω) and δ > 0, we get

±
[

〈f,ϕ〉 −

∫

Ω

(

|∇(u± δϕ)|p(w)−2∇(u± δϕ) + ε|∇(u± δϕ)|s−2∇(u± δϕ)
)

·∇ϕ dx−
∫

Ω

(

|u± δϕ|p(w)−2(u± δϕ) + ε|v|s−2(u± δϕ)
)

ϕ dx
]

≥ 0. (3.18)

We pass to the limit as δ goes to zero in (3.18), and deduce that

∫

Ω

(

|∇(u)|p(w)−2∇u+ ε|∇u|s−2∇u
)

·∇ϕdx +

∫

Ω

(

|u|p(w)−2u+ ε|v|s−2u
)

ϕdx = 〈f,ϕ〉 ∀ϕ ∈ W 1,s
0 (Ω).

Consequently u = uw. In view of (3.11) and by the strong convergence in (3.11), we conclude that

uwn
→ uw strongly in L2(Ω), as n → ∞,
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It follows that T is continuous, and this establishes the existence of the fixed point which is the

exact weak solution to (3.4).

Step 2: Passage to the limit as ε → 0

From Proposition 3.3, for each ε > 0 there exists uε ∈ W 1,s
0 (Ω) such that

∫

Ω
|∇(uε)|

p(uε)−2∇uε∇vdx+

∫

Ω
|uε|

p(uε)−2uεvdx+ (3.19)

ε

(
∫

Ω
|∇uε|

s−2∇uε ·∇vdx+

∫

Ω
|uε|

s−2uεvdx

)

= 〈f, v〉 ∀v ∈ W 1,s
0 (Ω)

and

N < r ≤ p(uε(x)) ≤ s < ∞ ∀ε > 0, for a.e. x ∈ Ω.

Next, we choose v = uε as a test function in (3.19) to obtain

∫

Ω

(

|∇uε|
p(uε) + |uε|

p(uε)
)

dx+ ε (‖∇uε||
s
s + ‖uε||

s
s) = 〈f, uε〉. (3.20)

From (2.7), we deduce that

‖u‖q(·) ≤ (ρq(·)(u) + 1)
1

q
− =

(
∫

Ω
|∇u|q(x)dx+ 1

)
1

q
−

.

By using the Hölder inequality, we get

∫

Ω
|∇uε|

rdx ≤ C‖|∇uε|
r‖ p(uε)

r

≤ C

(
∫

Ω
|∇uε|

p(uε)dx+ 1

)
1

( p(uε)
r )

− (3.21)

≤ C

(
∫

Ω
|∇uε|

p(uε)dx+ 1

)

,

where C = C(r, s,Ω). Therefore

〈f, uε〉 ≤ ‖f‖−1,r′||∇uε||r ≤ C‖f‖−1,r′

(
∫

Ω
|∇uε|

p(uε)dx+ 1

)
1
r

. (3.22)

From (3.20), (3.22) and by using Young’s inequality, we obtain

∫

Ω

(

|∇uε|
p(uε) + |uε|

p(uε)
)

dx+ ε (‖∇uε||
s
s + ‖uε||

s
s) ≤ C. (3.23)

Using (3.21) and (3.22), we can deduce the estimate

||uε||1,r ≤ C, (3.24)
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where C is a positive constant without ε-dependence.

Now we consider a sequence {εn} of positive real numbers. For every n ∈ N, let uεn be the solution

to the problem (3.4) associated to εn. Since W 1,r
0 (Ω) ↪→ L2(Ω) compactly, then after passing to a

subsequence if needed, for some u ∈ W 1,r
0 (Ω) we have

uεn ⇀ u in W 1,r
0 (Ω), as n → ∞ (3.25)

∇uεn ⇀ ∇u in Lr(Ω)N , as n → ∞ (3.26)

uεn → u in L2(Ω), as n → ∞

uεn → u a.e. in Ω, as n → ∞. (3.27)

The constraints on the exponent range in (3.2) imply that u is Hölder-continuous, then from the

condition (3.3), the same conclusion holds for p(u). From (3.27), we deduce that

p(uεn) → p(u) a.e. in Ω, as n → ∞. (3.28)

Clearly, the following chain of inequalities is satisfied

N < r ≤ p(uεn) ≤ s < ∞ ∀n ∈ N, for a.e. x ∈ Ω. (3.29)

Using (3.23) written for uεn , together with (3.26), (3.28) and (3.29), we conclude that (by Lemma

2.3)

u ∈ W 1,p(u)
0 (Ω). (3.30)

From the theory of monotone operators, we have

∫

Ω

(

|∇uεn |
p(uεn )−2∇uεn + εn|∇uεn |

s−2∇uεn

)

·∇(uεn − v)dx+
∫

Ω

(

|uεn |
p(uεn )−2uεn + εn|uεn |

s−2u
)

(uεn − v)dx−

(

∫

Ω

(

|∇v|p(uεn )−2∇v + εn|∇v|s−2∇v
)

·∇(uεn − v)dx+
∫

Ω

(

|v|p(uεn )−2v + εn|v|
s−2v

)

(uεn − v)dx
)

≥ 0 ∀v ∈ W 1,s
0 (Ω). (3.31)

By replacing uε with uεn and choosing uεn − v as a test function in (3.19), we can reduce (3.31)
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to the form

〈f, uεn − v〉 −
(

∫

Ω

(

|∇v|p(uεn )−2∇v + ε|∇v|s−2∇v
)

·∇(uεn − v)dx+
∫

Ω

(

|v|p(uεn )−2v + ε|v|s−2v
)

(uεn − v)dx
)

≥ 0, (3.32)

for all v ∈ C∞
0 (Ω). By using (3.28) and the Lebesgue theorem, we have

|∇v|p(uεn )−2∇v → |∇v|p(u)−2∇v in Lr′(Ω)d, as n → ∞ (3.33)

and

|v|p(uεn )−2v → |v|p(u)−2v in Lr(Ω), as n → ∞. (3.34)

We take the limit as n goes to infinity in (3.32), and use (3.24), (3.25), (3.33) and (3.34), therefore

〈f, u− v〉 −

(
∫

Ω
|∇v|p(u)−2∇v ·∇(u− v)dx +

∫

Ω
|v|p(u)−2v(u − v)dx

)

≥ 0 ∀v ∈ C∞
0 (Ω).

(3.35)

From the assumptions (3.2) and (3.3), the functions p(u) is Hölder-continuous which implies that

C∞
0 (Ω) is dense in W 1,p(u)

0 (Ω). Thus, (3.34) holds true also for all v ∈ W 1,p(u)
0 (Ω).

So we can take v = u± δϕ, where ϕ ∈ W 1,p(u)
0 (Ω) and δ > 0, as a test function in (3.34) we get

±

(

〈f,ϕ〉 −
(

∫

Ω
|∇u|p(u)−2∇u ·∇ϕ dx+

∫

Ω
|u|p(u)−2uϕ dx

)

)

≥ 0. (3.36)

This implies that,

∫

Ω
|∇u|p(u)−2∇u ·∇ϕ dx+

∫

Ω
|u|p(u)−2uϕ dx = 〈f,ϕ〉 ∀ϕ ∈ W 1,p(u)

0 (Ω). (3.37)

Finally, we arrived to a solution for our local problem (1.1) (See Definition 3.1).

4 Nonlocal problems

Along with problem (1.1), we consider in this section its nonlocal version. Firstly, we assume that

the function p satisfies the conditions in (1.2). We denote by b a mapping from W 1,r
0 (Ω) into R

such that

b is continuous, b is bounded. (4.1)
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The next theorem needs the following revised definition of a weak solution.

Definition 4.1. A function u is said to be a weak solution to the problem (1.3) if











u ∈ W 1,p(b(u))
0 (Ω) ,

∫

Ω
|∇u|p(b(u))−2∇u ·∇v dx+

∫

Ω
|u|p(b(u))−2uv dx = 〈f, v〉 ∀v ∈ W 1,p(b(u))

0 (Ω),
(4.2)

where 〈·, ·〉 denotes the duality pairing between
(

W 1,p(b(u))
0 (Ω)

)′
and W 1,p(b(u))

0 (Ω).

Since p(b(u)) is here a real number and not a function, thus the Sobolev spaces involved are the

classical ones.

Theorem 4.2. Let Ω ⊂ RN , N ≥ 2, be a bounded domain and assume that (1.2) and (4.1) hold

together with

f ∈ W−1,q′(Ω) for q < r.

Then there exists at least one weak solution to the problem (1.3) in the sense of Definition 4.1.

To prove Theorem 4.2, we need the following Lemma.

Lemma 4.3. For n ∈ N, let un be the solution to the problem











un ∈ W 1,pn

0 (Ω),
∫

Ω
|∇un|

pn−2∇un ·∇v dx+

∫

Ω
|un|

pn−2unv dx = 〈f, v〉 ∀v ∈ W 1,pn

0 (Ω),
(4.3)

where 〈·, ·〉 denotes here the duality pairing between
(

W 1,pn

0 (Ω)
)′

and W 1,pn

0 (Ω).

Assume that

pn → p, as n → ∞, where p ∈ (1, ∞), (4.4)

f ∈ W−1,q′(Ω) for some q < p. (4.5)

Then

un → u in W 1,q
0 (Ω), as n → ∞, (4.6)

where u is the solution to the problem











u ∈ W 1,p
0 (Ω),

∫

Ω
|∇u|p−2∇u ·∇v dx +

∫

Ω
|u|p−2uv dx = 〈f, v〉 ∀v ∈ W 1,p

0 (Ω).
(4.7)

Proof of Lemma 4.3. The proof of Lemma 4.3 is divided into two steps.
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Step 1: Weak convergence

In view of pn → p, as n → ∞, and q < p, we may suppose that

p+ 1 > pn > q ∀n ∈ N. (4.8)

We choose v = un as a test function in (4.3) to obtain

∫

Ω
|∇un|

pndx+

∫

Ω
|un|

pndx ≤ ‖f‖−1,q′‖∇un‖q. (4.9)

From (4.8) and Hölder’s inequality, we deduce that

‖∇un‖q ≤ C‖∇un‖pn
≤ C‖un‖1,pn

, (4.10)

where C = C(p, q,Ω) is a positive constant. Therefore

‖un‖1,pn
≤ C, (4.11)

where C = C(p, q,Ω, f) is a positive constant. Combining (4.10) with (4.11), we get

‖∇un‖q ≤ C, (4.12)

where C is a positive constant without n-dependence. Passing to a subsequence if necessary still

denoted by un, for a certain u ∈ W 1,q
0 (Ω) we get

∇un ⇀ ∇u in Lq(Ω), as n → ∞. (4.13)

On this basis, the convergences in (4.4), (4.8), (4.11) and (4.13) lead to the conclusion that (Lemma

2.3)

lim inf
n→∞

∫

Ω
|∇un|

pndx ≥

∫

Ω
|∇u|pdx,

and hence

u ∈ W 1,p
0 (Ω). (4.14)

We observe that, the second line in (4.3) is equivalent to

∫

Ω
|∇un|

pn−2∇un · ∇(v − un)dx +

∫

Ω
|un|

pn−2un(v − un)dx ≥ 〈f, v − un〉 ∀v ∈ W 1,pn

0 (Ω),
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using the Minty lemma, we have

∫

Ω
|∇v|pn−2∇v · ∇(v − un)dx +

∫

Ω
|v|pn−2v(v − un)dx ≥ 〈f, v − un〉 ∀v ∈ W 1,pn

0 (Ω). (4.15)

We choose v ∈ C∞
0 (Ω), then we can take the limit as n goes to infinity in (4.15), and use (4.4) and

(4.13), hence we obtain

∫

Ω
|∇v|p−2∇v ·∇(v − u)dx+

∫

Ω
|v|p−2v(v − u)dx ≥ 〈f, v − u〉 ∀v ∈ C∞

0 (Ω). (4.16)

Since C∞
0 (Ω) dense in W 1,p

0 (Ω), we have (4.16) also holds for all v ∈ W 1,p
0 (Ω). Now, choosing

v = u± δϕ, where ϕ ∈ W 1,p
0 (Ω) and δ > 0, by passing to the limit as δ goes to zero, we get

∫

Ω
|∇u|p−2∇u ·∇ϕdx +

∫

Ω
|u|p−2uϕdx = 〈f,ϕ〉 ∀ϕ ∈ W 1,p

0 (Ω),

Finally, it is sufficient to recall that u ∈ W 1,p
0 (Ω) to conclude that we arrived to a solution for the

problem (4.7).

Step 2: Strong convergence

In this step we will show that the convergence (4.13) is strong. Firstly, we take v = un in (4.3)

and using (4.13) to pass to the limit, we get

∫

Ω
|∇un|

pndx+

∫

Ω
|un|

pndx = 〈f, v〉 →

∫

Ω
|∇u|pdx+

∫

Ω
|u|pdx = 〈f, v〉 as n → ∞. (4.17)

Firstly, we consider the case when

pn ≥ p ∀n ∈ N.

By using Hölder’s inequality, we have

∫

Ω
|∇un|

pdx ≤

(
∫

Ω
|∇un|

pndx

)

p
pn

|Ω|1−
p

pn .

Thus by (4.17), we deduce that

lim sup
n→∞

∫

Ω
|∇un|

pdx ≤

∫

Ω
|∇u|pdx ≤ lim inf

n→∞

∫

Ω
|∇un|

pdx,

which implies (from the fact that ‖∇un‖p → ‖∇u‖p, as n → ∞)

un → u strongly in W 1,p
0 (Ω), as n → ∞. (4.18)
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From the fact that W 1,p
0 (Ω) ⊂ W 1,q

0 (Ω), we conclude that

un → u in W 1,q
0 (Ω), as n → ∞.

Now, we consider the case when

q < pn < p ∀n ∈ N, (4.19)

we set

An :=

∫

Ω

(

|∇un|
pn−2∇un − |∇u|pn−2∇u

)

· (∇un −∇u)dx+
∫

Ω

(

|un|
pn−2un − |u|pn−2u

)

· (un − u)dx. (4.20)

By the theory of monotone operators, we have An ≥ 0, (4.3) imply that (4.20) reduces to the form

An = 〈f, un − u〉 −

∫

Ω
|∇u|pn−2∇u ·∇(un − u)dx−

∫

Ω
|u|pn−2u(un − u)dx.

Due to (4.5) and the convergence in (4.13), we have

〈f, un − u〉 → 0, as n → ∞. (4.21)

From the fact that u ∈ W 1,p
0 (Ω) we get

||∇u|pn−2∇u| ≤ max{1, |∇u|p−1} ∈ Lp′

(Ω), (4.22)

||u|pn−2u| ≤ max{1, |u|p−1} ∈ Lp(Ω). (4.23)

On this basis, we can conclude that

An → 0, as n → ∞. (4.24)

We first consider the case when pn ≥ 2. By applying the Lemma 2.4 in (4.20), we get

An ≥
1

2pn−1

(
∫

Ω
|∇(un − u)|pndx+

∫

Ω
|un − u|pndx

)

. (4.25)

Since pn > q, we can apply Hölder’s inequality to obtain

∫

Ω
|∇(un − u)|qdx+

∫

Ω
|un − u|qdx ≤

[

(
∫

Ω
|∇(un − u)|pndx

)

q
pn

+

(
∫

Ω
|un − u|pndx

)

q
pn

]

|Ω|1−
q

pn .
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Hence, from (4.24) and (4.25) we get

∫

Ω
|∇(un − u)|qdx+

∫

Ω
|un − u|qdx −→ 0, as n → ∞.

Therefore,

un → u in W 1,q
0 (Ω), as n → ∞.

Now, we assume that pn < 2 :

By using the Hölder’s inequality we obtain

∫

Ω
|∇ (un − u)|pn dx +

∫

Ω
|un − u|pn dx

=

∫

Ω
|∇ (un − u)|pn (|∇un|+ |∇u|)

(pn−2)pn
2 (|∇un|+ |∇u|)

(2−pn)pn
2 dx

+

∫

Ω
|un − u|pn (|un|+ |u|)

(pn−2)pn
2 (|un|+ |u|)

(2−pn)pn
2 dx

≤

[
∫

Ω
|∇ (un − u)|2 (|∇un|+ |∇u|)pn−2 dx

]

pn
2
[
∫

Ω
(|∇un|+ |∇u|)pn dx

]1− pn
2

+

[
∫

Ω
|un − u|2 (|un|+ |u|)pn−2 dx

]

pn
2
[
∫

Ω
(|un|+ |u|)pn dx

]1− pn
2

.

(4.26)

From Lemma 2.4, one could deduce that

An ≥ C (pn)

(
∫

Ω
|∇ (un − u)|2 (|∇un|+ |∇u|)pn−2 dx+

∫

Ω
|un − u|2 (|un|+ |u|)pn−2 dx

)

. (4.27)

Since ‖un‖1,pn
≤ C, then from (4.24), (4.26) and (4.27) we get

∫

Ω
|∇ (un − u)|pn dx+

∫

Ω
|un − u|pn dx → 0, as n → ∞.

Therefore,

un → u in W 1,q
0 (Ω), as n → ∞.

Proof of Theorem 4.2. For any s > q we have, f ∈ (W 1,s
0 (Ω))′ ⊂ (W 1,q

0 (Ω))
′

. Therefore, for each

λ ∈ R, the following p(λ)-Laplacian problem admits a unique solution uλ,







u ∈ W 1,p(λ)
0 (Ω) ,

∫

Ω
|∇u|p(λ)−2∇u ·∇v dx+

∫

Ω
|u|p(λ)−2uv dx = 〈f, v〉 ∀v ∈ W 1,p(λ)

0 (Ω) .
(4.28)
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The choice of test function uλ in (4.28) implies that

∫

Ω
|∇uλ|

p(λ)dx+

∫

Ω
|uλ|

p(λ)dx ≤ ‖f‖−1,r′‖∇uλ‖r. (4.29)

Now using the Hölder’s inequality, one obtains

‖uλ‖1,r ≤ ‖uλ‖1,p(λ)|Ω|
1
r
− 1

p(λ) . (4.30)

From (4.29), it follows that

‖uλ‖
p(λ)−1
1,p(λ) ≤ ‖f‖−1,r′|Ω|

1
r
− 1

p(λ) . (4.31)

Combining (4.30) and (4.31), and using (1.2) to get

‖uλ‖1,r ≤ ‖f‖
1

p(λ)−1

−1,r′ |z|(
1
r
− 1

p(λ) )
p(λ)

p(λ)−1 ≤ max
p∈[r,s]

‖f‖
1

p−1

1,r′ |Ω|
( 1

r
− 1

p )
p

p−1 . (4.32)

Therefore

‖uλ‖1,r ≤ C. (4.33)

The inequality (4.33) and the fact that b is a bounded mapping, imply that there exists K ∈ R

such that

b(uλ) ∈ [−K, K] ∀λ ∈ R.

Next, we introduce the self-map H : [−K, K] → [−K, K] defined by H(λ) = b(uλ). We know

that the continuity of H is required in obtaining a fixed point of H .

Assume that λn → λ as n → ∞, because p is continuous, p(λn) → p(λ). Next, we apply Lemma

4.3, so that considering p(λn) instead of pn, we deduce that

uλn
−→ uλ in W 1,r

0 (Ω), as n → ∞.

We use the fact that b is continuous to deduce that b(uλ) → b(uλ), as n goes to infinity, which

implies that the map H is continuous. This establishes the existence of the fixed point λ0 and a

weak solution uλ0 for the problem (4.2).
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1 The Problem

Dhage [5, 6, 7] and Dhage et al. [10] introduced the class of what they called pulling functions as

follows. For J∞ = [t0,∞) with t0 ∈ R+ = [0,∞) fixed, a continuous function g : J∞ → (0,∞)

is a pulling function if lim
t→∞

g(t) = ∞. We will denote the class of all pulling functions on

J∞ by CRB(J∞). We wish to point out that if g is a pulling function, then its reciprocal g =

g(t) = 1
g(t) is continuous, bounded, and satisfies lim

t→∞
g(t) = 0. Using pulling functions, Dhage

[6, 7, 8] proved some attractivity and stability results for nonlinear Caputo fractional differential

equations. Instead, in this paper we consider fractional differential equations with a Riemann-

Louville fractional derivative and use fixed point techniques, rather than the measure theoretic

approach used in Dhage et al. [9].

Here we will study the nonlinear fractional differential equation

RLDq
t0

[

a(t)x(t)
]

= f(t, x(t)) a.e. t ∈ J∞, (1.1)

together with the fractional integral initial condition (IC)

lim
t→t+0

I1−q

t+0

[

a(t)x(t)
]

= b0, (1.2)

where a ∈ CRB(J∞) ∩ L1(J∞,R) is a pulling function, RLDq is a Riemann-Liouville fractional

derivative of order q with 0 < q < 1, and f : J∞ ×R → R is a Caratheódory function. Our goal is

to characterize the attractivity and stability properties of the solutions of (1.1)–(1.2).

We begin with the following notions from the fractional calculus that are needed in our discussion;

these can be found, for example, in Agarwal et al. [1], Podlubny [13] or Kilbas et al. [12]. Define

the function space

C(J∞,R) =
{

x : J∞ → R | x is continuous
}

,

and let L1(J∞,R) denote the class of Lebesgue integrable functions. In what follows, Γ is the usual

Euler’s gamma function,

Γ(q) =

∫ ∞

0
e−ttq−1 dt,

and [q] is the greatest integer less than or equal to q.

Definition 1.1. Let J∞ = [t0,∞) for some t0 ≥ 0 in R. For any x ∈ L1(J∞,R), the Riemann-

Liouville fractional integral of order q > 0 is defined as

Iqt0x(t) =
1

Γ(q)

∫ t

t0

x(s)

(t− s)1−q
ds, t ∈ J∞,

provided the right hand side is pointwise defined on (t0,∞).
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Definition 1.2. If x ∈ L1(J∞,R), the Riemann-Liouville fractional derivative RLDq
t0x of x of

order q is defined as

RLDq
t0
x(t) =

1

Γ(n− q)

(

d

dt

)n ∫ t

t0

(t− s)n−q−1x(s) ds, n− 1 < q < n, n = [q] + 1,

provided the right hand side exists.

Note that if a, x ∈ L1(J∞,R), then RLDq
t0 [a(t)x(t)] exists on J∞.

Definition 1.3. A function x is called a classical solution of IVP (1.1)–(1.2) if

(i) x is continuous on J∞, and

(ii) x satisfies (1.1) and (1.2).

The fractional differential equation (1.1) is a scalar multiplicative perturbation of the second type

obtained by multiplying the unknown function under the Riemann-Liouville derivative by a scalar

function. This and other types of perturbations of a differential equation are described in Dhage

[3].

2 Properties of solutions

We set our problem (1.1) in the Banach space BC(J∞,R) of bounded continuous real-valued

functions defined on J∞ with the usual supremum norm

‖x‖ = sup
t∈J∞

|x(t)|.

We take T : BC(J∞,R) → BC(J∞,R) to be a continuous operator and we study the operator

equation

T x(t) = x(t), t ∈ J∞. (2.1)

Next, we describe various properties of solutions of the operator equation (2.1) in the space

BC(J∞,R).

First, we define the concepts of global attractivity and stability of the solutions as given in Banas

and Dhage [2].

Definition 2.1. A solution x = x(t) of (2.1) is called globally attractive if

lim
t→∞

(x(t) − y(t)) = 0 (2.2)

for each solution y = y(t) of (2.1) in BC(J∞,R).
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That is, solutions of (2.1) are globally attractive if for arbitrary solutions x(t) and y(t) of (2.1) in

BC(J∞,R), we have that condition (2.2) is satisfied. If (2.2) is satisfied uniformly in BC(J∞,R)

in the sense that for every ε > 0 there exists T > 0 such that, for t ≥ T ,

|x(t)− y(t)| ≤ ε (2.3)

for all solutions x, y ∈ BC(J∞,R) of (2.1), then solutions of (2.1) are said to be uniformly globally

attractive on J∞.

Definition 2.2 (Banas and Dhage [2]). A solution x ∈ BC(J∞,R) of equation (2.1) is called

asymptotic if lim
t→∞

x(t) = 0. If the limit is uniform with respect to the solution set of the operator

equation (2.1) in BC(J∞,R) (i.e., for each ε > 0 there exists T > t0 ≥ 0 such that |x(t)| < ε for

all solutions x of (2.1) in BC(J∞,R) and for all t ≥ T ), we say that solutions of equation (2.1)

are uniformly asymptotic on J∞.

Definition 2.3. If all the solutions of the operator equation (2.1) are asymptotic and uniformly

globally attractive, we will say that they are uniformly asymptotically attractive or stable on J∞.

In order to state the required fixed point techniques to be used in our proofs, we introduce the

following concepts.

Definition 2.4 (Dhage [4]). A nondecreasing upper semi-continuous function ψ : R+ → R+ is

called a D-function if ψ(0) = 0. The class of all D-functions on R+ is denoted by D.

Definition 2.5 (Dhage [4]). Let X be a Banach space with norm ‖ · ‖. An operator T : X → X

is called D-Lipschitz if there exists a D-function ψT ∈ D such that

‖T x− T y‖ ≤ ψT

(

‖x− y‖
)

(2.4)

for all x, y ∈ X.

If ψT (r) = kr, k > 0, T is called a Lipschitz operator with Lipschitz constant k. Also, if 0 ≤ k < 1,

then T is called a contraction on X and k is referred to as the contraction constant. In addition, if

ψT (r) < r for r > 0, then T is called a nonlinear D-contraction on X , and the set of all nonlinear

D-contractions will be denoted by DN .

We say that an operator T : X → X is compact if T (X) is a compact subset of X . The operator

T is called totally bounded if for any bounded subset S of X , T (S) is a totally bounded subset of

X . Moreover, T is called completely continuous if T is continuous and totally bounded on X . We

note that every compact operator is totally bounded, but the converse may not be true; the two

notions are equivalent on bounded subsets of X . Additional details on different types of nonlinear

contractions and compact and completely continuous operators can be found, for example, in

Granas and Dugundji [11].
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In an effort to prove our main existence results, we need the following fixed point theorems.

Theorem 2.6 (Schauder [11]). Let S be a closed, convex, and bounded subset of a Banach space

X, and let T : S → S be a completely continuous operator. Then the operator equation T x = x

has a solution.

Theorem 2.7 (Dhage [3]). Let X be a Banach space and let T : X → X be a nonlinear D-

contraction. Then the operator equation T x = x has a unique solution.

3 Existence, attractivity, and stability of solutions

Definition 3.1. A function β : J∞ × R → R is called Carathéodory if

(i) the map t *→ β(t, x) is measurable for each x ∈ R, and

(ii) the map x *→ β(t, x) is continuous for each t ∈ J∞.

The following lemma is often used in the study of nonlinear differential equations.

Lemma 3.2 (Carathéodory). Let β : J∞×R → R be a Carathéodory function. Then the function

t → β(t, x(t)) is measurable for each x ∈ C(J∞,R).

We will make use of the following conditions in the remainder of our paper.

(H1) The function f is bounded on J∞ × R with bound Mf .

(H2) The function f is Carathédory on J∞ × R.

(H3) There exists a D-function ψf ∈ D such that

|f(t, x)− f(t, y)| ≤ ψf (|x − y|)

for all x, y ∈ R and t ∈ J∞.

The following lemma will play an important role in obtaining our existence results.

Lemma 3.3. For any function h ∈ L1(J∞,R), the function x ∈ BC(J∞,R) is a solution of the

fractional differential equation

RLDq
t0

[

a(t)x(t)
]

= h(t) a.e. t ∈ J∞, (3.1)

satisfying the initial condition

lim
t→t+0

I1−q

t+0

[

a(t)x(t)
]

= b0, (3.2)
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if and only if x satisfies the nonlinear fractional integral equation

x(t) =
b0
Γ(q)

(t− t0)q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1h(s) ds (3.3)

for all t ∈ J∞.

Proof. Applying the Riemann-Liouville fractional integral operator Iqt0 to (3.1), we obtain

a(t)x(t) −
I1−q
t0 [a(t)x(t)]

Γ(q)

∣

∣

∣

∣

∣

t=t0

(t− t0)
q−1 = Iqt0h(t) =

1

Γ(q)

∫ t

t0

(t− s)q−1h(s) ds

for all t ∈ J∞, or

x(t) =
b0

Γ(q)

(t− t0)q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1h(s) ds.

That is, if x(t) is a solution of (3.1)–(3.2), then x(t) is a solution of (3.3).

Now let x(t) be a solution of (3.3). Then,

a(t)x(t) =
b0

Γ(q)
(t− t0)

q−1 +
1

Γ(q)

∫ t

t0

(t− s)q−1h(s) ds. (3.4)

Applying the Riemann-Liouville fractional derivative operator to this expression gives

RLDq
t0

[

a(t)x(t)
]

= RLDq
t0

[

b0
Γ(q)

(t− t0)
q−1

]

+ h(t)

since RLDq
t0
Iqt0h(t) = h(t). Also, since RLDq

t0
(t− t0)q−1 = 0, x(t) satisfies equation (3.1).

From (3.4),

I1−q
t0 [a(t)x(t)

]

= I1−q
t0

[

b0
Γ(q)

(t− t0)
q−1

]

+ I1−q
t0 (Iqt0h(t)).

Now I1−q
t0 (Iqt0h) = It0h =

∫ t

t0

h(s)ds and lim
t→t+0

∫ t

t0

h(s)ds = 0. Also, by [1, Proposition 1],

I1−q
t0

[

b0
Γ(q)

(t− t0)
q−1

]

=
b0

Γ(q)
I1−q
t0 (t− t0)

q−1

=
b0

Γ(q)

Γ(q)

Γ(q + 1− q)
(t− t0)

q+1−q−1 =
b0

Γ(q)

Γ(q)

Γ(1)
= b0.

Hence,

lim
t→t+0

I1−q
t0

[a(t)x(t)
]

= b0,

and so (3.2) is satisfied. This proves the lemma. !
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We need to introduce the following class of functions. Let

A =

{

f ∈ C([t0,∞), (0,∞)) : lim
t→t0

(t− t0)q−1

f(t)
< ∞ and lim

t→∞

tq

f(t)
= 0

}

,

and we assume in what follows that the function a in equation (1.1) belongs to the class A ∩

CRB(J∞).

Remark 3.4. If a ∈ CRB(J∞), then a ∈ BC(J∞,R+) and so the number ‖a‖ = sup
t∈J∞

a(t) exists.

Also, the function w : R+ → R+ defined by w(t) = a(t) tq is continuous on J∞ and satisfies the

relation lim
t→∞

w(t) = 0, so the number

W = sup
t≥t0

w(t) (3.5)

exists.

Our main existence and global attractivity result is contained in the following theorem.

Theorem 3.5. Assume that conditions (H1)–(H2) hold. Then (1.1) has a solution defined on J∞

and the solutions of (1.1) are uniformly globally asymptotically attractive.

Proof. Since a(t) ∈ A ∩ CRB(J∞), there exists d0 > 0 such that

∣

∣

∣

∣

(t− t0)q−1

a(t)

∣

∣

∣

∣

≤ d0 on J∞. Set

X = BC(J∞,R) and define a closed ball Br(0) in X centered at the origin 0 with radius r given

by

r =
|b0|d0
Γ(q)

+
Mf W

Γ(q + 1)
,

where Mf is from (H1) and W is given in (3.5). By an application of Lemma 3.3, (1.1) is equivalent

to the hybrid fractional integral equation

x(t) =
b0

Γ(q)

(t− t0)q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds (3.6)

for all t ∈ J∞. Define the operator T on Br(0) by

T x(t) =
b0

Γ(q)

(t− t0)q−1

a(t)
+

1

a(t)Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds, t ∈ J∞. (3.7)

Then (3.6) is transformed into the operator equation

T x(t) = x(t), t ∈ J∞. (3.8)

We will show that the operator T satisfies all the conditions of Theorem 2.6 with S = Br(0) ⊂

BC(J∞,R). Now from the continuity of the integral, it follows that the function t → T x(t) is
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continuous on J∞ for each x ∈ Br(0). Furthermore, by condition (H1),

|T x(t)| ≤
b0d0
Γ(q)

+
Mf

a(t)Γ(q)

∫ t

t0

(t− s)q−1 ds ≤
b0d0
Γ(q)

+
Mf

Γ(q)
|a(t)|

∫ t

t0

(t− s)q−1

≤
b0d0
Γ(q)

+
Mf

Γ(q + 1)
|a(t)|tq ≤

b0d0
Γ(q)

+
Mf

Γ(q + 1)
W

for all t ∈ J∞ and all x ∈ Br(0). Taking the supremum over t,

‖T x‖ ≤
b0d0

Γ(q)
+

MfW

Γ(q + 1)
= r

for all x ∈ Br(0). As a result, T maps Br(0) into itself.

To show that T is a completely continuous operator on Br(0), we first show that it is continuous

there. To do this, fix ε > 0 and let {xn} be a sequence in Br(0) converging to x ∈ Br(0). Then,

|(T xn)(t)− (T x)(t)| ≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
∣

∣f(s, xn(s))− f(s, x(s))
∣

∣ ds

≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
[

|f(s, xn(s))|+ |f(s, x(s))|
]

ds

≤
2Mfa(t)

Γ(q)

∫ t

t0

(t− s)q−1 ds ≤
2Mf

Γ(q + 1)
w(t). (3.9)

Since a ∈ A, there exists T > 0 such that w(t) ≤
εΓ(q + 1)

2Mf
for t ≥ T . Thus, for t ≥ T , from (3.9),

we see that

|(T xn)(t)− (T x)(t)| ≤ ε as n → ∞.

Let t ∈ [t0, T ]. Then, by the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

T xn(t) = lim
n→∞

[

b0
Γ(q)

(t− t0)q−1

a(t)
+

a(t)

Γ(q)

∫ t

t0

(t− s)q−1f(s, xn(s)) ds

]

=
b0

Γ(q)

(t− t0)q−1

a(t)
+

a(t)

Γ(q)

∫ t

t0

(t− s)q−1
[

lim
n→∞

f(s, xn(s))
]

ds

= T x(t) (3.10)

for all t ∈ [t0, T ]. Moreover, it can be shown as below that {T xn} is an equicontinuous sequence

of functions in X . Now, using arguments similar to those given in Granas et al. [11], it follows

that T is a continuous operator on Br(0) into itself.

Next, we show that T is a compact operator on Br(0). To accomplish this, it suffices to show

that every sequence {T xn} in T (Br(0)) has a convergent subsequence. Similar to what we did

above, we can show that ‖T xn‖ ≤ r for all n ∈ N. This shows that {T xn} is a uniformly bounded

sequence in T (Br(0)).
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To show that {T xn} is also an equicontinuous sequence in T (Br(0)), let ε > 0 be given. Since

lim
t→∞

w(t) = 0, there exists T1 > t0 ≥ 0 such that

w(t) <
εΓ(q + 1)

9Mf
(3.11)

for all t ≥ T1.

Let t, τ ∈ J∞ be arbitrary. If t, τ ∈ [t0, T1], then we have

|T xn(t)− T xn(τ)| ≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)q−1

a(t)
−

(τ − t0)q−1

a(τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

a(t)

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds−
a(τ)

Γ(q)

∫ τ

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)q−1

a(t)
−

(τ − t0)q−1

a(τ)

∣

∣

∣

∣

+

∣

∣

∣

∣

a(t)

Γ(q)

∫ t

t0

(t− s)q−1f(s, x(s)) ds−
a(τ)

Γ(q)

∫ t

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

a(τ)

Γ(q)

∫ t

t0

(τ − s)q−1f(s, x(s)) ds −
a(τ)

Γ(q)

∫ τ

t0

(τ − s)q−1f(s, x(s)) ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)q−1

a(t)
−

(τ − t0)q−1

a(τ)

∣

∣

∣

∣

+
Mf

Γ(q)

∫ t

t0

∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ ds+
Mf

Γ(q)

∣

∣

∣

∣

∫ t

τ

∣

∣

∣
a(τ)(τ − s)q−1

∣

∣

∣
ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)q−1

a(t)
−

(τ − t0)q−1

a(τ)

∣

∣

∣

∣

+
Mf

Γ(q)

∫ T

t0

∣

∣a(t)(t− s)q−1 − a(τ)(τ − s)q−1
∣

∣ ds+
Mf ‖a‖

Γ(q + 1)
|(τ − t)q| . (3.12)

Since the function t *→ a(t)(t− s)q−1 is continuous on the compact interval [t0, T1], it is uniformly

continuous there. Therefore, for the above ε there exist δ1 > 0 and δ2 > 0, depending only on ε,

such that

|t− τ | < δ1 implies
∣

∣a(t)(t − s)q−1 − a(τ)(τ − s)q−1
∣

∣ < min

{

εΓ(q)

9b0
,
εΓ(q)

9MfT1

}

,

and

|t− τ | < δ2 implies |(t− τ)q | <
εΓ(q + 1)

9Mf‖a‖
.

Let δ3 = min{δ1, δ2}. Then, if t, τ ∈ [t0, T1] with |t− τ | < δ3, from (3.12) we have

|T xn(t)− T xn(τ)| <
ε

3

for all n ∈ N.
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Now, if t, τ > T1, then there is a 0 < δ4 < δ3 such that if |t− τ | < δ4,

|T xn(t)− T xn(τ)| ≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)q−1

a(t)
−

(τ − t0)q−1

a(t)

∣

∣

∣

∣

+
a(t)

Γ(q)

∣

∣

∣

∣

∫ t

t0

(t− s)q−1f(s, xn(s)) ds

∣

∣

∣

∣

+
a(τ)

Γ(q)

∣

∣

∣

∣

∫ τ

t0

(τ − s)q−1f(s, xn(s)) ds

∣

∣

∣

∣

≤
b0

Γ(q)

∣

∣

∣

∣

(t− t0)q−1

a(t)
−

(τ − t0)q−1

a(t)

∣

∣

∣

∣

+
Mf

Γ(q + 1)

[

w(t) + w(τ)
]

<
ε

9
+

2ε

9
=
ε

3

for all n ∈ N. Similarly, if t, τ ∈ R+ with t < T1 < τ and |t− τ | < δ < δ4, then

|T xn(t)− T xn(τ)| ≤ |T xn(t)− T xn(T1)|+ |T xn(T1)− T xn(τ)| <
ε

3
+
ε

3
=

2ε

3

for all n ∈ N. As a result, |T xn(t) − T xn(τ)| < ε for all t, τ ∈ J∞ with |t − τ | < δ and for all

n ∈ N. This shows that {T xn} is an equicontinuous sequence in Br(0). An application of the

Arzelà-Ascoli theorem implies that {T xn} has a uniformly convergent subsequence on the compact

set Br(0).

Since T (Br(0)) is closed, {T xn} converges to a point in T (Br(0)), so T (Br(0)) is relatively

compact. Therefore, T is a continuous and compact operator on Br(0). An application of Theorem

2.6 shows that the operator equation T x = x, and hence (1.1), has a solution on J∞ belonging to

Br(0).

To prove the attractivity of solutions, let x, y ∈ Br(0) be any two solutions of (1.1) on J∞. Then,

|x(t)− y(t)| ≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
∣

∣f(s, x(s))− f(s, y(s))
∣

∣ ds

≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1
[

|f(s, x(s))|+ |f(s, y(s))|
]

ds ≤
2Mf

Γ(q + 1)
w(t)

for all t ∈ J∞. As in (3.11), for any ε > 0 there exists T1 > t0 such that

w(t) <
εΓ(q + 1)

2Mf

for t ≥ T1. Thus,

|x(t)− y(t)| < ε

for all t ≥ T . Hence, the solutions of (1.1) are uniformly globally attractive on J∞.

Finally, since a belongs to A, for any ε > 0, there exists T2 > T1 such that

∣

∣

∣

∣

b0
Γ(q)

(t− t0)q−1

a(t)

∣

∣

∣

∣

<
ε

2
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for t ≥ T2. Then for any solution x of (1.1) defined on J∞,

|x(t)| ≤

∣

∣

∣

∣

b0
Γ(q)

(t− t0)q−1

a(t)

∣

∣

∣

∣

+
a(t)

Γ(q)

∫ t

t0

(t− s)q−1|f(s, x(s))| ds ≤
ε

2
+

Mf

Γ(q + 1)
w(t) < ε

for all t ≥ T2, that is, solutions are uniformly globally asymptotically attractive and stable on J∞.

This completes the proof of the theorem. !

In our next theorem, we wish to show that the uniformly globally asymptotically attractive solution

of (1.1) obtained from Theorem 3.5 is unique.

Theorem 3.6. Assume that conditions (H1)–(H3) hold with

supt0≤t a(t) t
q

Γ(q)
ψf (r) < r, r > 0. (3.13)

Then (1.1) has a unique uniformly stable solution defined on J∞.

Proof. Set X = BC(J∞,R) and define the operator T : X → X by (3.7). We want to show that

T is a nonlinear D-contraction on X . Let x, y ∈ X ; then by (H3), we obtain

|T x(t) − T x(t)| ≤
a(t)

Γ(q)

∣

∣

∣

∣

∫ t

t0

(t− s)q−1
∣

∣f(s, x(s)) − f(s, y(s))
∣

∣ ds

∣

∣

∣

∣

≤
a(t)

Γ(q)

∣

∣

∣

∣

∫ t

t0

(t− s)q−1ψf

(

|x(s)− y(s)|
)

ds

∣

∣

∣

∣

≤
a(t)

Γ(q)

∫ t

t0

(t− s)q−1ψf

(

|x− y|
)

ds

≤
w(t)

Γ(q + 1)
ψf

(

|x− y|
)

≤
W

Γ(q + 1)
ψf

(

|x− y|
)

for all t ∈ J∞. Taking the supremum over t in the above inequality yields

‖T x− T y‖ ≤
W

Γ(q + 1)
ψf

(

|x− y|
)

for all x, y ∈ X , where
W

Γ(q)
ψf (r) < r for r > 0 in view of condition (3.13). This shows that T is

a nonlinear D-contraction on X . By Theorem 2.7, we obtain that the solution of (1.1) obtained in

Theorem 3.5 is unique. !

Example 1. Consider the initial value problem of fractional Riemann-Liouville type











RLDq
1

[

(tq + 1)etx(t)
]

=
ln(|x(t)| + 1)

x2(t) + 2
, t ∈ J∞ = [0,∞),

lim
t→0+

I1−q
0+

[

(tq + 1)etx(t)
]

= 1.
(3.14)
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Here we have t0 = 0, a(t) = (tq + 1)et, and f(t, x) =
ln(|x| + 1)

x2 + 2
for (t, x) ∈ [0,∞) × R. Clearly,

a(t) → ∞ as t → ∞ and (H1) holds with Mf = 1. It is easy to see that lim
t→0

tq−1

(tq + 1)et
= 0 and

lim
t→∞

tq

(tq + 1)et
= 0, so a ∈ A. Hence, by Theorem 3.5, (3.15) has a solution and the solutions are

uniformly globally asymptotically attractive and stable on [0,∞).

Example 2. Consider the problem











RLDq
1

[

(tq + 1)etx(t)
]

= f(t, x(t)), t ∈ J∞ = [0,∞),

lim
t→0+

I1−q
0+

[

(tq + 1)etx(t)
]

= 1,
(3.15)

where

f(t, x) =











ln(|x|+ 1), if − 5 ≤ x ≤ 5,

ln 6, otherwise.

Now, for −5 ≤ x ≤ 5,

|f(t, x)− f(t, y)| = | ln(|x| + 1)− ln(|y|+ 1)| = ln
|x|+ 1

|y|+ 1
= ln

1 + |y|+ |x|− |y|

|y|+ 1

= ln

(

1 +
|x|− |y|

|y|+ 1

)

≤ ln

(

1 +
|x− y|

|y|+ 1

)

≤ Ψf (|x− y|).

We can then take our D-function to be ψf (r) = ln(1 + r) and Mf = ln 6. Since

supt≥t0
a(t) tq

Γ(q)
ψf (r) ≤ ψf (r) = ln(1 + r) < r, r > 0, (3.16)

condition (3.13) is satisfied. Therefore by Theorems 3.5 and 3.6, solutions of (3.15) exist, are

unique, and are uniformly globally asymptotically attractive on R+.
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1 Introduction

A general approach to solving inhomogeneous linear ordinary differential equations in mathematics

is variation of parameters, often known as variation of constants. In this paper we introduce new

variation of parameters formula for systems of linear and nonlinear ordinary differential equations.

Once the inversion is done, we apply known results such as Gronwall’s inequality and the con-

traction mapping principle to obtain boundedness on all solutions and stability results on the zero

solution. It is common practice to linearize around the equilibrium solution for nonlinear systems

before drawing conclusions about the stability of the equilibrium solution for the original system

using the signs of the linear system’s eigenvalues. We demonstrate in our cases how this approach

does not work. Utilizing Liapunov functions and functionals to analyze solutions is an additional

well-liked technique. However, the method by which such Liapunov functions/functionals are cre-

ated remains a mystery, and the type of Liapunov functions/functionals determines whether or not

the conclusions reached are valid. In general, obtaining a variation of parameters formula relies

on heuristics that require guessing and are not applicable to all inhomogeneous linear differential

equations, it is typically possible to find solutions to first-order inhomogeneous linear differential

equations using integrating factors or undetermined coefficients with a great deal less effort.

Hence, in this research our main intention is to be able to write totally nonlinear systems of the

form

x′ = f(t, x(t)),

into an integral system of equations, from which we obtain results concerning the behavior of

solutions using fixed point theory. The absence of a linear term in x′ = f(t, x(t)) is the sole

cause for not being able to invert the system and obtain a variation of parameters formula for the

solutions. For such systems, usually researchers borrow a linear term for the sake of inversion, and

as a result, the resulting integral equation may not satisfy a contraction property.

In [18] the first author used Lyapunov functionals and studied the exponential stability of the zero

solution of finite delay Volterra Integro-differential equation

x′(t) = Px(t) +

∫ t

t−τ

C(t, s)g(x(s)) ds. (1.1)

Recently, in [5, 6], Burton used the notion of fixed point theory to alleviate some of the difficulties

that arise from the use of Liapunov functionals and obtained results concerning the stability and

asymptotic stability of the zero solution of (1.1) when it is scalar. We remark that the results of

[5, 6, 18] were made possible due to the existence of the linear term Px.

To ease the reader into the main parts of this research, we begin with by considering the scalar
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differential equation

x′(t) = ax(t), x(0) = x0 (1.2)

with the known solution

x(t) = x0e
at.

We notice that if

a < 0, then x(t) = x0e
at → 0, as t → ∞.

To further introduce our topic, we assume a : R → R is continuous and consider

x′(t) = a(t)x(t), x(0) = x0, (1.3)

which has the solution

x(t) = x0e
∫

t

0 a(s)ds → 0, as t → ∞

provided that
∫ t

0
a(s) ds → −∞. (1.4)

Condition (1.4) implies that the function a(t) can be positive or oscillates for short time. Now

assume the existence of a continuous function

v : [0,∞) → R.

Multiply both sides of (1.2) by

e
∫

t

0 v(s) ds,

and then integrate from 0 to any t ∈ [0, T ). That is

∫ t

0
e
∫

u

0 v(s) ds x′(u) du =

∫ t

0
ax(u)e

∫
u

0 v(s) ds du.

Perform an integration by parts on the left side and simplify to get

x(t) = x0e
−

∫
t

0 v(s)ds +

∫ t

0
x(u)(v(u) + a)e−

∫
t

u
v(s) ds du. (1.5)

Expression (1.5) is a new variation of parameters formula for (1.2) and of Volterra type integral

equation. Note that if

v(t) = −a,

then (1.5) become the regular solution x(t) = x0e
at of (1.2). In a similar fashion

x′(t) = a(t)x(t), x(0) = x0,
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has the solution

x(t) = x0e
−

∫
t

0 v(s) ds +

∫ t

0
x(u)(v(u) + a(u))e−

∫
t

u
v(s) ds du. (1.6)

Again, if we let

v(t) = −a(t),

then we get the regular known solution x(t) = x0e
∫

t

0 a(s) ds, and x(t) → 0, as t → ∞ provided that

∫ t

0
a(s) ds → −∞.

Again (1.6) is a new variation of parameters formula that can be used to deduce qualitative

properties about the solutions. In the mean time for (1.6), by setting up the proper spaces and

using the contraction mapping principle, we can show that x(t) → 0 as t → ∞, provided that

∫ t

0
|v(u) + a(u)|e−

∫
t

u
v(s) ds du ≤ α, 0 < α < 1,

and
∫ t

0
v(s) ds → ∞.

Suppose f : R× R → R is continuous and consider the nonlinear differential equation

x′(t) = f(t, x(t)), x(0) = x0 for a given constant x0. (1.7)

Then, multiplying by a function
∫ t

0 v(s)ds then the solution of (1.7) is given by

x(t) = x0e
−

∫
t

0 v(s) ds +

∫ t

0

(

x(u)v(u) + f(u, x(u))
)

e−
∫

t

u
v(s) ds du. (1.8)

Similarly, by setting up the proper space and assuming the right conditions on the function f one

can obtain results regarding boundedness of solutions and the stability of the zero solution in the

case f(t, 0) = 0. In [13] the authors studied obtained a new variation of parameters for the finite

delay nonlinear differential equation

x′(t) = f(t, x(t− τ))

and arrived at stability and periodicity results. For more on the use of the regular variation of

parameters we refer to [5, 6, 7].
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2 Homogeneous linear systems

Consider the time-varying homogeneous system

x′(t) = A(t)x(t), x(t0) = x0, t ≥ t0 (2.1)

where A(t) is an n × n matrix of coefficients aij(t) that are assumed to be continuous on an

interval I. Recall that a solution x(t) of (2.1) is an n-tuple of C1 functions xi : I → R. We adopt

the notation that

x(t) =















x1(t)

x2(t)
...

xn(t)















.

The solution x maybe considered as a C1 vector-valued functions x : I → Rn. Such space of

functions is denoted by C1(I,Rn). If S is the solution space of (2.1), then S ⊂ C1(I,Rn). We state

the following definition regarding the fundamental matrix of (2.1).

Definition 2.1. A set of n solutions of the linear differential system (2.1) all defined on the

same open interval I, is called a fundamental set of solutions on I if the solutions are linearly

independent functions on I.

Now we state the following familiar theorem. For its proof we may refer to [9, 10, 11, 12].

Theorem 2.2. If Φ(t) is a fundamental matrix of (2.1) on an interval I, then Φ(t)c, with c =

Φ−1(t0)x0 is a solution of (2.1) with x(t0) = x0. That is, the unique solution of (2.1) is given by

x(t) = Φ−1(t)Φ(t0)x0. (2.2)

The literature is vast concerning the study of systems of differential equations using variation

of parameters or Liapunov functionals. For emphasis, using the regular variation of parameters

requires the presence of linear term in the form of A(t)x. For comprehensive work on such studies

we refer to [1, 2, 3, 4, 5]. For results on comprehensive treatment of Liapunov functions/functionals,

we refer to [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. It is worth noting that, in [16], the

author constructed what we call today, the Resolvent matrix and used it in the form of variation of

parameters to analyze solutions of linear Volterra integro-differential equations. Later on, Burton,

in [5, 6, 7] generalized the notion of resolvent to nonlinear systems by borrowing linear terms and

obtained results concerning boundedness, stability and periodicity. For various results concerning

systems of differential equations, we refer to [13, 14, 15, 16]. As we have previously stated, there is

a substantial body of scholarship on parameter variation in books, but not in refereed publications.
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In [17], the authors considered considered the nonlinear matrix Lyapunov system

T (n) =
n
∑

r=0





n

r



An−rT (t)Br,

where A and B are constant n × n matrices. They assumed the existence of the fundamental

matrix of T ′ = AT in order to obtain a variation of parameters formula for all solutions. Our work

here does not require the existence of a linear term for the inversion. In addition, the authors in

[8] consider different kinds of scalar linear and nonlinear first order differential equations and use

Liapunov functions and fixed point theory to get results about the boundedness of solutions, the

existence of periodic solutions, and the stability of the zero solution. Although they borrow a linear

component in order to be able to invert nonlinear equations, this complicates the formula for the

resulting variation of parameters and causes it to immediately encounter problems. Our purpose

is to obtain a different variation of parameters that solves (2.1) and hopefully its characteristics

are different from those of (2.2). We begin with the following lemma.

Lemma 2.3. Let ϕ(t) be an n× n differentiable matrix with continuous entries on the interval I.

Assume ϕ−1(t) exists for all t ∈ I. Then x(t) is a solution of (2.1) if and only if

x(t) = ϕ−1(t)ϕ(t0)x0 +

∫ t

t0

ϕ−1(t)
[

ϕ′(s) + ϕ(s)A(s)
]

x(s) ds, t ≥ t0. (2.3)

Proof. Multiply both sides of (2.1) from the left with the matrix ϕ(t) and then integrate the

resulting equation from t to t0 and obtain

∫ t

t0

ϕ(s)x′(s) ds =

∫ t

t0

ϕ(s)A(s)x(s) ds.

Integrating the left side by parts by letting

u = ϕ(s), dv = x′(s)ds,

we arrive at

ϕ(t)x(t) − ϕ(t0)x0 =

∫ t

t0

[

ϕ′(s) + ϕ(s)A(s)
]

x(s) ds.

Multiply from the left by ϕ−1(t) gives the desired result. Since every step is reversible, we have

completed the proof. !

Remark 2.4. We note that if

ϕ′(t) = −ϕ(t)A(t), for all t ∈ I,
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then equation (2.3) implies that

x(t) = ϕ−1(t)ϕ(t0)x0 (2.4)

is a solution of (2.1). To see this, set ϕ′(t) = −ϕ(t)A(t), in (2.3). Then (2.3) reduces to x(t) =

ϕ−1(t)ϕ(t0)x0 with x(t0) = x0. Differentiating with respect to t we arrive at

x′(t) =
(

ϕ−1(t)
)′
ϕ(t0)x0 = −ϕ−1(t)ϕ′(t)ϕ−1(t)ϕ(t0)x0 = −ϕ−1(t)

(

− ϕ(t)A(t)
)

ϕ−1(t)ϕ(t0)x0

= A(t)ϕ−1(t)ϕ(t0)x0 = A(t)x(t).

Note that a quick comparison of (2.2) with (2.4) we see that

ϕ(t) = Φ−1(t),

a result that is parallel to the scalar equations.

Thus one of the main advantages of using (2.3) with ϕ′(t) = −ϕ(t)A(t), for all t ∈ I, is that it

enables us to find the desired matrix and hence a solution for a time-varying system. Usually finding

the fundamental matrix solution of time-varying system (2.1) requires additional conditions that

are hard to meet. For the rest of this work we consider system (2.1) over the interval I = [0,∞).

We also assume ‖ · ‖ is a suitable matrix norm. Next we consider (2.1) such that f(t, 0) = 0.

Definition 2.5. The zero solution (x = 0) of (2.1);

(a) is stable (S) if for each ε > 0 and t0 ≥ 0, there is a δ = δ(t0, ε) > 0 such that |x(t0)| < δ

implies |x(t, t0, x0)| < ε,

(b) is uniformly stable (US) if δ independent of t0,

(c) is unstable if it is not stable,

(d) is asymptotically stable (AS) if it is stable and lim
t→∞

|x(t, t0, x0)| = 0.

We have the following theorem regarding boundedness of solutions and stability of the zero solution.

Theorem 2.6. Assume the existence of a positive constant K such that

‖ϕ−1(t)ϕ(s)‖ ≤ K. (2.5)

In addition, if there is a positive constant E such that

∫ ∞

0
‖ϕ−1(t)

[

ϕ′(s) + ϕ(s)A(s)
]

‖ ds ≤ E (2.6)

then all solutions of (2.1) are bounded and its zero solution is uniformly stable.
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Proof. Let x(t) be given by (2.3) for all t ≥ t0 ≥ 0. Since the constant K is independent of the

initial time t0 ≥ 0 we have from (2.3) that

|x(t)| = ‖ϕ−1(t)ϕ(t0)‖|x0|+
∫ t

t0

‖ϕ−1(t)
[

ϕ′(s) + ϕ(s)A(s)
]

‖ |x(s)| ds

≤ K|x0|+
∫ t

t0

‖ϕ−1(t)
[

ϕ′(s) + ϕ(s)A(s)
]

‖ |x(s)| ds

≤ K|x0|e
∫

t

t0
‖ϕ−1(t)

[

ϕ′(s)+ϕ(s)A(s)
]

‖ ds (by Gronwall’s inequality)

≤ K|x0|eE (2.7)

Hence inequality (2.7) implies all solutions are bounded. For the uniform stability of the zero

solution, we let δ =
ε

KeE
so that for any ε > 0 we have from (2.7) for |x0| < δ, that |x(t)| < ε.

This completes the proof. !

For the next theorems we assume that set ϕ′(t) = −ϕ(t)A(t), for all t ∈ I, so that the solution of

(2.1) is given by x(t) = ϕ−1(t)ϕ(t0)x0 as was indicated by Remark 2.4.

Theorem 2.7. Let ϕ(t) be as defined in Lemma 2.3 such that ϕ′(t) = −ϕ(t)A(t), for all t ∈ I.

Then the zero solution of (2.1) is

(a) stable if and only if there exists a positive constant M such that

‖ϕ−1(t)‖ ≤ M, t ≥ 0,

(b) asymptotically stable if and only if

‖ϕ−1(t)‖ → 0, as t → ∞.

Proof. (a) (⇐) Let ϕ′(t) = −ϕ(t)A(t), for all t ∈ I. Then by the Remark 2.4, we have that

x(t) = ϕ−1(t)ϕ(t0)x0 is a solution of (2.1). Let ε > 0 and set δ =
ε

‖ϕ(t0)‖M
such that for |x0| < δ

we have that

|x(t)| = |ϕ−1(t)ϕ(t0)x0| ≤ ‖ϕ−1(t)‖‖ϕ(t0)‖|x0| ≤ M‖ϕ(t0)‖δ = ε.

(⇒) Set ε = 1 from the stability proof. Then

|x(t)| = |ϕ−1(t)ϕ(t0)x0| < 1, for t ≥ t0 if |x0| < δ(1, t0),

which implies that

‖ϕ−1(t)ϕ(t0)‖ <
1

δ(1, t0)
.



CUBO
25, 1 (2023)

Boundedness and stability in nonlinear systems of differential... 45

Therefore,

‖ϕ(t)‖ = ‖ϕ−1(t)ϕ(t0)ϕ
−1(t0)‖ ≤ ‖ϕ−1(t)ϕ−1(t0)‖‖ϕ(t0)‖ ≤

1

δ(1, t0)
|ϕ(t0)| := M.

This completes the proof of (a).

Next we prove (b). We already know the zero solution is stable. Now,

|x(t)| = ‖ϕ−1(t)ϕ(t0)x0‖ → 0, as t → ∞

if and only if

‖ϕ−1(t)‖ → 0, as t → ∞.

This completes the proof. !

Before we provide an example, we will have the following discussion. We integrate (2.1) from t0 to

t and get x(t) = e
∫

t

t0
A(s) ds

. Now we let

Φ(t) = e
∫

t

t0
A(s) ds

. (2.8)

For Φ(t) to be fundamental matrix solution, we must have

A(t)
(

∫ t

t0

A(s) ds
)

=
(

∫ t

t0

A(s) ds
)

A(t). (2.9)

Let us see why. Let J =
∫ t

t0
A(s) ds. Then

eJ = I + J +
1

2!
J2 +

1

3!
J3 + · · ·+

1

k!
Jk + · · · .

and

d

dt
e
∫

t

t0
A(s) ds =

d

dt

(

I +

∫ t

t0

A(s) ds+
1

2!

(

∫ t

t0

A(s) ds
)2

+ · · ·+
1

(k − 1)!

(

∫ t

t0

A(s) ds
)k−1

A(t) +
1

k!

(

∫ t

t0

A(s) ds
)k

+ · · ·
)

= A(t) +

∫ t

t0

A(s) ds A(t) +
1

2!

(

∫ t

t0

A(s) ds
)2

A(t)

+ · · ·+
1

(k − 1)!

(

∫ t

t0

A(s) ds
)k−1

A(t) +
1

k!

(

∫ t

t0

A(s) ds
)k

A(t) + · · ·

=
[

I +

∫ t

t0

A(s) ds +
1

2!

(

∫ t

t0

A(s) ds
)2

+ · · ·

+
1

(k − 1)!

(

∫ t

t0

A(s) ds
)k−1

A(t) +
1

k!

(

∫ t

t0

A(s) ds
)k

+ · · ·
]

A(t)
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,= A(t)
[

I +

∫ t

t0

A(s) ds+
1

2!

(

∫ t

t0

A(s) ds
)2

+ · · ·+
1

(k − 1)!

(

∫ t

t0

A(s) ds
)k−1

A(t) +
1

k!

(

∫ t

t0

A(s) ds
)k

+ · · ·
]

= A(t)Φ(t).

Thus, if (2.9) holds, then Φ′(t) = A(t)Φ(t).

We have the following example.

Example 1. For t ≥ 0 we consider the linear system





x1

x2





′

=





−t 1

1− t2 t









x1

x2



 , x(0) = x0. (2.10)

If we let

A(t) =





−t 1

1− t2 t





then it is clear that (2.9) does not hold. Let

ϕ(t) =





1 + t2 −t

−t 1



 .

Then one may easily verify that that the matrix ϕ satisfies ϕ′(t) = −ϕ(t)A(t), for all t ≥ 0, and

hence every solution of (2.10) satisfies x(t) = ϕ−1(t)ϕ(t0)x0. In addition,

ϕ−1(t) =





1 t

t 1 + t2



 .

Applying Theorem 2.7 we conclude solutions of (2.10) are unbounded and its zero solution is

unstable.

In Example 1, it would have been difficult to find the fundamental matrix using the argument

of eigenvalues and corresponding eigenfunctions since (2.9) does not hold. Moreover, the method

of regular linearization does not work for time-varying systems. We are left with the notion of

finding a suitable Liapunov function to prove the unboundedness of solutions and consequently

the instability of the zero solution. This author could not find one that would do the job. In

conclusion, the above discussion cements the usefulness of our method. A final note: the system

may be solved using the Laplace transform. This can be done by writing the system as

x′ = −tx1 + x2, x′
2 = (1− t2)x1 + tx2,
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subject to the initial conditions x1(0) = x01, x2(0) = x02. Looking forward, Laplace transforms

can not be used in our next examples.

3 Nonlinear systems

We consider the general nonlinear system of ordinary differential equations

x′
1 = f1(t, x1, . . . , xn)

x′
2 = f2(t, x1, . . . , xn)

...

x′
n = fn(t, x1, . . . , xn).

Using the vector notations

x =















x1

x2

...

xn















and

f(t, x) =















f1(t, x)

f2(t, x)
...

fn(t, x)















the above system can be written in the vector form

x′ = f(t, x) (3.1)

and assume f ∈ C1([0,∞) × Rn,Rn), is continuous in t and x. Let ϕ(t) be an n× n matrix with

continuous entries on [0,∞). Assume ϕ−1(t) exists for all t ≥ 0. We multiply both sides of (3.1)

with ϕ(t). By similar work as before, we have

x(t) = ϕ−1(t)ϕ(t0)x0 + ϕ−1(t)

∫ t

t0

[

ϕ′(s)x(s) + ϕ(s)f(s, x(s))
]

ds, t ≥ t0. (3.2)

Now the advantage of our method is that (3.2) can be used on proper spaces to analyze the solutions

of (3.1). In this work it is more convenient to use the following norms for a matrix and a vector.
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For x = (x1, x2, . . . , xn) we consider the norm

|x| =
n
∑

i=1

|xi|.

Similarly, we define the norm of a matrix B by

|B| =
n
∑

i,j=1

|bij |,

for an n× n matrix B = [bij ]. Under these two norms we have

|B(t)x| ≤ |B(t)||x|,

and for any two n× n matrices B and K we have that

|B(t)K(t)| ≤ |B(t)||K(t)|.

We have the following theorem regarding boundedness of solutions and stability of the zero solution

of system (3.1).

Theorem 3.1. Suppose there is a positive constant K and a continuous function λ : [0,∞) →

[0,∞) such that

|ϕ−1(t)ϕ(t0)| ≤ K, (3.3)

and

|f(t, x)| ≤ λ(t)|x|. (3.4)

In addition, if there is a positive constant E such that

∫ ∞

0

[

|ϕ−1(t)ϕ′(s)|+ |ϕ−1(t)ϕ(s)|λ(s)
]

ds ≤ E (3.5)

then all solutions of (3.1) are bounded and its zero solution is uniformly stable.

Proof. Let x(t) be given by (3.2) for all t ≥ t0 ≥ 0. Since the constant K is independent of the

initial time t0 ≥ 0 we have from (2.3) that

|x(t)| ≤ |ϕ−1(t)ϕ(t0)||x0|+
∫ t

t0

|ϕ−1(t)
[

ϕ′(s)x(s) + ϕ(s)f(s, x(s)
]

| ds

≤ K|x0|+
∫ ∞

0

[

|ϕ−1(t)ϕ′(s)|+ |ϕ−1(t)ϕ(s)|λ(s)
]

|x(s)| ds

≤ K|x0|e
∫

t

t0
[|ϕ−1(t)ϕ′(s)|+|ϕ−1(t)ϕ(s)|λ(s)] ds (by Gronwall’s inequality)

≤ K|x0|eE . (3.6)
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Hence inequality (3.6) implies all solutions are bounded. For the uniform stability of the zero

solution, we let δ =
ε

KeE
so that for any ε > 0 we have from (3.6) for |x0| < δ, that |x(t)| < ε.

This completes the proof. !

We provide the following example.

Example 2. For t ≥ 0 we consider the nonlinear system





x1

x2





′

=













x1 cos(x2) sin(t)

(1 + t)(x2
1 + 1)

x2 sin(x1) cos(t)

(1 + t)(x2
2 + 1)













, x(0) = x0. (3.7)

Note that

|f(t, x)| =
2

∑

i=1

|fi(t, x)| =
∣

∣

∣

∣

x1 sin(t)

(1 + t)(x2
1 + 1)

∣

∣

∣

∣

+

∣

∣

∣

∣

x2 cos(t)

(1 + t)(x2
2 + 1)

∣

∣

∣

∣

≤
1

1 + t
[|x1|+ |x2|] =

1

1 + t
|x|.

Hence

λ(t) =
1

1 + t
.

To verify the rest of the conditions of Theorem 3.3, we let

ϕ(t) =





√
1 + t 0

0
√
1 + t



 .

Then

ϕ−1(t) =







1√
1 + t

0

0
1√
1 + t






.

One can easily compute that

ϕ−1(t)ϕ(s) =









√
1 + s√
1 + t

0

0

√
1 + s√
1 + t









,

and

ϕ−1(t)ϕ′(s) =







1

2
√
1 + s

√
1 + t

0

0
1

2
√
1 + s

√
1 + t






.

Thus,

|ϕ−1(t)ϕ(0)| ≤
2√
1 + t

≤ 2 =: K, for all t ≥ 0.
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Moreover,

∫ t

0
|ϕ−1(t)ϕ′(s)| ds ≤

1√
1 + t

∫ t

0

1√
1 + s

ds = 2−
2√
1 + t

≤ 2, for all t ≥ 0.

Similarly,

∫ t

0
|ϕ−1(t)ϕ(s)|λ(s) ds ≤

2√
1 + t

∫ t

0

1√
1 + s

ds = 4−
4√
1 + t

≤ 4, for all t ≥ 0.

Finally,
∫ ∞

0

[

|ϕ−1(t)ϕ′(s)|+ |ϕ−1(t)ϕ(s)|λ(s)
]

ds ≤ 6 =: E.

Thus, all conditions of Theorem 3.3 are satisfied which implies that all solutions of (3.7) are

bounded and its zero solutions is uniformly stable.

Next, we use the contraction principle to show the solution is unique. Let C be the set of all

real-valued continuous functions. Define the space

S = {Φ : [0,∞) → R
n | Φ ∈ C, |Φ(t)| ≤ M},

for positive constant M. Then

(S, | · |)

is complete.

Theorem 3.2. We assume the function f is locally Lipschitz on the set S. That is, for any Φ1

and Φ2 ∈ S, we have

|f(t,Φ1)− f(t,Φ2)| ≤ Λ(t)|Φ1 − Φ2|, (3.8)

for continuous Λ : [0,∞) → (0,∞). Suppose there is a positive constant α ∈ (0, 1) such that

∫ ∞

0

[

|ϕ−1(t)ϕ′(s)|+ |ϕ−1(t)ϕ(s)|Λ(s)
]

ds ≤ α, (3.9)

then (3.1) has a unique solution. In addition if (3.3) holds then the unique solution is bounded

and the zero solution of (3.1) is uniformly stable.

Proof. For Φ ∈ S, define the mapping P : S → S, by

(PΦ)(t) = ϕ−1(t)ϕ(t0)x0 + ϕ−1(t)

∫ t

t0

[ϕ′(s)Φ(s) + ϕ(s)f(s,Φ(s))] ds, t ≥ t0. (3.10)

It is clear that (PΦ)(0) = x0 and P is continuous in Φ. Let Φ1 and Φ2 ∈ S. Then

|(PΦ1)(t)− (PΦ2)(t)| ≤
∫ ∞

0
[|ϕ−1(t)ϕ′(s)|+ |ϕ−1(t)ϕ(s)|Λ(s)]ds |Φ1 − Φ2| ≤ α|Φ1 − Φ2|.



CUBO
25, 1 (2023)

Boundedness and stability in nonlinear systems of differential... 51

This shows that P is a contraction. By Banach’s contraction mapping principle, P has a unique

fixed point x ∈ S which is a continuous function. The boundedness of the solution and the uniform

stability of the zero solution follow from Theorem 3.2. This completes the proof. !

We will need the following clarifications for the next example. Let f : D → R
n where D is a

subset of [0,∞)× Rn. To check if a function f : D → R
n is Lipschitz continuous on some subset

D of [0,∞) × Rn, it suffices to check that the component functions fi : D → R
n are Lipschitz

continuous. This is due to the fact that

|fi(t, z)− fi(t, w)| ≤ Li|z − w| for i = 1, . . . , n

implies under our norm that

|f(t, z)− f(t, w)| =
n
∑

i=1

|fi(t, z)− fi(t, w)| ≤
n
∑

i=1

Li|z − w|,

which shows that

|f(t, z)− f(t, w)| ≤ L|z − w| with L =
n
∑

i=1

Li.

Example 3. For t ≥ 0 we consider the nonlinear system





x1

x2





′

=













cos(t)

20(1 + t)

[

x2 +
x1

x2
1 + 1

]

sin(t)

20(1 + t)

[

x1 +
x2

x2
2 + 1

]













, x(0) = x0. (3.11)

Note that by a similar argument as in Example 2 we arrive at

|f(t, x)| ≤
2

20(1 + t)

[

|x1|+ |x2|
]

=
1

10(1 + t)
|x|.

Hence

λ(t) =
1

10(1 + t)
.

Next we show f is Lipschitz continuous. Let z = (z1, z2), w = (w1, w2) ∈ S with n = 2. Then

|f1(t, z)− f1(t, w)| ≤
1

20(1 + t)

[

|z2 − w2|+
∣

∣

∣

∣

z1
z21 + 1

−
w1

w2
1 + 1

∣

∣

∣

∣

]

.

∣

∣

∣

∣

z1
z21 + 1

−
w1

w2
1 + 1

∣

∣

∣

∣

=
z1 − w1 + z1w1(w1 − z1)

1 + z21w
2
1 + z21 + w2

1

≤
1 + |z1w1|

1 + z21w
2
1 + z21 + w2

1

|z1 − w1|.
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We note that

1 + |z1w1| ≤ (1 + |z1w1|)2 = 1 + |z1w1|2 + 2|z1w1| ≤ 1 + |z1w1|2 + z21 + w2
1.

Hence
1 + |z1w1|

1 + z21w
2
1 + z21 + w2

1

≤ 1

and it follows that
∣

∣

∣

∣

z1
z21 + 1

−
w1

w2
1 + 1

∣

∣

∣

∣

≤ |z1 − w1|.

This implies that

|f1(t, z)− f1(t, w)| ≤
1

20(1 + t)
[|z2 − w2|+ |z1 − w1|].

In a symmetrical argument one can easily shows that

|f2(t, z)− f2(t, w)| ≤
1

20(1 + t)

[

|z1 − w1|+ |z2 − w2|
]

.

Thus from the above discussion we arrive at

|f(t, z)− f(t, w)| =
2

∑

i=1

|fi(t, z)− fi(t, w)| ≤
2

∑

i=1

Li|z − w| =
2

20(1 + t)
|z − w|.

Thus, Λ(t) =
1

10(1 + t)
. To verify the rest of the conditions of Theorem 3.2 we let

ϕ(t) =





e
1

10(1+t) 0

0 e
1

10(1+t)



 .

Then

ϕ−1(t) = e−
1

5(1+t)





e
1

10(1+t) 0

0 e
1

10(1+t)





and

ϕ′(t) = −
1

10(1 + t)2





e
1

10(1+t) 0

0 e
1

10(1+t)



 .

One can easily compute that

ϕ−1(t)ϕ(s) = e−
1

5(1+t)





e
1
10 (

1
1+t

+ 1
1+s

) 0

0 e
1
10 (

1
1+t

+ 1
1+s

)



 ,
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and

ϕ−1(t)ϕ′(s) = −
e−

1
5(1+t)

10(1 + s)2





e
1
10 (

1
1+t

+ 1
1+s

) 0

0 e
1
10 (

1
1+t

+ 1
1+s

)



 .

Thus,

|ϕ−1(t)ϕ(0)| ≤ 2e
t

10(1+t) ≤ 2e
1
10 =: K, for all t ≥ 0.

Moreover,

∫ t

0
|ϕ−1(t)ϕ′(s)| ds ≤

1

5
e−

1
10

1
1+t

∫ t

0

1

(1 + s)2
e

1
10

1
1+s ds = 2e

1
10−

1
10

1
1+t − 2 ≤ 2e

1
10 − 2,

for all t ≥ 0. Similarly,

∫ t

0
|ϕ−1(t)ϕ(s)|λ(s)

]

ds ≤
2

5
e−

1
10(1+t)

∫ t

0

1

(1 + s)2
e

1
10

1
1+s ds

= 4e
1
10−

1
10

1
1+t − 4 ≤ 4e

1
10 − 4, for all t ≥ 0.

Finally,

∫ ∞

0

[

|ϕ−1(t)ϕ′(s)|+ |ϕ−1(t)ϕ(s)|λ(s)
]

ds ≤ 6e
1
10 − 6 ≤ 0.31 =: α.

Moreover, one can easily check that

|ϕ−1(t)ϕ(0)| ≤ e−
1
10 .

Thus, all conditions of Theorems 3.2 and 3.1 are satisfied which implies that the unique solution

of (3.7) is bounded and its zero solution is uniformly stable.

In Examples 2 and 3, the considered equations were totally nonlinear and therefore, the arguments

of fundamental matrix solution, linearization or the use of Laplace transform would be impossible.

Then, we are left with the construction of Liapunov function which is almost impossible. This

shows the significance of our novel method.
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ABSTRACT

This paper aims to correct recent results on a general-

ized class of z�contractions in the context of b�metric

spaces. The significant work consists of repairing some

novel results involving z�contraction within the struc-

ture of b-metric spaces. Our objective is to take advan-

tage of the property (F1) instead of the four properties

viz. (F1), (F2), (F3) and (F4) applied in the results of

Nazam et al. [“Coincidence and common fixed point theo-

rems for four mappings satisfying (↵s, F )�contraction",

Nonlinear Anal: Model. Control., vol. 23, no. 5, pp.

664–690, 2018]. Our approach of proving the results uti-

lizing only the condition (F1) enriches, improves, and

condenses the proofs of a multitude of results in the ex-

isting state-of-art.

RESUMEN

Este artículo tiene por objetivo corregir resultados re-

cientes sobre una clase generalizada de z�contracciones

en el contexto de b�espacios métricos. El trabajo sig-

nificativo consiste en reparar algunos resultados nuevos

que involucran z�contracciones en la estructura de b-

espacios métricos. Nuestro objetivo es aprovechar la

propiedad (F1) en vez de las cuatro propiedades viz.

(F1), (F2), (F3) y (F4) aplicadas en los resultados de

Nazam et al. [“Coincidence and common fixed point the-

orems for four mappings satisfying (↵s, F )�contraction",

Nonlinear Anal: Model. Control, vol. 23, no. 5, pp. 664–

690, 2018]. Nuestro enfoque para probar los resultados

usando solo la condición (F1) enriquece, mejora y con-

densa las demostraciones de una multitud de resultados

en el estado del arte existente.
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1 Introduction and preliminaries

Let @ be a nonempty set and k be a mapping from @ to itself, then the point x from @, for which

kx = x is called a fixed point of k. Note that the fixed point of the map k is also the fixed point

of each iteration kn of the mapping k where n is any natural number. There are examples where

the opposite is not true. The existence of a fixed point of a mapping k : @ ! @ is especially

important to examine if the set @ is supplied with some kind of distance
V

: @⇥@ ! [0,+1) or by

some topology ⌧ . Then, depending on that distance ([28], metrics for example [7]) or topology ⌧

[6, 12, 13], the underlying mapping has one or more fixed points, or does not exist at all. The field

that studies fixed points in metric spaces is called metric fixed point theory. If the study of fixed

points is performed in topological spaces, then that area is called topological fixed point theory.

If k is a mapping of the metric space (@,
V
) into itself then it is called a contraction if there is a

� 2 [0, 1) such that for every x, y 2 @ it holds
V
(k (x) ,k (y))  � ·

V
(x, y). Almost a hundred year

ago, S. Banach proved the following significant theorem:

Theorem 1.1 ([5]). Each contraction k on (@,
V
), a complete metric space, has exactly one fixed

point. In addition, for each point x 2 @, the Picard sequence knx converges to that fixed point.

Numerous mathematicians have attempted to propose the generalizations of Banach’s theorem

since then. These inferences were in two most important ways: either by changing the axioms

of the metric space or by taking another condition instead of the right side in the definition of

contraction.

In the first mentioned direction, there were generalized metric spaces, for example, b-metric space,

dislocated metric space, rectangular metric space, partial metric space, dislocated b-metric space,

and in the second direction, new contractions such as Kanann, Chatterjea, Reich, Hardy-Rogers,

Ćirić, Boyd, Wong, etc.

In this paper, we will talk about z�contractions in b-metric spaces, combined with various types of

admissible mappings. We will first note that all types of admissibility in this paper are introduced

in the same way as the corresponding ones introduced in [27]. So, putting in the condition,

� s (r1, r2) � s2 implies � s (= (r1) ,= (r2)) � s2 for all r1, r2 2 @,

of [19, Definition 2] 1
s2 · �s = �, we get that = : @ ⇥ @ ! [0,+1) is �-admissible introduced in

the sense of [27]. In the same way we get that the conditions given in [19, Definitions 2, 3, 4, 5, 6,

7, 8, 9, 10 and 12] can be reduced to the corresponding ��conditions considered in the setting of

metric spaces. For further details see [21, 27].

It should be noted that A. I. Bakhtin [4] introduced the idea of b-metric spaces and later considered

by S. Czerwik [9]. In fact, the axiom of a triangle in metric spaces is generalized by adding a
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coefficient s � 1 on the right-hand side, i.e.,
V
(x, z)  s [

V
(x, y) +

V
(y, z)] for all x, y, z 2 @,

where
V

: @ ⇥ @ ! [0,+1). Otherwise, there are significant differences between b-metric and

ordinary metric. First, it does not have to be a continuous function with two variables such as

metric, an open sphere does not have to be an open set. Note that convergence, Cauchyness and

continuity of the mapping are defined in the same way as for metric spaces. Also, a convergent

sequence can has only one limit value.

Generalizing Banach’s principle of contraction [5], D. Wardowski [33] presented the notion of

z�contraction and manifested a new generalized result as a substitute of Banach’s theorem.

Definition 1.2 ([33]). Let � : (0,+1) ! (�1,+1) be a mapping persuading the assertions

described below:

(F1) For all g1,g2 2 (0,+1) if g2 > g1 implies � (g2) > � (g1) , that is, � is strictly increasing

function in (0,+1) ;

(F2) If {gn}n2N is a positive sequence of real numbers, then the following is contented:

lim
n!+1

gn = 0 if and only if lim
n!+1

� (gn) = �1;

(F3) lim
t!0+

t�� (t) = 0, where � 2 (0, 1).

F� is the set of all functions that satisfy (F1)� (F3).

The following functions �i : (0,+1) ! (�1,+1) are in F� : �1 (t) = ln t; �2 (t) = t + ln t;

�3 (t) = �t�
1
2 ; �4 (t) = ln

�
t+ t2

�
. For further details on F� the reader can see [35, 36].

Definition 1.3 ([33]). A mapping k : @ ! @ is termed as z�contraction in the context of metric

space (@,
V
) if there exist � 2 F� and ⌧ > 0 such that for all f,g 2 @,

^
(k (f) ,k (g)) > 0 implies ⌧ + �

⇣^
(k (f) ,k (g))

⌘
 �

⇣^
(f,g)

⌘
. (1.1)

Theorem 1.4 ([33]). If (@,
V
) is a complete metric space and let k : @ ! @ be an z�contraction

in the sense of Wardowsski. Then k possesses one and only one fixed point f⇤ 2 X. On the other

hand, the sequence {knf}n2N converges to f⇤ for every f 2 @.

In [8], the authors introduce the following condition,

(F4) If (fn) ⇢ (0,+1) is a sequence such that ⌧ +� (s ·fn)  � (fn�1) for every n 2 N and for

some ⌧ > 0, then ⌧ + � (sn ·fn)  �
�
sn�1 ·fn�1

�
, for all n 2 N.

F�s stands for the family of all functions � : (0,+1) ! (�1,+1) that satisfy (F1), (F2), (F3)

and (F4).
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Remark 1.5. It is easy to verify that the condition (F4) implies b�Cauchyness of the sequence

{rn}n2N . In other words, this condition is quite strong, but fortunately it can be avoided. We will

not use it in our approach. It is therefore superfluous in the whole paper [19].

The authors in [19] introduce and prove the following:

Let a b-metric space (@,
V
, s � 1) be equipped with self-mappings ~, j,=,k : @ ! @, and �s be

defined as in [19, Definition 2]. Then they define the next two sets of real numbers:

� ~,j,�s =
n
(�, %) 2 @ ⇥ @ : � s (= (�) ,k (%)) � s2 and

^
(~ (�) , j (%)) > 0

o
(1.2)

and

M1 (�, %) = max
n^

(= (�) ,k (%)) ,
^

(~ (�) ,= (�)) ,
^

(j (%) ,k (%)) ,

V
(= (�) , j (%)) +

V
(~ (�) ,k (%))

2s

�
. (1.3)

For more synthesis on the results based on z�contractions, we refer the reader to the informative

and notable articles [10, 11, 16, 17, 18, 19, 20, 21, 22, 24, 26, 29, 30, 31, 32, 33, 34].

Theorem 1.6. Let @ be a non-void set and � s as described in (1.2). Let the self-maps ~, j,=,k
be � s�b-continuous on � s�complete b–metric space (@,

V
, s � 1) such that ~ (@) ✓ k (@) , j (@) ✓

= (@) . Assume that for every pair (r1, r2) 2 � ~,j,�s , there exist � 2 F�s and ⌧ > 0 with

⌧ + �
⇣
s ·

^
(~ (r1) , j (r2))

⌘
 � (M1 (r1, r2)) . (1.4)

Assume that the pairs (~,=) , (j,k) are � s�compatible and the pairs (~, j) and (j, ~) are rectangular

partially weakly � s�admissible with respect to k and = respectively. Then the pairs (~,=) , (g,k)
have the coincidence point (say) v in @. Moreover, if � s (= (v) ,k (v)) � s2, then v is a common

fixed point of ~, j,=,k.

To begin, we will utilize the following two findings to show that certain Picard sequences in b-metric

spaces (@,
V
, s � 1) are b-Cauchy. The proof is an exact replica of the equivalent result in [14] (see

also [1]).

Lemma 1.7. Let {rn}n2N be a sequence in b-metric space (@,
V
, s � 1) such that

^
(rn, rn+1)  � ·

^
(rn�1, rn) (1.5)

for some � 2 [0, 1
s ) and for each n 2 N. Then {rn}n2N is a b-Cauchy sequence.

Remark 1.8. It is worth noting that the preceding Lemma holds for each � 2 [0, 1) in the context

of b-metric spaces. See [15] for additional information.
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Lemma 1.9. Let {rn}n2N be a Picard sequence in b-metric space (@,
V
, s � 1) induced by a map-

ping k : @ ! @ and let r0 2 @ be an initial point. If
V
(rn, rn+1) <

V
(rn�1, rn) for all n 2 N then

rn 6= rm whenever n 6= m.

In the succeeding analysis, we make use of the following known lemma [3, 20, 23].

Lemma 1.10. Suppose that {rn}n2N belongs to a metric space (@,
V
) and satisfies lim

n!+1

V
(rn, rn+1) =

0 is not a Cauchy sequence. Then, there exists "1 > 0 and sequences of positive integers {nq},
{mq}, nq > mq > q such that each of the sequences,

^�
rnq , rmq

�
,
^�

rnq+1, rmq

�
,
^�

rnq , rmq�1

�
,
^�

rnq+1, rmq�1

�
,
^�

rnq+1, rmq+1

�
,

tends to "+1 when q ! +1.

Remark 1.11. Based on � (a�)  � (a)  � (a+) , a 2 (0,+1) , we conclude that lim
a!b�

� (a) =

� (b�) and lim
a!b+

� (a) = � (b+) . For particular details see [2] and [25].

Likewise, if � : (0,+1) ! (�1,+1) is a strictly increasing function, then either � (0+) =

lim
a!0+

� (a) = m, m 2 R or � (0+) = lim
a!0+

� (a) = �1.

Remark 1.12. Before giving the proof of Theorem 1.6, we note that some parts of the formulations

of all theorems and their consequences are incorrect. For example, “for each (r1, r2) 2 � ~,j,�s there

exist � 2 F�s and ⌧ > 0 such that . . . ". It is evident that it should be “there is � 2 F�s and ⌧ > 0

such that for all (r1, r2) 2 � ~,j,�s . . . ".

2 Some improved results

To prove Theorem 1.6, the authors in [19] used all the four properties viz. (F1), (F2), (F3) and

(F4) of the mapping � . In sharp contrast to this practice, in present article we prove the Theorem

1.6 by omitting properties (F2), (F3), (F4) and we make use of (F1) only, i.e., we only require

the strict growth of the mapping � : (0,+1) ! (�1.+1). Additionally, we will distinguish two

cases: s > 1 and s = 1.

Proof. First let s > 1.

Since � : (0,+1) ! (�1,+1) is strictly increasing (satisfies (F1)) then inequality (1.4) implies

^
(~ (r1) , j (r2)) <

1

s
· M1 (r1, r2) , (2.1)

where M1 (r1, r2) is as in 1.3 with � = r1, % = r2.

Otherwise the contractive condition (2.1) is well known in the setting of b-metric spaces. The
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sequence {jn} defined in [19] on page 671 is obviously b-Cauchy according to Lemma 1.7 and

Remark 1.5.

Now, let s = 1 where � satisfies only (F1) seems more difficult to prove in Theorem 1.6 than the

case with s > 1. This is because for s = 1 we do not have the condition
V
(jn, jn+1)  �·

V
(jn�1, jn)

for the Picard sequence {jn}n2N defined by

j2n+1 = ~ (r2n) = k (r2n+1) and j2n+2 = j (r2n+1) = = (r2n+2) , (2.2)

for � 2 [0, 1), where (@,
V
) is given metric space. However, if s = 1 (in this case

V
= d is a metric)

we get that 1.4 implies

⌧ + �
⇣^

(j2n, j2n+1)
⌘
 �

⇣^
(j2n�1, j2n)

⌘

and ⌧ + �
⇣^

(j2n�1, j2n)
⌘
 �

⇣^
(j2n�2, j2n�1)

⌘
, (2.3)

for all n 2 N, hence follows
V
(jn, jn+1) <

V
(jn�1, jn) for each n 2 N. So there exist a limit � � 0

of the sequence {
V
(jn, jn+1)}n2N .

If we suppose that this limit � > 0, then according to the property of the strictly increasing function

� (see Remark 1.8), we get ⌧ + � (�+)  � (�+), which is a contradiction since � > 0.

Assume to the contrary that {jn}n2N is not a Cauchy sequence, according to the Lemma 1.10 and

inequality (1.4) with s = 1,
V

= d, r1 = r2nq , r2 = r2mq�1, we get

⌧ + �
⇣^�

j2nq+1, j2mq

�⌘
 �

�
M1

�
r2nq , r2mq

��
, (2.4)

where

M1

�
r2nq , r2mq

�
= max

q!+1

n^�
j2nq , j2mq�1

�
,
^�

j2nq+1, j2nq

�
,
^�

j2mq , j2mq�1

�
,

V�
j2nq , j2mq

�
+
V�

j2nq+1, j2mq�1

�

2

)
!max

⇢
"+1 , 0, 0,

"+1 + "+1
2

�
= "+1 . (2.5)

By taking the limit in (2.4) with q ! +1, we acquire

⌧ + �
�
"+1 +

�
 �

�
"+1 +

�
, (2.6)

which is a contradiction with ⌧ > 0. Hence, the sequence {jn}n2N is a Cauchy sequence.

Until the end of the proof of Theorem 1.6 the function � will no longer be used.

The continuation of the proof for both cases (s = 1, s > 1) is exactly the same as in [19]. Of course,
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the application of the function � on page 674 in [19] as well as the use of its continuity on the

same page is superfluous. Moreover, its continuity is not assumed in the formulation of Theorem

1.6 Also, the uniqueness of the common fixed point for the mappings ~, j,k, and = follows directly

from (2.1) in both cases (s > 1, s = 1) without any use of the function �. ⇤

Remark 2.1. For both cases s > 1 and s = 1 there are different proofs, that the defined sequence

{jn}n2N is Cauchy. In the second case, the property about the left and right limit of the strictly

increasing function � is used. Further, one known lemma is used if the sequence in the metric

space is not a Cauchy but
V
(jn, jn+1) tends to zero as n ! +1. The authors in [19] gave one

proof for both cases, but applied all four properties of the function � . Our approach has improved

their method and has shown, as in some already published papers, that (F1) is sufficient to prove

a fixed point under many contractive conditions. For the case of two mappings in metric spaces,

but with all three properties of �, the reader can see [34].

Remark 2.2. Theorems 2, 3, 4, 5, 6, 7 and 8 from [19] can be corrected in the same way as

Theorem 1 from [19], that is, as Theorem 1.6 in this paper. Of course, only property (F1) can be

used in their proofs instead of all four properties in [19]. In their proofs, two cases s > 1 and s = 1

can be also distinguished.

We now state a simple example that supports our main result.

Example 1. Let X = [0,+1), d (x, y) = (x� y)2, Tx = kx, k 2 [0, 1
2 ), because obviously s = 2.

Taking further that � (r) = ln r, ⌧ = 1, we get that the contractive condition ⌧+� (s · d (Tx, Ty)) 
� (d (x, y)) is fulfilled whenever d (Tx, Ty) > 0.

3 Conclusions

In this article we have showed, in sharp contrast to published articles, that a reduced set of require-

ments suffices for the proof of fixed point results regarding generalized class of z�contractions in

b-metric spaces. By using only the property (F1), instead of the four properties (F1), (F2), (F3)

and (F4) used in [19], we were able to produce improved and condesed version of the proofs.
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ABSTRACT

The purpose of this paper is to propose an algorithm for find-

ing a common element of the set of fixed points of relatively

nonexpansive mapping and the set of solutions of split in-

clusion problem with a way of selecting the stepsize without

prior knowledge of the operator norm in the framework of

Banach spaces. Then, the main result is used to the common

fixed point problems of a family of relatively nonexpansive

mappings and split equilibrium problem. Finally, a numeri-

cal example is provided to illustrate the main result.

RESUMEN

El propósito de este art́ıculo es proponer un algoritmo para

encontrar un elemento común del conjunto de puntos fijos

de aplicaciones relativamente no-expansivas y el conjunto

de soluciones de problemas de inclusión escindidos con una

manera de seleccionar el tamaño del paso sin conocimiento

previo de la norma del operador en el contexto de espacios

de Banach. Luego, el resultado principal se usa para los pro-

blemas de punto fijo común de una familia de aplicaciones

relativamente no expansivas y el problemas del equilibrio es-

cindido. Finalmente, se entrega un ejemplo numérico para

ilustrar el resultado principal.
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1 Introduction

Let H1 and H2 be two Hilbert spaces. Let B1 : H1 ! 2H1 and B2 : H2 ! 2H2 be two maximal

monotone operators and A : H1 ! H2 be a bounded linear operator. Consider the following split

inclusion problem (SIP) introduced by Moudafi [25] in Hilbert space:

To find x
⇤ 2 H1 such that 0 2 B1(x

⇤) and 0 2 B2 (Ax
⇤). (1.1)

Let the solution set of (1.1) be denoted by ⌦. In fact, we know that the SIP is a generalization

of the inclusion problem and the split feasibility problem (SFP). Next, we have some special cases

of SIP (1.1). Let f : H1 ! R [ {1} and g : H2 ! R [ {1} be proper, lower semicontinuous and

convex functions. If we take B1 = @f and B2 = @g, where @f and @g are the sub-di↵erential of f

and g, then the SIP (1.1) becomes the following proximal split feasibility problem:

To find x
⇤ 2 argmin f such that Ax

⇤ 2 argmin g, (1.2)

where argmin f = {x 2 H1 : f(x)  f(y), 8y 2 H1} and argmin g = {x 2 H2 : g(x)  g(y), 8y 2
H2}. In particular, if we take f(x) = 1

2kM(x) � bk2 and g(x) = 1
2kN(x) � ck2, where M and N

are matrices, and b, c 2 H1, then the (1.2) becomes the least square problem. This problem has

been intensively studied, especially, in Hilbert spaces; see for instance [26].

Let C and Q be nonempty, closed, and convex subsets of real Hilbert spaces H1 and H2, respec-

tively. If B1 = NC , B2 = NQ, where NC and NQ are the normal cones of C and Q, respectively,

then we have the SFP:

To find x
⇤ 2 C such that Ax

⇤ 2 Q. (1.3)

This problem was first introduced, in a finite dimensional Hilbert space, by Censor and Elfving

[13] for modeling inverse problems in radiation therapy treatment, which arise from phase retrieval

and in medical image reconstruction, especially intensity modulated therapy [12]. To solve the SIP

(1.1) Byrne et al. [11] proved some weak convergence results in infinite dimensional Hilbert spaces

and proposed the following algorithm for given x1 2 H1:

xn+1 = J
B1
�

(xn � �A
⇤(I � J

B2
�

)Axn), 8n � 1, (1.4)

where � > 0, � 2
✓
0,

2

kAk2

◆
and J

B1
�

, JB2
�

are metric and resolvent operators of B1 and B2,

respectively. In order to obtain strong convergence, Kazmi and Rizvi [19] proposed the following

algorithm to solve SIP (1.1):
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8
><

>:

un = J
B1
�

(xn � �A
⇤(I � J

B2
�

)Axn)

xn+1 = ↵nf(xn) + (1� ↵n)Tun, 8 n � 1,

where � 2
✓
0,

2

kAk2

◆
and {↵n} is a sequence in (0, 1) such that lim

n!1
↵n = 0,

1X

n=1

↵n = 1.

However, in order to achieve the solution, one has to obtain the operator norm kAk, which is not

easy to calculate in general. To avoid this computation, López et al. [23] find a new way to select

the stepsize as follows:

µn =
⇢nf(xn)

krf(xn)k2
, n � 1,

where PQ is the metric projection of H2 onto Q, ⇢n 2 (0, 4), f(xn) = 1
2k(I � PQ)Axnk2 and

rf(xn) = A
⇤(I � PQ)Axn. This method is a modification of the CQ method and is often called

the self-adaptive method, which permits step-size being selected self adaptively, for more details

see [30, 37].

To solve SIP (1.1) in p-uniformly convex and smooth Banach space, Bello Cruz et al. [9] proposed

the following algorithm, for given x1 2 E1 and {↵n} 2 (0, 1):

8
><

>:

un = J
q

E1
⇤

h
J
p

E1
(xn)� tnA

⇤
J
E2

(I � J
B2
�

)Axn

i

xn+1 = J
q

E1
⇤

h
↵nJ

p

E1
(u) + (1� ↵n)J

p

E1
(JB1

�
(un))

i
.

(1.5)

Very recently, Cholamjiak et al. [14] proposed algorithm for finding common solution of fixed point

problem of relatively nonexpansive mapping to solve SIP (1.1) in p-uniformly convex and smooth

Banach space. An initial guess u1 2 E1, let {xn}1n=1 and {un}1n=1 be sequences generated by:

8
><

>:

xn = J
B1
�1

⇣
J
q

E1
⇤(J

p

E1
(un)� �nA

⇤
J
p

E2
(I � J

B2
�2

)Aun)
⌘

un+1 = J
q

E1
⇤(↵nJ

p

E1
(✏n) + �nJ

p

E1
(xn) + �nJ

p

E1
(Txn)), n � 1,

(1.6)

where J
B1
�1

, J
B2
�2

are metric and resolvent operators. The sequences {↵n}, {�n} and {�n} are

sequences in (0, 1) such that ↵n + �n + �n = 1. For more SIP related articles (see, [3, 6, 16, 28,

34, 36, 38, 42]).

In nonlinear analysis, to work with an algorithm that has a high rate of convergence is more useful,

through adding inertial term in the algorithm. First it was proposed by Polyak [31]. The main

purpose of this method is to make use of previous iterates to update the next iterate. Recently,

many authors have shown interest to study inertial type algorithms, see [2, 4, 17, 37, 40, 41].

Intention of this paper is to propose an algorithm to solve SIP (1.1) and fixed point of relatively
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nonexpansive mapping in p-uniformly convex and uniformly smooth real Banach spaces, without

prior knowledge of operator norm, so that it can be more e�ciently implemented. As an applica-

tion, we apply our result to the common fixed point problems of a family of relatively nonexpansive

mappings and split equilibrium problem. A numerical example is given to illustrate the e�ciency

of our algorithm, also our results complement and extend many recent and important results in

this direction.

2 Preliminaries

Let E be a real Banach space with dual E⇤ and let A : E1 ! E2 be a bounded linear operator

and A
⇤ is adjoint of A. The modulus of convexity �E : [0, 2] ! [0, 1] is defined as

�E(") = inf

⇢
1� kx+ yk

2
: kxk = 1 = kyk, kx� yk � "

�
.

E is called uniformly convex if �E(") > 0, for " 2 (0, 2] and p-uniformly convex if there exist a

Cp > 0 such that �E(") � CP "
p, for any " 2 (0, 2]. The modulus of smoothness ⇢E : [0,1) ! [0,1)

is defined by

⇢E(⌧) = sup{kx+ ⌧yk+ kx� ⌧yk
2

� 1 : kxk = kyk = 1}.

E is called uniformly smooth if lim
⌧!0

⇢E(⌧)

⌧
= 0, q�uniformly smooth if there exist Cq > 0 such

that ⇢E(⌧)  Cq⌧
q, for any ⌧ > 0. The duality mapping J

p

E
: E ! 2E

⇤
is defined by

J
p

E
(x) = {x̄ 2 E

⇤ : hx, x̄i = kxkp, kx̄k = kxkp�1}.

The duality mapping J
p

E
is one-to-one and single-valued (see [5, 15]).

The metric projection for a nonempty, closed and convex subset C of Banach space E is given by

PCx = argmin
y2C

kx� yk, x 2 E.

For a Gâteaux di↵erentiable convex function f : E ! R, the Bregman distance with respect to f

is defined as

�f(x,y) = f(y)� f(x)� hf 0(x), y � xi, x, y 2 E.

Since the duality mapping J
p

E
is the derivative of the function fp(x) =

1
p
kxkp. Then the Bregman

distance with respect to fp is,

�p(x, y) =
1

q
kxkp � hJp

E
x, yi+ 1

p
kykp =

1

q
(kykp � kxkp)� hJp

E
x� J

p

E
y, xi. (2.1)
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We define the Bregman projection as the unique minimizer of the Bregman distance,

⇧Cx = argmin
y2C

�p(x, y), x 2 E.

It can also be characterized by a variational inequality,

hJp

E
(x)� J

p

E
(⇧Cx), z �⇧Cxi  0, 8z 2 C, (2.2)

also,

�p(⇧Cx, z)  �p(x, z)��p(x,⇧Cx), 8z 2 C. (2.3)

In real Hilbert space ⇧C = PC , for more detail, see [1, 18]. The function Vp : E⇤ ⇥ E ! [0,+1)

with fp is defined by

Vp(x̄, x) =
1

q
kx̄kq � hx̄, xi+ 1

p
kxkp, 8x 2 E, x̄ 2 E

⇤
.

Then Vp � 0 and also satisfy following property:

Vp(x̄, x) = �p(J
q

E
(x̄), x), 8x 2 E, x̄ 2 E

⇤
. (2.4)

Moreover,

Vp(x̄, x) + hȳ, Jq

E
(x̄)� xi  Vp(x̄+ ȳ, x), (2.5)

8x 2 E and x̄, ȳ 2 E
⇤ (see [29]). Also, Vp is convex in the first variable. Thus, for all z 2 E,

�p

 
J
q

E

 
NX

i=1

tiJ
p

E
(xi)

!
, z

!


NX

i=1

ti�p(xi, z), (2.6)

where {xi}Ni=1 ⇢ E and {ti}Ni=1 ⇢ (0, 1) with
NX

i=1

ti = 1, see [33].

Lemma 2.1 ([27]). Let E be a p-uniformly convex and uniformly smooth real Banach space and let

{xn}, {yn} be bounded sequences in E, then lim
n!1

�p(xn, yn) = 0 if and only if lim
n!1

kxn � ynk = 0.

Lemma 2.2 ([43]). Let x, y 2 E. If E is q-uniformly smooth, then there is a Cq > 0 so that

kx� ykq  kxkq � qhy, Jq

E
(x)i+ Cqkykq.

A point x
⇤ 2 C is called an asymptotic fixed point of T if C contains a sequence {xn} which

converges weakly to x
⇤ and lim

n!1
kxn � Txnk = 0. Let F̂ (T ) is the set of asymptotic fixed points.

Similarly a point x
⇤ 2 C is a strong asymptotic fixed point of T if C contains a sequence {xn}

which converges strongly to x
⇤ and lim

n!1
kxn � Txnk = 0. Set of strong asymptotic fixed points of
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T is denoted by F̃ (T ).

Definition 2.3 ([24]). A mapping T from C to C is said to be,

1. Bregman relatively nonexpansive if F (T ) 6= ;, F̂ (T ) = F (T ) and

�p(x
⇤
, T y)  �p(x

⇤
, y), 8y 2 C, x

⇤ 2 F (T ).

2. Bregman weakly relatively nonexpansive if F̃ (T ) 6= ;, F̃ (T ) = F (T ) and

�p(x
⇤
, T y)  �p(x

⇤
, y), 8y 2 C, x

⇤ 2 F (T ).

For more details, see [32].

Definition 2.4 ([8]). Let E be a p-uniformly convex and uniformly smooth Banach space and C

a nonempty subset of E. A mapping S : C ! E is said to be firmly nonexpansive-like if

hJp

E
(x� Sx)� J

p

E
(y � Sy), Sx� Syi � 0, 8x, y 2 C. (2.7)

If E is a Hilbert space, then S is firmly nonexpansive-like mapping if and only if it is firmly

nonexpansive, i.e. kSx� Syk2  hSx� Sy, x� yi, 8x, y 2 C. We recall the following results:

Remark 2.5. Let E be a p-uniformly convex and uniformly smooth Banach space and C a

nonempty closed convex subset of E. Then the metric projection PC is a firmly nonexpansive-

like mapping.

Lemma 2.6 ([8]). Let E be a smooth Banach space, C be a closed and convex nonempty subset

of E and S : C ! E a firmly nonexpansive-like mapping then F (S) is closed and convex and

F̂ (S) = F (S).

Let B : E ! 2E
⇤
be a mapping, the e↵ective domain of B is denoted by D(B), such that

D(B) = {x 2 E : Bx 6= ;}. A multi-valued mapping B is said to be monotone if

hu� v, x� yi � 0, 8x, y 2 D(B), u 2 Bx and v 2 By.

A monotone operator B on E is said to be maximal if its graph is not properly contained in the

graph of any other monotone operator on E.

For �2 > 0 and x 2 E2, consider the metric resolvent MB2
�2

: E2 ! D(B2) of B2 defined by

M
B2
�2

(x) = (I + �2(J
p

E2
)�1

B2)
�1(x), 8x 2 E2.
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Set of null points of B2 is defined by B2
�1(0) = {z 2 E2 : 0 2 Bz}. Since B2

�1(0) is closed and

convex, then we have

0 2 J
P

E2
(MB2

�2
(x)� x) + �2B2M

B2
�2

(x).

Next, F (MB2
�2

) = B
�1
2 (0), for �2 > 0, from [22] we also have,

hMB2
�2

(x)�M
B2
�2

(y), Jp

E2
(x�M

B2
�2

(x))� J
p

E2
(y �M

B2
�2

(y))i � 0,

for all x, y 2 E2 and if B�1
2 (0) 6= 0, then

hJp

E2
(x�M

B2
�2

(x))� (MB2
�2

(x)� z)i � 0,

for all x 2 E2 and z 2 B2
�1(0).

The monotonicity of B2 implies that MB2
�2

is a firmly nonexpansive-like mapping.

Now, we can define a mapping N
B1
�1

: E1 ! D(B1) called the relative resolvent of B1 [20], for

�1 > 0 as

N
B1
�1

= (Jp

E1
+ �1B1)

�1
J
p

E1
(x), 8x 2 E1.

Since N
B1
�1

is relatively nonexpansive mapping and F (NB1
�1

) = B1
�1(0) for �1 > 0.

Lemma 2.7 ([20]). Let B : E ! 2E
⇤
be a maximal monotone operator with B

�1 6= ; and let N
B

�

be a resolvent operator of B for � > 0. Then

�p(N
B

�
(x), z) +�p(N

B

�
(x), x)  �p(x, z) for all x 2 E and z 2 B

�1(0).

Lemma 2.8 ([35]). Let E1, E2 be two p-uniformly convex and uniformly smooth Banach spaces with

duals E
⇤
1 , E

⇤
2 , respectively. Let N

B1
�1

be the resolvent operator associated with maximal monotone

operator B1 for �1 > 0 and M
B2
�2

be a metric resolvent operator of maximal monotone operator B2

for �2 > 0. Assume ⌦ 6= ;, � > 0 and x
⇤ 2 E1. Then x

⇤
is a solution of problem (1.1) if and only

if

x
⇤ = N

B1
�1

(Jq

E
⇤
1
(Jp

E1
(x⇤)� �A

⇤
J
p

E2
(I �M

B2
�2

)Ax
⇤)).

3 Main results

We assume the following assumptions for the rest of the paper, let E1, E2 be two p-uniformly convex

and uniformly smooth Banach spaces with duals E
⇤
1 , E

⇤
2 , respectively. Let C = C1 be nonempty

closed and convex subset of E1. Let B1 : E1 ! 2E1
⇤
and B2 : E2 ! 2E2

⇤
be maximal monotone

operators such that B�1
1 (0) 6= 0, B�1

2 (0) 6= 0. Let NB1
�1

be the resolvent operator of B1 for �1 > 0

and M
B2
�2

is the metric resolvent operator of B2 for �2 > 0. Let T : E1 ! E1 be a Bregman
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relatively nonexpansive mapping. Let A : E1 ! E2 be a bounded linear operator with its adjoint

A
⇤ : E⇤

2 ! E
⇤
1 and {↵n} 2 (0, 1) such that 0 < lim inf

n!1
↵n  lim sup

n!1
↵n < 1, ✓n 2 (�1,+1) and

assuming ⌦ \ F (T ) 6= ;.

Algorithm 3.1. Select x0, x1 2 E1 and assuming that the sequence xn is generated via the formula

8
>>>>>>>>>>><

>>>>>>>>>>>:

vn = J
q

E
⇤
1
[Jp

E1
xn + ✓n(J

p

E1
xn � J

p

E1
xn�1)]

zn = N
B1
�1

[Jq

E
⇤
1
(Jp

E1
(vn)� ⇢n

f
p�1(vn)

kg(vn)kp
g(vn))]

yn = J
q

E
⇤
1
[↵nJ

p

E1
(zn) + (1� ↵n)J

p

E1
T (zn)]

Cn+1 = {u 2 Cn : �p(yn, u)  �p(vn, u)}

xn+1 = ⇧Cn+1x0, 8n � 1,

(3.1)

where f(vn) = 1
p
k(I � M

B2
�2

)Avnkp, g(vn) = A
⇤
J
p

E2
(I � M

B2
�2

)Avn and {⇢n} 2 (0,1) satisfy

lim inf
n!1

⇢n(pq � Cq⇢
q�1
n

) > 0. Suppose that the set  = {n 2 N : (I � M
B2
�2

)Avn 6= 0}, otherwise
zn = vn.

Theorem 3.1. The sequence {xn} generated by Algorithm 3.1 converges strongly to x
⇤ = ⇧⌦\F (T )x0.

Proof. We divide the proof into four steps:

Step 1: To show ⌦\F (T ) ✓ Cn, for all n � 1 and Algorithm 3.1 is well defined. Let Ck is closed

and convex for k � 1. Then

Ck+1 = {u 2 Ck : �p(yn, u)  �pvn, u)}

=

⇢
u 2 Ck :

kukp

p
+

kykk
q

� hJp

E1
yk, ui 

kukp

p
+

kvkk
q

� hJp

E1
vk, ui

�

=
�
u 2 Ck : kykkp � kvkkp  qhJp

E1
yk � J

p

E1
vk, ui

 
,

which implies Ck+1 is closed. Let u1, u2 2 Ck+1 and �1,�2 2 (0, 1) such that �1 + �2 = 1.

Then

kykkp � kvkkp  qhJp

E1
yk � J

p

E1
vk, u1i and kykkp � kvkkp  qhJp

E1
yk � J

p

E1
vk, u2i.

Combining these two, we get

kykkp � kvkkp  hJp

E1
yk � J

p

E1
vk,�1u1 + �2u2i.

By convexity �1u1 + �2u2 2 Ck. Therefore, �1u1 + �2u2 2 Ck+1 and Ck+1 is convex. Thus

Cn is convex, 8n � 1. Let x⇤ 2 ⌦ \ F (T ), then
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�p(yn, x
⇤) = �p((1� ↵n)J

p

E1
zn + ↵nJ

p

E1
T (zn), x

⇤)

 (1� ↵n)�p(zn, x
⇤) + ↵n�p(T (zn), x

⇤)  �p(zn, x
⇤). (3.2)

Set wn := J
q

E
⇤
1
(Jp

E1
(vn) � ⇢n

f
p�1(vn)

kg(vn)kp
g(vn)), for all n � 1. From Lemma 2.2 and (2.1), we

have

�p(zn, x
⇤)  �p(wn, x

⇤)

= �p

✓
J
q

E
⇤
1


J
p

E1
(vn)� ⇢n

f
p�1(vn)

kg(vn)kp
g(vn)

�
, x

⇤
◆

=
1

p
kx⇤kp + 1

q

����J
p

E1
(vn)� ⇢n

f
p�1(vn)

kg(vn)kp
g(vn)

����
q

� hJp

E1
(vn), x

⇤i

+ ⇢n
f
p�1(vn)

kg(vn)kp
hx⇤

, g(vn)i

 1

p
kx⇤kp + 1

q
kvnkp � ⇢n

f
p�1(vn)

kg(vn)kp
hvn, g(vn)i+

Cq

q
⇢
q

n

f
p(vn)

kg(vn)kp

� hx⇤
, J

p

E1
vni+ ⇢n

f
p�1(vn)

kg(vn)kp
hx⇤

, g(vn)i

=
1

p
kx⇤kp + 1

q
kvnkp � hx⇤

, J
p

E1
vni+ ⇢n

f
p�1(vn)

kg(vn)kp
hx⇤ � vn, g(vn)i

+
Cq

q
⇢
q

n

f
p(vn)

kg(vn)kp

= �p(vn, x
⇤) + ⇢n

f
p�1(vn)

kg(vn)kp
hx⇤ � vn, g(vn)i+

Cq

q
⇢
q

n

f
p(vn)

kg(vn)kp
. (3.3)

Since g(vn) = A
⇤
J
p

E2
(I �M

B2
�2

)Avn and hJp

E2
(I �M

B2
�2

)Avn,M
B2
�2

Avn �Ax
⇤i � 0, then

hg(vn), x⇤ � vni = hA⇤
J
p

E2
(I �M

B2
�2

)Avn, x
⇤ � vni = hJp

E2
(I �M

B2
�2

)Avn, Ax
⇤ �Avni

= hJp

E2
(I �M

B2
�2

)Avn,M
B2
�2

Avn �Avni

+ hJp

E2
(I �M

B2
�2

)Avn, Ax
⇤ �M

B2
�2

Avni

 �kAvn �M
B2
�2

Avnkp = �pf(vn). (3.4)

Using (3.3) and (3.4),

�p(zn, x
⇤)  �p(vn, x

⇤)� ⇢np
f
p(vn)

kg(vn)kp
+

Cq

q
⇢
q

n

f
p(vn)

kg(vn)kp

= �p(vn, x
⇤)�

✓
⇢np�

Cq

q
⇢
q

n

◆
f
p(vn)

kg(vn)kp
. (3.5)
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Since lim inf
n!1

⇢n(pq � Cq⇢
q�1
n

) > 0,

�p(zn, x
⇤)  �p(vn, x

⇤), n � 1. (3.6)

Step 2: We prove that {xn} is a Cauchy sequence.

Since, {�p(xn, x0)} is nondecreasing and bounded. So, the limit lim
n!1

�p(xn, x0) exists and

from (2.3) we have,

�p(xn+1, xn) = �p(xn+1,⇧Cnx0)  �p(xn+1, x0)��p(⇧Cnx0, x0)

= �p(xn+1, x0)��p(xn, x0), (3.7)

which implies that,

lim
n!1

�p(xn+1, xn) = 0. (3.8)

So, it follows from Lemma 2.1 that,

lim
n!1

kxn+1 � xnk = 0. (3.9)

Since xn = ⇧Cnx0 ✓ Cm and from Lemma 2.1, for some positive integers m,n with m  n,

we have

�p(xm, xn) = �p(xm,⇧Cnx0)  �p(xm, x0)��p(⇧Cnx0, x0)

 �p(xm, x0)��p(xn, x0). (3.10)

Since lim
n!1

�p(xn, x0) exists, it follows from (3.10) that lim
n!1

kxn � xmk = 0. Therefore,

{xn} is a Cauchy sequence.

Step 3: We prove that lim
n!1

kTzn � znk = 0, lim
n!1

k(I �M
B2
�2

)Axnk = 0 and lim
n!1

kNB1
�1

vn � vnk = 0.

Since vn = J
q

E
⇤
1
[Jp

E1
xn + ✓n(J

p

E1
xn � J

p

E1
xn�1)]. Then it follows that,

J
p

E1
vn � J

p

E1
xn = ✓n(J

p

E1
xn � J

p

E1
xn�1).

By the uniform continuity of Jp

E1
and from (3.9), we have

kJp

E1
vn � J

p

E1
xnk = k✓n(Jp

E1
xn � J

p

E1
xn�1)k ! 0 as n ! 1. (3.11)

Since xn+1 = ⇧Cn+1x0 2 Cn+1 ✓ Cn, from the definition of Cn+1, we have

�p(xn+1, zn)  �p(xn+1, vn), (3.12)
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and

�p(xn+1, yn)  �p(xn+1, vn). (3.13)

Hence, it follows from (3.12) and (3.13) that lim
n!1

�p(xn+1, zn) = 0 and lim
n!1

�p(xn+1, yn) = 0.

By Lemma (2.1), we conclude that

lim
n!1

kxn+1 � znk = 0 and lim
n!1

kxn+1 � ynk = 0, (3.14)

and so,

lim
n!1

kyn � znk = 0. (3.15)

From (3.5), we obtain

✓
⇢np�

Cq

q
⇢
q

n

◆
f
p(vn)

kg(vn)kp
 �p(vn, x

⇤)��p(zn, x
⇤)

= hJp

E1
zn � J

p

E1
vn, x

⇤ � vni ��p(zn, vn)

 hJp

E1
zn � J

p

E1
vn, x

⇤ � vni

 kx⇤ � vnkkJp

E1
zn � J

p

E1
vnk. (3.16)

Since E1 is a p-uniformly convex and p-uniformly smooth real Banach space, thus J
p

E1
is

uniformly norm-to-norm continuous. By lim
n!1

kvn � znk = 0, we obtain kJp

E1
zn�J

p

E1
vnk ! 0.

From (3.16) and the fact that lim inf
n!1

⇢n(pq � Cq⇢
q�1
n

) > 0, we have

f
p(vn)

kg(vn)kp
! 0 as n ! 1,

implies,

lim
n!1

k(I �M
B2
�2

)Avnk = 0. (3.17)

Also

kA⇤
J
p

E2
(I �M

B2
�2

)Avnk  kAkk(I �M
B2
�2

)Avnk ! 0, as n ! 1.

Thus

kA⇤
J
p

E2
(I �M

B2
�2

)Avnk ! 0, as n ! 1.

Again from (3.1), we get

kJp

E1
Tzn � J

p

E1
znk =

1

1� ↵n

kJp

E1
yn � J

p

E1
znk. (3.18)

It follows from (3.15) that

lim
n!1

kJp

E1
Tzn � J

p

E1
znk = 0, (3.19)
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which also implies that

lim
n!1

kTzn � znk = 0. (3.20)

By Lemma (2.7) and (3.16), we have

�p(zn, wn) = �p(N
B1
�1

wn, wn)  �p(wn, x
⇤)��p(zn, x

⇤)

 �p(vn, x
⇤)��p(zn, x

⇤) ! 0 as n ! 1.

Thus, we have

lim
n!1

kNB1
�1

wn � wnk = lim
n!1

kzn � wnk = 0. (3.21)

Step 4: We show that {xn} converges strongly to an element x
⇤ = ⇧⌦\F (T )x0. Since {xn} is

a Cauchy sequence, there exists x
⇤ 2 E1 such that {xn} converges strongly to x

⇤. Since

zn ! x
⇤ 2 E1, we also have vn ! x

⇤ 2 E1. From (3.21), we get x
⇤ 2 F (NB1

�1
) 2 B

�1
1 (0).

From (3.20), lim
n!1

kTzn � znk = 0 and the closeness of T that x⇤ = Tx
⇤ that is, x⇤ 2 F (T ).

Since A is a bounded linear operator, we have that lim
n!1

kAxn �Ax
⇤k = 0. By (3.17) we

get lim
n!1

k(I �M
B2
�2

)Axnk = 0, this implies that Ax
⇤ 2 F̂ (MB2

�2
) and by Lemma 2.6 we have

Ax
⇤ 2 F (MB2

�2
). This means that x⇤ 2 ⌦ \ F (T ).

Let p 2 ⌦ \ F (T ) ✓ Cn such that p = ⇧⌦\F (T )x0 and by definition xn = ⇧Cnx0, we have

�p(xn, x0) = �p(p, x0). (3.22)

This implies that

�p(x
⇤
, x0)  lim

n!1
�p(xn, x0)  �p(p, x0), (3.23)

hence x
⇤ = p. Therefore, {xn} converges strongly to x

⇤ 2 ⌦\F (T ), where x
⇤ = ⇧⌦\F (T )x0.

This completes the proof. ⇤

We next present some consequences of our main results. Firstly, if ✓n = 0, we obtain the following

non-inertial shrinking projection result.

Corollary 3.2. Let ⌦ \ F (T ) 6= ;. Select x0, x1 2 E1 and the sequence {xn} is generated by

8
>>>>>>>>>>><

>>>>>>>>>>>:

vn = xn

zn = N
B1
�1

✓
J
q

E
⇤
1

✓
J
p

E1
(vn)� ⇢n

f
p�1(vn)

kg(vn)kp
g(vn)

◆◆

yn = J
q

E
⇤
1
[↵nJ

p

E1
(zn) + (1� ↵n)J

p

E1
T (zn)]

Cn+1 = {u 2 Cn : �p(yn, u)  �p(vn, u)}

xn+1 = ⇧Cn+1x0, 8n � 1.

(3.24)
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where f(vn) = 1
p
k(I � M

B2
�2

)Avnkp, g(vn) = A
⇤
J
p

E2
(I � M

B2
�2

)Avn and {⇢n} 2 (0,1) satisfy

lim inf
n!1

⇢n(pq � Cq⇢
q�1
n

) > 0. Suppose that the set  = {n 2 N : (I � M
B2
�2

)Avn 6= 0}, otherwise
zn = vn. Then the sequence {xn} converges strongly to x

⇤ = ⇧⌦\F (T )x0.

Also, by letting M
B2
�2

be the metric projection mapping onto a closed convex subset Q of E2 in

Algorithm (3.1), i.e. MB2
�2

= PQ and N
B1
�1

= I, we obtain the following result as a solution to split

feasibility and fixed point problems.

Corollary 3.3. With reference to the data in Algorithm (3.1), let Q be a nonempty closed convex

subset of E2 and M
B2
�2

= PQ. Assuming � := {x 2 C : x 2 F (T ), Ax 2 Q} 6= ;. Then the sequence

xn generated by Algorithm (3.1) converges strongly to u 2 �, where u = ⇧�x0.

4 A countable family of relatively nonexpansive mappings

In this section, we apply our result to the common fixed point problems of a family of relatively

nonexpansive mappings and equilibrium problem.

Definition 4.1 ([7]). Let C be a subset of a real p-uniformly convex and uniformly smooth Banach

space E. Let {Tn}1n=1 be a sequence of mappings of C in to E such that
T1

n=1 F (Tn) 6= ;. Then

{Tn}1n=1 is said to satisfy the AKTT -condition if, for any bounded subset B of C,

1X

n=1

sup
z2B

{kJE

p
(Tn+1z)� J

E

p
(Tnz)k} < 1.

As in [36], we prove the following Proposition:

Proposition 4.2. Let C be a nonempty, closed and convex subset of a real p-uniformly convex

and uniformly smooth Banach space E. Let {Tn}1n=1 be a sequence of mappings of C such that

T1
n=1 F (Tn) 6= ; and {Tn}1n=1 satisfies the AKTT -condition. Then for any bounded subset B of

C there exists a mapping T : B ! E such that

Tx = lim
n!1

Tnx, 8x 2 B, (4.1)

and

lim
n!1

sup
z2B

kJE

p
(Tz)� J

E

p
(Tnz)k = 0.

Proof. To complete the proof we show that {Tnx} is Cauchy sequence for each x 2 C. Let ✏ > 0

be given and by the AKKT -condition 9l0 2 N such that,

1X

l0

sup{kTn+1y � Tnyk : y 2 C} < ✏.
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Let k > l � l0, then

kTkx� Tlxk  sup{kTky � Tlyk : y 2 C}

 sup{kTky � Tk�1yk : y 2 C}+ sup{kTk�1y � Tlyk : y 2 C}
...


k�1X

l

sup{kTn+1y � Tnyk : y 2 C} 
1X

l0

sup{kTn+1y � Tnyk : y 2 C} < ✏.

Therefore we have that {Tnx} is Cauchy sequence. Moreover (3.4) implies that,

kTx� Tlxk = lim
k!1

kTkx� Tlxk 
1X

l0

sup{kTn+1y � Tnyk : y 2 C},

for all x 2 C. So,

sup kTx� Tlxk 
1X

l0

sup{kTn+1y � Tnyk : y 2 C},

therefore, we conclude that lim
l0!1

sup kTx� Tl0xk = 0. ⇤

In the sequel, we say that ({Tn}, T ) satisfies the AKTT -condition if {Tn}1n=1 satisfies the AKTT -

condition and T is defined by (4.1) with
T1

n=1 F (Tn) = F (T ).

Theorem 4.3. Let {Tn} be a countable family of Bregman relatively nonexpansive mapping on

E1 such that F (Tn) = F̂ (Tn) and assuming ⌦1 =
T1

n=1 F (Tn) \⌦ 6= ;. Select x0, x1 2 E1 and the

sequence {xn} is generated by

8
>>>>>>>>>>><

>>>>>>>>>>>:

vn = J
q

E
⇤
1
[Jp

E1
xn + ✓n(J

p

E1
xn � J

p

E1
xn�1)]

zn = N
B1
�1


J
q

E
⇤
1

✓
J
p

E1
(vn)� ⇢n

f
p�1(vn)

kg(vn)kp
g(vn)

◆�

yn = J
q

E
⇤
1
[↵nJ

p

E1
(zn) + (1� ↵n)J

p

E1
Tn(zn)]

Cn+1 = {u 2 Cn : �p(yn, u)  �p(vn, u)}

xn+1 = ⇧Cn+1x0, 8n � 1,

(4.2)

where f(vn) = 1
p
k(I � M

B2
�2

)Avnkp, g(vn) = A
⇤
J
p

E2
(I � M

B2
�2

)Avn and suppose that the set  =

{n 2 N : (I � M
B2
�2

)Avn 6= 0}, otherwise zn = vn. Suppose that in addition ({Tn}1n=1, T ) satisfy

AKTT-Condition and F (T ) = F̂ (T ), then the sequence generated by {xn} converges strongly to

x
⇤ 2 ⌦1, where x

⇤ = ⇧⌦1x0.

Proof. To this end, it su�ces to show that lim
n!1

kxn � Txnk = 0. By following the method of

proof in Theorem 3.1, we can show that {xn} is bounded and lim
n!1

kxn � Tnxnk = 0. Since J
E1
p

is
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uniformly continuous on bounded subsets of E1, we have

lim
n!1

kJE1
p

(xn)� J
E1
p

(Tnxn)k = 0.

By Proposition 4.2, we see that

kJE1
p

(xn)� J
E1
p

(Txn)k  kJE1
p

(xn)� J
E1
p

(Tnxn)k+ kJE1
p

(Tnxn)� J
E1
p

(Txn)k

 kJE1
p

(xn)� J
E1
p

(Tnxn)k+ sup
x2{xn}

kJE1
p

(Tnx)� J
E1
p

(Tx)k ! 0 as n ! 1.

Since J
E

⇤
1

p is norm-to-norm uniformly continuous on bounded subsets of E⇤
1 ,

lim
n!1

kxn � Txnk = 0.

This completes the proof. ⇤

4.1 Equilibrium problem

Let E be a real Banach space and let E⇤ be the dual space of E. Let C be a closed convex subset

of E. Let f be a bifunction from C ⇥C to R, where R is the set of real numbers. The equilibrium

problem is to find:

x
⇤ 2 C such that f(x⇤

, y) � 0, 8y 2 C. (4.3)

The set of solutions of (4.3) is denoted by EP (f). For a given mapping T : C ! E
⇤, define

f(x, y) = hTx, y � xi, for all x, y 2 C. Then, x⇤ 2 EP (f) if and only if hTx⇤
, y � x

⇤i � 0, for all

y 2 C i.e. is a solution of the variational inequality. Numerous problems in physics, optimization,

and economics reduce to find a solution of (4.3).

For solving the equilibrium problem, let us assume that the bifunction f satisfies the following

conditions:

(A1) f(x, x) = 0 for all x 2 C,

(A2) f is monotone, i.e. f(x, y) + f(y, x)  0 for all x, y 2 C,

(A3) for all x, y, z 2 C,

lim sup
t!0

f(tz + (1� t)x, y)  f(x, y),

(A4) for all x 2 C, f(x, .) is convex and lower semicontinuous.
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Lemma 4.4 ([10]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive

Banach space E, let f be a bifunction from C ⇥ C to R satisfying (A1)� (A4), and let r > 0 and

x 2 E. Then, there exists z 2 C such that

f(z, y) +
1

r
hy � z, J

P

E
z � J

P

E
xi � 0 for all y 2 C.

Lemma 4.5 ([39]). Let C be a closed convex subset of a smooth, strictly convex, and reflexive

Banach space E, let f be a bifunction from C ⇥ C to R satisfying (A1)� (A4), and let r > 0 and

x 2 E, define a mapping Tr : E ! C as follows

T
f

r
(x) =

⇢
z 2 C : f(z, y) +

1

r
hy � z, J

P

E
z � J

P

E
xi � 0 for all y 2 C

�
,

for all x 2 E. Then, the following hold:

1. T
f

r
is single-valued,

2. T
f

r
is a firmly nonexpansive-type mapping [21], i.e., for all x, y 2 E,

hT f

r
x� T

f

r
y, J

P

E
T

f

r
x� J

P

E
T

f

r
yi  hT f

r
x� T

f

r
y, J

P

E
x� J

P

E
yi

3. F (T f

r
) = EP (f),

4. EP (f) is closed and convex.

We consider the following split equilibrium problem, find x
⇤ 2 C such that

f1(x
⇤
, x) � 0, 8x 2 C, (4.4)

and y = Ax
⇤ 2 Q solves

f2(y
⇤
, y) � 0, 8y 2 Q, (4.5)

with the solution set ⌦2 = {x⇤ 2 EP (f1) : Ax
⇤ 2 EP (f2)}.

Theorem 4.6. Let f1, f2 be bifunctions satisfying (A1)�(A4) and assuming ⌦2\F (T ) 6= ;. Select
x0, x1 2 E1 and the sequence {xn} is generated by

8
>>>>>>>>>>><

>>>>>>>>>>>:

vn = J
q

E
⇤
1
[Jp

E1
xn + ✓n(J

p

E1
xn � J

p

E1
xn�1)]

zn = T
f1
r


J
q

E
⇤
1

✓
J
p

E1
(vn)� ⇢n

f
p�1(vn)

kg(vn)kp
g(vn)

◆�

yn = J
q

E
⇤
1
[↵nJ

p

E1
(zn) + (1� ↵n)J

p

E1
T (zn)]

Cn+1 = {u 2 Cn : �p(yn, u)  �p(vn, u)}

xn+1 = ⇧Cn+1x0, 8n � 1,

(4.6)
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where f(vn) = 1
p
k(I � T

f2
r
)Avnkp, g(vn) = A

⇤
J
p

E2
(I � T

f2
r
)Avn and {⇢n} 2 (0,1) satisfy

lim inf
n!1

⇢n(pq � Cq⇢
q�1
n

) > 0 and suppose that the set  = {n 2 N : (I � T
f2
r
)Avn 6= 0}, other-

wise zn = vn. Then the sequence generated by {xn} converges strongly to x
⇤ = ⇧⌦2\F (T )x0.

5 Numerical example

In this section, we present an example to show the behaviour of the Algorithm 3.1 presented in

this paper and compare its performance with algorithm (1.6) of Cholamjiak et al. [14] and (1.5)

of Bello Cruz et al. [9] by using MATLAB R2016(a). In numerical experiment, we will show that

the sequence generated by Algorithm 3.1 via the self-adaptive technique converges faster than

algorithms defined in (1.5) and (1.6) for di↵erent choices of the {⇢n} and initial values to see the

convergence behaviour of Algorithm 3.1.

Example 1. Let E1 = E2 = l2(R), where l2(R) :=
(
r = (r1, r2, . . . , ri, . . . ), ri 2 R :

1X

i=1

| ri |2< 1
)
,

krik2 =

 1X

i=1

| ri |2
! 1

2

, 8r 2 E1. Let C = C1 := {x 2 E1 : kxk2  1}. Let T : E1 ! E1 be defined

by Tx =
x

2
, 8x 2 E1. Let A : E1 ! E2 be a mapping defined by Ax =

3x

4
, 8x 2 E1. Let ↵n =

1

2n

and ✓n =
1 + n

5n
and

N
B1
�1

x = (1 + �1B1)
�1

x =
x

1 + 3�1
, 8x 2 E1

and

M
B2
�2

y = (1 + �2B2)
�1

y =
y

1 + 5�2
, 8y 2 E2,

furthermore, it can be verified that for �1,�2 � 0.

By choosing di↵erent ⇢n and initial values with �1 = �2 = 1 for plotting the graphs of error

= |xn+1 � xn| against number of iterations with stopping criteria |xn+1 � xn| < 10�3
for the

following cases.

1. x1 = x0 =

✓
2, 1,

2

3
, . . .

◆
, ⇢n =

n

n+ 1
.

2. x1 = x0 =

✓
5,

5

2
,
5

3
, . . .

◆
, ⇢n =

n

n+ 1
.

3. x1 = x0 =

✓
2, 1,

2

3
, . . .

◆
, ⇢n =

3n

n+ 1
.

4. x1 = x0 =

✓
5,

5

2
,
5

3
, . . .

◆
, ⇢n =

3n

n+ 1
.

Thus we see that sequences generated by our algorithm 3.1 converges to the solution set ⌦\F (T ).

The computational result can be found in Table 1 and Figure.1,2.
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(a) Choice 1 in Example 1 (b) Choice 2 in Example 1

Figure 1

(a) Choice 3 in Example 1 (b) Choice 4 in Example 1

Figure 2

Choice Algorithm 3.1 (1.5) (1.6)

1. No. of Iteration 19 30 41
CPU Time(s) 0.0313 0.0469 0.0564

2. No. of Iteration 19 30 41
CPU Time(s) 0.0524 0.0625 0.125

3. No. of Iteration 18 27 39
CPU Time(s) 0.1125 0.313 0.1250

4. No. of Iteration 19 32 39
CPU Time(s) 0.5938 0.0625 0.469

Table 1
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1 Introduction and the main results

In this paper we calculate several remarkable cubic and quartic series involving the term 1
n −

1
n+1 +

1
n+2 − · · · . The goal of this paper is to extend, to the case of cubic and quartic series, the results

recorded in [3], in problems 3.15, 3.29 and 3.45, concerning the calculation of some quadratic

series involving the tail of ln 2. Our results are new in the literature and they are obtained based

on a combination of techniques involving Abel’s summation formula and shifting the index of

summation, which allow us to reduce the calculation of a cubic or a quartic series to a linear or a

quadratic series, respectively. We also solve an open problem posed in [5, Open problem, p. 107].

The main results of this paper are Theorems 1.1 and 1.2 below.

Theorem 1.1 (Remarkable cubic series with the tail of ln 2). The following identities hold:

(a)
∞
∑

n=1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

=
5

16
ζ(3);

(b)
∞
∑

n=1

(−1)n
(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

=
ζ(2)

4
−

3

2
ln2 2;

(c)
∞
∑

n=1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

= −
ζ(2)

4
−

3

4
ln2 2 +

3

2
ln 2 +

5

32
ζ(3).

We mention that the alternating version of the series in part (c) of Theorem 1.1

∞
∑

n=1

(−1)nn

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

=
ln 2

4
−

3 ln2 2

4
−

ζ(2)

16

was calculated in [4]. The results in parts (a) and (b) of Theorem 1.1 are due to C. I. Vălean, who

communicated them to the first author, without proof, in an equivalent form in 2015.

Theorem 1.2 (Quartic series with the tail of ln 2). The following identities hold:

(a)
∞
∑

n=1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)4

= 2 ln3 2 + 2ζ(2) ln 2−
9

4
ζ(3);

(b)
∞
∑

n=1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)4

= ln3 2−
1

2
ln2 2 + ζ(2) ln 2−

13

16
ζ(3).

We collect, in the next lemma, some results we need in proving Theorems 1.1 and 1.2.
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Lemma 1.3 (A mosaic of linear and quadratic series with the tail of ln 2). The following identities

hold:

Linear series

(a)
∞
∑

n=1

(−1)n

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
ln2 2

2
−

ζ(2)

2
;

(b)
∞
∑

n=1

1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
ln2 2

2
+

ζ(2)

2
;

(c)
∞
∑

n=1

1

n

(

1

2n
−

1

2n+ 1
+

1

2n+ 2
− · · ·

)

= ln2 2;

(d)
∞
∑

n=1

1

n2

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
13

8
ζ(3)− ζ(2) ln 2;

(e)
∞
∑

n=1

(−1)n

n2

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
ln 2

2
ζ(2)− ζ(3);

Quadratic series

(f)
∞
∑

n=1

(−1)n
(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

= −
ζ(2)

4
;

(g)
∞
∑

n=1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

= ln 2;

(h)
∞
∑

n=1

1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

=
3

2
ζ(3)− ζ(2) ln 2−

ln3 2

3
;

(i)
∞
∑

n=1

(−1)n

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

=
ζ(2)

2
ln 2−

3

4
ζ(3)−

ln3 2

3
.

Since

ln 2−

[

1 +
(−1)1

2
+

(−1)2

3
+ · · ·+

(−1)n−2

n− 1

]

= (−1)n−1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

,

we have that all the series in this paper involve the tail of ln 2.

Before we prove the lemma, we observe that

1

n
−

1

n+ 1
+

1

n+ 2
− · · · =

∫ 1

0

(

xn−1
− xn + xn+1

− · · ·

)

dx =

∫ 1

0

xn−1

1 + x
dx. (1.1)

This implies

lim
n→∞

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
1

2
(1.2)
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and it follows that
1

n
−

1

n+ 1
+

1

n+ 2
− · · · ∼

1

2n
.

This shows that the series in Theorems 1.1, 1.2 and Lemma 1.3 are all convergent.

We also need in our analysis Abel’s summation formula, which states that: if (an)n≥1 and (bn)n≥1

are sequences of real numbers and An =
n
∑

k=1

ak, then

n
∑

k=1

akbk = Anbn+1 +
n
∑

k=1

Ak(bk − bk+1),

or, the infinite version

∞
∑

k=1

akbk = lim
n→∞

Anbn+1 +
∞
∑

k=1

Ak(bk − bk+1). (1.3)

Now we are ready to prove Lemma 1.3.

2 Proof of Lemma 1.3

Proof. (a) We have, based on (1.1), that

∞
∑

n=1

(−1)n

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
∞
∑

n=1

(−1)n

n

∫ 1

0

xn−1

1 + x
dx =

∫ 1

0

1

x(1 + x)

(

∞
∑

n=1

(−x)n

n

)

dx

= −

∫ 1

0

ln(1 + x)

x(1 + x)
dx =

∫ 1

0

ln(1 + x)

1 + x
dx−

∫ 1

0

ln(1 + x)

x
dx

=
ln2 2

2
−

∫ 1

0

ln(1 + x)

x
dx

=
ln2 2

2
−

ζ(2)

2
.

We used that

∫ 1

0

ln(1 + x)

x
dx =

ζ(2)

2
.

(b) We have, based on (1.1), that

∞
∑

n=1

1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
∞
∑

n=1

1

n

∫ 1

0

xn−1

1 + x
dx =

∫ 1

0

1

x(1 + x)

(

∞
∑

n=1

xn

n

)

dx

= −

∫ 1

0

ln(1− x)

x(1 + x)
dx =

∫ 1

0

ln(1− x)

1 + x
dx−

∫ 1

0

ln(1− x)

x
dx

=
ln2 2

2
+

ζ(2)

2
.



CUBO
25, 1 (2023)

Cubic and quartic series with the tail of ln2 93

We used that

∫ 1

0

ln(1− x)

x
dx = −ζ(2) and

∫ 1

0

ln(1 − x)

1 + x
dx =

ln2 2

2
−

π2

12
(see [5, p. 203]).

(c) This nice result, which may be of independent interest, is obtained by adding the series in

parts (a) and (b) of the lemma.

(d) We have, based on (1.1), that

∞
∑

n=1

1

n2

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
∞
∑

n=1

1

n2

∫ 1

0

xn−1

1 + x
dx

=

∫ 1

0

1

x(1 + x)

∞
∑

n=1

xn

n2
dx =

∫ 1

0

Li2(x)

x(1 + x)
dx

=

∫ 1

0

Li2(x)

x
dx−

∫ 1

0

Li2(x)

1 + x
dx.

(2.1)

We calculate the first integral in (2.1) and we have that

∫ 1

0

Li2(x)

x
dx =

∫ 1

0

1

x

∞
∑

n=1

xn

n2
dx =

∞
∑

n=1

1

n3
= ζ(3). (2.2)

We calculate the second integral in (2.1). We integrate by parts, with f(x) = Li2(x), f ′(x) =

−
ln(1− x)

x
, g′(x) =

1

1 + x
and g(x) = ln(1 + x), and we have that

∫ 1

0

Li2(x)

1 + x
dx = ln(1 + x)Li2(x)

∣

∣

∣

∣

1

0

+

∫ 1

0

ln(1 − x) ln(1 + x)

x
dx = ζ(2) ln 2−

5

8
ζ(3), (2.3)

since

∫ 1

0

ln(1− x) ln(1 + x)

x
dx = −

5

8
ζ(3). For a proof of this result see [5, p. 328]. Com-

bining (2.1), (2.2) and (2.3), the desired result holds and part (d) of the lemma is proved.

(e) We have, based on (1.1), that

∞
∑

n=1

(−1)n

n2

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

=
∞
∑

n=1

(−1)n

n2

∫ 1

0

xn−1

1 + x
dx

=

∫ 1

0

1

x(1 + x)

∞
∑

n=1

(−x)n

n2
dx

=

∫ 1

0

Li2(−x)

x(1 + x)
dx

=

∫ 1

0

Li2(−x)

x
dx−

∫ 1

0

Li2(−x)

1 + x
dx.

(2.4)

We calculate the first integral in (2.4) and we have that

∫ 1

0

Li2(−x)

x
dx =

∫ 1

0

1

x

∞
∑

n=1

(−x)n

n2
dx =

∞
∑

n=1

(−1)n

n3
= −

3

4
ζ(3). (2.5)
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We calculate the second integral in (2.4). We integrate by parts, with f(x) = Li2(−x),

f ′(x) = −
ln(1 + x)

x
, g′(x) =

1

1 + x
, g(x) = ln(1 + x), and we have that

∫ 1

0

Li2(−x)

1 + x
dx = ln(1 + x)Li2(−x)

∣

∣

∣

∣

1

0

+

∫ 1

0

ln2(1 + x)

x
dx = −

ln 2

2
ζ(2) +

ζ(3)

4
, (2.6)

since

∫ 1

0

ln2(1 + x)

x
dx =

ζ(3)

4
(see [1, pp. 291–292]).

Combining (2.4), (2.5) and (2.6), the desired result holds and part (e) of the lemma is proved.

(f) We calculate the series by shifting the index of summation. We have

∞
∑

n=1

(−1)n−1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

= ln2 2 +
∞
∑

n=2

(−1)n−1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

n−1=m
= ln2 2 +

∞
∑

m=1

(−1)m
(

1

m+ 1
−

1

m+ 2
+

1

m+ 3
− · · ·

)2

= ln2 2−
∞
∑

m=1

(−1)m−1

[

1

m
−

(

1

m
−

1

m+ 1
+

1

m+ 2
− · · ·

)]2

= ln2 2 +
∞
∑

m=1

(−1)m

m2
+ 2

∞
∑

m=1

(−1)m−1

m

(

1

m
−

1

m+ 1
+

1

m+ 2
− · · ·

)

−

∞
∑

m=1

(−1)m−1

(

1

m
−

1

m+ 1
+

1

m+ 2
− · · ·

)2

and it follows that

2
∞
∑

n=1

(−1)n−1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

= ln2 2 +
∞
∑

n=1

(−1)n

n2
+ 2

∞
∑

n=1

(−1)n−1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

(a)
= ln2 2−

ζ(2)

2
+ 2

(

ζ(2)

2
−

ln2 2

2

)

=
ζ(2)

2
.

We mention that this series was calculated by a different method in [3, problem 3.45].

(g) This result is proved, using an integration technique, in [3, problem 3.29]. Here we give

another proof. We apply Abel’s summation formula with an = 1 and bn = x2
n, where

xn =
1

n
−

1

n+ 1
+

1

n+ 2
− · · · . Observe that xn + xn+1 =

1

n
.
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We have

∞
∑

n=1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

= lim
n→∞

nx2
n+1 +

∞
∑

n=1

n
(

x2
n − x2

n+1

)

=
∞
∑

n=1

n (xn − xn+1) (xn + xn+1)

=
∞
∑

n=1

(xn − xn+1) = x1 = ln 2.

We used that lim
n→∞

nx2
n+1 = 0, which follows based on (1.2).

(h) We need the following power series formula
∞
∑

n=1

Hn

n
xn = Li2(x) +

1

2
ln2(1− x), x ∈ [−1, 1).

For a proof of this result see [5, p. 403].

We calculate the series by Abel’s summation formula with an =
1

n
and bn = x2

n, where

xn =
1

n
−

1

n+ 1
+

1

n+ 2
− · · · . Observe that xn + xn+1 =

1

n
.

We have

∞
∑

n=1

1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

= lim
n→∞

Hnx
2
n+1 +

∞
∑

n=1

Hn (xn − xn+1) (xn + xn+1)

=
∞
∑

n=1

Hn

n

(

2xn −
1

n

)

= 2
∞
∑

n=1

Hn

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)

−

∞
∑

n=1

Hn

n2

(1.1)
= 2

∞
∑

n=1

Hn

n

∫ 1

0

xn−1

1 + x
dx− 2ζ(3) = 2

∫ 1

0

1

x(1 + x)

(

∞
∑

n=1

Hn

n
xn

)

dx− 2ζ(3)

= 2

∫ 1

0

1

x(1 + x)

(

Li2(x) +
1

2
ln2(1− x)

)

dx− 2ζ(3) (2.7)

= 2

∫ 1

0

(

1

x
−

1

1 + x

)(

Li2(x) +
1

2
ln2(1− x)

)

dx− 2ζ(3)

= 2

∫ 1

0

Li2(x)

x
dx+

∫ 1

0

ln2(1 − x)

x
dx− 2

∫ 1

0

Li2(x)

1 + x
dx−

∫ 1

0

ln2(1− x)

1 + x
dx− 2ζ(3).

We calculate

∫ 1

0

ln2(1− x)

x
dx =

∫ 1

0

ln2 y

1− y
dy =

∫ 1

0
ln2 y

(

∞
∑

n=0

yn

)

dy

=
∞
∑

n=0

∫ 1

0
yn ln2 y dy =

∞
∑

n=0

2

(n+ 1)3
= 2ζ(3).

(2.8)

We also have, see [5, p. 110], that

∫ 1

0

ln2(1− x)

1 + x
dx =

7

4
ζ(3)− ζ(2) ln 2 +

ln3 2

3
. (2.9)
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It follows, based on (2.5), (2.6), (2.7), (2.8) and (2.9), that

∞
∑

n=1

1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)2

=
3

2
ζ(3)− ζ(2) ln 2−

ln3 2

3
.

We mention that the series in part (g) of Lemma 1.3 was calculated by a different method

by Boyadzhiev in [2].

(i) This formula was proved by Boyadzhiev in [2, entry (19)]. !

Now we are ready to prove Theorem 1.1.

3 Proof of Theorem 1.1

Proof. (a) We calculate the series by shifting the index of summation. We have

S =
∞
∑

n=1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

=

(

1−
1

2
+

1

3
− · · ·

)3

+
∞
∑

n=2

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

n−1=i
= ln3 2 +

∞
∑

i=1

(

1

i+ 1
−

1

i + 2
+

1

i + 3
− · · ·

)3

= ln3 2 +
∞
∑

i=1

[

1

i
−

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)]3

= ln3 2 +
∞
∑

i=1

[

1

i3
−

3

i2

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)

+
3

i

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)2

−

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)3
]

= ln3 2 + ζ(3)− 3
∞
∑

i=1

1

i2

(

1

i
−

1

i + 1
+

1

i+ 2
− · · ·

)

+ 3
∞
∑

i=1

1

i

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)2

− S.

It follows, based on parts (d) and (h) of Lemma 1.3, that

2S = ln3 2 + ζ(3)− 3
∞
∑

i=1

1

i2

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)

+ 3
∞
∑

i=1

1

i

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)2

= ln3 2 + ζ(3)− 3

(

13

8
ζ(3)− ζ(2) ln 2

)

+ 3

(

3

2
ζ(3)− ζ(2) ln 2−

ln3 2

3

)

=
5

8
ζ(3)

and part (a) of Theorem 1.1 is proved.
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(b) We calculate the series using Abel’s summation formula. We apply formula (1.3) with an = 1

and bn = (−1)nx3
n, where xn =

1

n
−

1

n+ 1
+

1

n+ 2
− · · · . We have

∞
∑

n=1

(−1)n
(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

= lim
n→∞

(−1)n+1nx3
n+1 +

∞
∑

n=1

n(−1)n
(

x3
n + x3

n+1

)

=
∞
∑

n=1

(−1)nn (xn + xn+1)
(

x2
n − xnxn+1 + x2

n+1

)

xn+xn+1= 1
n=

∞
∑

n=1

(−1)n
(

x2
n − xnxn+1 + x2

n+1

)

xn+xn+1=
1
n=

∞
∑

n=1

(−1)n
(

3x2
n −

3

n
xn +

1

n2

)

= 3
∞
∑

n=1

(−1)nx2
n − 3

∞
∑

n=1

(−1)n

n
xn +

∞
∑

n=1

(−1)n

n2

Lemma1.3 (f), (a)
= 3

(

−
ζ(2)

4

)

− 3

(

ln2 2

2
−

ζ(2)

2

)

−
ζ(2)

2

=
ζ(2)

4
−

3

2
ln2 2.

We used in the preceding calculations that lim
n→∞

nx3
n+1 = 0, which follows from (1.2).

(c) Let xn =
1

n
−

1

n+ 1
+

1

n+ 2
−· · · . We calculate the series by shifting the index of summation.

We have

S =
∞
∑

n=1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)3

=

(

1

1
−

1

2
+

1

3
− · · ·

)3

+
∞
∑

n=2

nx3
n

n−1=i
= ln3 2 +

∞
∑

i=1

(i + 1)

(

1

i + 1
−

1

i + 2
+

1

i+ 3
− · · ·

)3

= ln3 2 +
∞
∑

i=1

(i+ 1)

[

1

i
−

(

1

i
−

1

i+ 1
+

1

i+ 2
− · · ·

)]3

= ln3 2 +
∞
∑

i=1

(i+ 1)

(

1

i3
−

3

i2
xi +

3

i
x2
i − x3

i

)

= ln3 2 +
∞
∑

i=1

(

1

i2
+

1

i3
−

3

i
xi −

3

i2
xi + 3x2

i +
3

i
x2
i − ix3

i − x3
i

)

= ln3 2 + ζ(2) + ζ(3)− 3
∞
∑

i=1

xi

i
− 3

∞
∑

i=1

xi

i2
+ 3

∞
∑

i=1

x2
i + 3

∞
∑

i=1

x2
i

i
− S −

∞
∑

i=1

x3
i .
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It follows, based on part (a) of Theorem 1.1 and parts (b), (d), (g) and (h) of Lemma 1.3,

that

2S = ln3 2 + ζ(2) + ζ(3)− 3

(

ln2 2

2
+

ζ(2)

2

)

− 3

(

13

8
ζ(3)− ζ(2) ln 2

)

+ 3 ln 2 + 3

(

3

2
ζ(3)− ζ(2) ln 2−

ln3 2

3

)

−
5

16
ζ(3)

= −
ζ(2)

2
−

3

2
ln2 2 + 3 ln 2 +

5

16
ζ(3),

and Theorem 1.1 is proved. !

Now we give the proof of Theorem 1.2.

4 Proof of Theorem 1.2

Proof. (a) We apply Abel’s summation formula with an = 1 and bn = x4
n, where xn =

1

n
−

1

n+ 1
+

1

n+ 2
− · · · . We have

∞
∑

n=1

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)4

= lim
n→∞

nx4
n+1 +

∞
∑

n=1

n
(

x4
n − x4

n+1

)

=
∞
∑

n=1

n (xn − xn+1) (xn + xn+1)
(

x2
n + x2

n+1

) xn+xn+1= 1
n=

∞
∑

n=1

(xn − xn+1)
(

x2
n + x2

n+1

)

=
∞
∑

n=1

(

x3
n − x3

n+1 +
xn

n2
−

3

n
x2
n + 2x3

n

)

= x3
1 +

∞
∑

n=1

xn

n2
− 3

∞
∑

n=1

x2
n

n
+ 2

∞
∑

n=1

x3
n

(∗)
= ln3 2 +

13

8
ζ(3)− ζ(2) ln 2− 3

(

3

2
ζ(3)− ζ(2) ln 2−

ln3 2

3

)

+
5

8
ζ(3)

= 2 ln3 2 + 2ζ(2) ln 2−
9

4
ζ(3).

We have applied at step (∗) parts (d) and (h) of Lemma 1.3 and part (a) of Theorem 1.1.

We also used that lim
n→∞

nx4
n+1 = 0, which follows from (1.2).

(b) We calculate the series by applying Abel’s summation formula with an = n and bn = x4
n,

where xn =
1

n
−

1

n+ 1
+

1

n+ 2
− · · · .

We have

∞
∑

n=1

n

(

1

n
−

1

n+ 1
+

1

n+ 2
− · · ·

)4

=
1

2
lim

n→∞
n(n+ 1)x4

n+1 +
1

2

∞
∑

n=1

n(n+ 1)
(

x4
n − x4

n+1

)

xn+xn+1= 1
n=
1

2

∞
∑

n=1

(n+ 1) (xn − xn+1)
(

x2
n + x2

n+1

)

=
1

2

∞
∑

n=1

(n+ 1)
(

x3
n + xnx

2
n+1 − xn+1x

2
n − x3

n+1

)
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xn+xn+1= 1
n=
1

2

∞
∑

n=1

[

nx3
n − (n+ 1)x3

n+1 + 2nx3
n + 3x3

n − 3x2
n −

3

n
x2
n +

xn

n
+

xn

n2

]

=
1

2

[

x3
1 + 2

∞
∑

n=1

nx3
n + 3

∞
∑

n=1

x3
n − 3

∞
∑

n=1

x2
n − 3

∞
∑

n=1

x2
n

n
+

∞
∑

n=1

xn

n
+

∞
∑

n=1

xn

n2

]

(∗)
=

ln3 2

2
+

(

−
ζ(2)

4
−

3

4
ln2 2 +

3

2
ln 2 +

5

32
ζ(3)

)

+
15

32
ζ(3)−

3

2
ln 2

−
3

2

(

3

2
ζ(3)− ζ(2) ln 2−

ln3 2

3

)

+
ln2 2

4
+

ζ(2)

4
+

13

16
ζ(3)−

ζ(2) ln 2

2

= ln3 2−
1

2
ln2 2 + ζ(2) ln 2−

13

16
ζ(3).

We used at step (∗) parts (c) and (a) of Theorem 1.1 and parts (g), (h), (b) and (d) of Lemma

1.3. We also used that lim
n→∞

n(n+ 1)x4
n+1 = 0, which follows from (1.2). !

The next corollary answers an open problem posed in [5, Open problem p. 107].

Corollary 4.1. The following identities hold:

(a)
∞
∑

n=1

(

1

n
−

2

n+ 1
+

2

n+ 2
− · · ·

)3

= 4 ln3 2 + 6ζ(2) ln 2−
27

4
ζ(3);

(b)
∞
∑

n=1

(−1)n
(

1

n
−

2

n+ 1
+

2

n+ 2
− · · ·

)3

= 4 ln3 2 + 2ζ(2)− 12 ln2 2− 3ζ(2) ln 2 +
15

4
ζ(3).

Proof. (a) Let xn =
1

n
−

1

n+ 1
+

1

n+ 2
−· · · and observe that

1

n
−

2

n+ 1
+

2

n+ 2
−· · · = xn−xn+1

and xn + xn+1 =
1

n
. It follows that

∞
∑

n=1

(

1

n
−

2

n+ 1
+

2

n+ 2
− · · ·

)3

=
∞
∑

n=1

(xn − xn+1)
3

=
∞
∑

n=1

[

x3
n − x3

n+1 + 3xnxn+1(xn+1 − xn)
]

=
∞
∑

n=1

[

x3
n − x3

n+1 + 3xn

(

1

n
− xn

)(

1

n
− 2xn

)]

=
∞
∑

n=1

[

x3
n − x3

n+1 + 3
xn

n2
−

9x2
n

n
+ 6x3

n

]

= x3
1 + 3

∞
∑

n=1

xn

n2
− 9

∞
∑

n=1

x2
n

n
+ 6

∞
∑

n=1

x3
n,

and the result follows based on part (a) of Theorem 1.1 and parts (d) and (g) of Lemma 1.3.



100 O. Furdui & A. Ŝıntămărian CUBO
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(b) We have, exactly as in the proof of part (a), that

∞
∑

n=1

(−1)n
(

1

n
−

2

n+ 1
+

2

n+ 2
− · · ·

)3

=
∞
∑

n=1

(−1)n (xn − xn+1)
3 =

∞
∑

n=1

(−1)n
[

x3
n − x3

n+1 + 3xnxn+1(xn+1 − xn)
]

=
∞
∑

n=1

(−1)nx3
n −

∞
∑

n=1

(−1)nx3
n+1 + 3

∞
∑

n=1

(−1)n
xn

n2
− 9

∞
∑

n=1

(−1)n
x2
n

n
+ 6

∞
∑

n=1

(−1)nx3
n

= 8
∞
∑

n=1

(−1)nx3
n + x3

1 + 3
∞
∑

n=1

(−1)n
xn

n2
− 9

∞
∑

n=1

(−1)n
x2
n

n
,

and the result follows based on part (b) of Theorem 1.1 and parts (e) and (i) of Lemma 1.3.

!

Remark 4.2. The calculation of the quintic series
∞
∑

n=1

x5
n, where xn =

1

n
−

1

n+ 1
+

1

n+ 2
− · · · ,

which we believe it can be expressed in terms of well known constants, can be approached by reducing

the series to the calculation of quadratic, cubic and quartic sums
∞
∑

n=1

x2
n

n3
,

∞
∑

n=1

x3
n

n2
and

∞
∑

n=1

x4
n

n
. These

series and other higher power sums involving the tail of ln 2 are the topics of a research project

that will be investigated by the authors.

We mention that other challenging quadratic and cubic series involving the tail of various special

functions, as well as open problems can be found in [5].
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1 Introduction

We consider the unsigned Stirling numbers of the first kind





n

k



 defined by the equation

1

xk+1
=

∞
∑

n=k





n

k





1

x(x + 1) · · · (x+ n)
(1.1)

(see [2], [15, p. 29 and p. 171]) or by the well-known exponential generating function [10, p. 351]

(−1)k

k!
lnk(1 − x) =

∞
∑

n=k





n

k





xn

n!
(|x| < 1). (1.2)

These numbers have a very strong presence in combinatorics and also in classical analysis. For

example, it is known that for k ≥ 1

ζ(k + 1) =
∞
∑

n=k





n

k





1

n!n
(1.3)

where ζ(s) is Riemann’s zeta function. This representation appears in Jordan’s book [12] (see

equation [6, p. 166] and equation (3.1) on [12, p. 194]; also the more general formula on p. 343 in

this book). Interesting comments and a new proof can be found in Adamchik’s paper [1].

The corresponding result for the Hurwitz zeta function ζ(s, a) was proved in [2]

ζ(k + 1, a) = Γ(a)
∞
∑

n=k





n

k





1

nΓ(n+ a)
(a > 0 , k ≥ 1) (1.4)

together with the representation

∞
∑

p=1

Hp

pk+1
=

∞
∑

n=k





n

k





ψ′(n)

n!
(k ≥ 1) (1.5)

where Hn = 1 +
1

2
+ · · · +

1

n
, H0 = 0, are the harmonic numbers and ψ(x) =

d

dx
lnΓ(x) is the

digamma function. A representation for the polylogarithm Lis(x) =
∞
∑

n=1

xn

ns
in the spirit of (1.3)

was also proved in [2]. Other results in this line were obtained by Wang and Chen [16].

In this paper we want to develop a method of replacing ζ(k + 1) by other Dirichlet series in the

spirit of (1.4) and (1.5) and obtaining representations in terms of Stirling numbers. More precisely,

we consider the following problem arising from the above representations: given a Dirichlet series
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of the form

F (s) =
∞
∑

n=1

an−1

ns
(1.6)

we want to find the coefficients bn so that

F (k + 1) =
∞
∑

n=k





n

k



 bn.

In the following section (Section 2) we state our main theorem which gives a solution to this

problem for the case when the numbers ak are the coefficients of an analytic function. Then in

Section 3 we derive from this theorem a number of corollaries. For illustration, here are some

identities proved in Section 3

k + 1−
k
∑

j=1

ζ(j + 1) =
∞
∑

n=k





n

k





1

n!(n+ 1)2
(k ≥ 1)

∞
∑

p=0

1

p!(p+ 1)k+1
=

∞
∑

n=k





n

k







e−
n
∑

j=0

1

j!



 (k ≥ 0)

∞
∑

p=0

Cp

4p(p+ 1)k+1
= 4

∞
∑

n=k





n

k





β(2n+ 2)

n!
(k ≥ 0)

∞
∑

p=1

Cp−1

4p(p+ 1)k+1
+

∞
∑

n=k





n

k





1

n!(2n+ 3)
=

1

2
(k ≥ 0)

where Cp are the Catalan numbers and β(x) is Nielsen’s beta function.

2 Main results

Theorem 2.1. Suppose the function

f(x) =
∞
∑

k=0

akx
k

is analytic on the unit disc |x| < 1. Then we have the representations

∞
∑

p=1

ap−1

pk+1
=

∞
∑

p=0

ap
(p+ 1)k+1

=
∞
∑

n=k





n

k





1

n!

∫ 1

0
f(x)(1 − x)n dx (2.1)

∞
∑

p=0

ap
(p+ 1)k+1

=
(−1)k

k!

∫ 1

0
f(x)(ln x)k dx. (2.2)
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Proof. In the representation (1.1) let x = p ≥ 1 be a positive integer and write

1

pk+1
=

∞
∑

n=k





n

k





1

p(p+ 1) · · · (p+ n)
. (2.3)

We know that

1

p(p+ 1) · · · (p+ n)
=

1

n!
B(p, n+ 1) =

1

n!

∫ 1

0
xp−1(1− x)n dx

where B(p, q) is Euler’s beta function defined by

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
=

∫ 1

0
xp−1(1 − x)q−1 dx.

Next, multiplying both sides of (2.3) by ap−1, summing for p = 1, 2, . . ., and exchanging the order

of summation we have

∞
∑

p=1

ap−1

pk+1
=

∞
∑

n=k





n

k





∞
∑

p=1

ap−1

p(p+ 1) · · · (p+ n)
=

∞
∑

n=k





n

k





1

n!

∫ 1

0
f(x)(1 − x)n dx.

This proves (2.1). The representation (2.2) follows from (2.1) by bringing the summation inside the

integral and using equation (1.2). It can be proved also directly by expanding f(x) and integrating

term by term. The proof is completed. !

Some remarks. A Dirichlet series of the form (1.6) is called convergent, if it is absolutely

convergent for some s0. In this case it is absolutely and uniformly convergent for Re(s) > s0

[9, 11]. Also, as shown by Charles Jordan in [12, p. 161] the Stirling numbers of the first kind

have asymptotic growth




n

k



 ∼
(n− 1)!

(k − 1)!
(γ + lnn)k+1 (2.4)

for k ≥ 1 fixed. Here γ is Euler’s constant. We will keep this asymptotic in mind for the corollaries

that follow.

Taking the function

f(x) =
1

1− x
=

∞
∑

n=0

xn , |x| < 1; an = 1 (n = 0, 1, . . .)

we have for n ≥ 1
∫ 1

0
f(x)(1 − x)n dx =

∫ 1

0
(1− x)n−1 dx =

1

n

and (1.3) follows immediately from (2.1). Our main applications are given in the next section.
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3 Corollaries

We first give a new proof to equation (1.5). Applying (2.1) to the function

f(x) = −
ln(1 − x)

x(1− x)
=

∞
∑

n=0

Hn+1x
n (|x| < 1)

we find
∞
∑

p=1

Hp

pk+1
=

∞
∑

n=k





n

k





1

n!

{

−
∫ 1

0

ln(1− x)(1 − x)n−1

x
dx

}

.

With the substitution 1− x = e−t this integral becomes

∫ ∞

0

te−nt

1− e−t
dt =

∞
∑

m=0

1

(m+ n)2
= ψ′(n)

and (1.5) follows. It is good to mention that

ψ′(n) =
π2

6
−
(

1 +
1

22
+ · · ·+

1

(n− 1)2

)

.

3.1 Dirichlet series with hyperharmonic numbers

Let h(r)
n be the hyperharmonic numbers defined by the equation

h(r+1)
n =





n+ r

r



 (Hn+r −Hr)

for integers n , r ≥ 0 [8]. When r = 0, h(1)
n = Hn are the harmonic numbers. The generating

function for h(r)
n is given by

∞
∑

n=0

h(r)
n xn = −

ln(1− x)

(1− x)r
(|x| < 1).

Let n > r. We apply our theorem to the function f(x) = −
ln(1− x)

(1− x)r+1
where the parameter r + 1

is used for technical convenience. It is easy to compute

∫ 1

0
f(x)(1− x)n dx = −

∫ 1

0
ln(1 − x)(1 − x)n−r−1 dx =

1

n− r

∫ 1

0
ln(1 − x) d(1 − x)n−r

=
1

n− r
ln(1− x)(1 − x)n−r

∣

∣

∣

∣

1

0

+
1

n− r

∫ 1

0
(1− x)n−r−1 dx =

1

(n− r)2
.

This gives the following.
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Corollary 3.1. . For every k > r ≥ 0 we have the identity

∞
∑

p=1

h(r+1)
p−1

pk+1
=

∞
∑

n=k





n

k





1

n!(n− r)2
. (3.1)

In particular, for r = 0 we have (compare to (1.5))

∞
∑

p=1

Hp−1

pk+1
=

∞
∑

n=k





n

k





1

n!n2
. (3.2)

3.2 On a result of Victor Adamchik

Adamchik in [1] discussed series of the form

G(k, q) =
∞
∑

n=k





n

k





1

n!nq

and showed that

G(k, q) = G(q, k) (3.3)

that is,
∞
∑

n=k





n

k





1

n!nq
=

∞
∑

n=q





n

q





1

n!nk
.

With q = 2 this property implies equation (3.2) since





n

2



 = (n − 1)!Hn−1. In the next result

we will connect two different series of Stirling numbers of the first kind.

Corollary 3.2. For any two integers q ≥ 0, k ≥ 0 we have

∞
∑

n=q





n

q





1

n!(n+ 1)k+1
=

∞
∑

n=k





n

k





1

n!(n+ 1)q+1
(3.4)

Proof. We take the function

f(x) =
(−1)q

q!
lnq(1 − x) =

∞
∑

n=0





n

q





xn

n!

where q ≥ 0 is an integer. With

ap−1 =
1

(p− 1)!





p− 1

q
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we find from the general formula (2.1)

∞
∑

p=1





p− 1

q





1

pk+1(p− 1)!
=

∞
∑

n=k





n

k





(−1)q

n!q!

∫ 1

0
lnq(1− x)(1 − x)n dx

and with the substitution 1− x = e−t we compute

∫ 1

0
lnq(1− x)(1 − x)n dx = (−1)q

∫ ∞

0
tqe−(n+1)t dt =

(−1)qq!

(n+ 1)q+1

which gives the representation

∞
∑

p=1





p− 1

q





1

pk+1(p− 1)!
=

∞
∑

n=k





n

k





1

n!(n+ 1)q+1
.

Replacing p by n+ 1 gives the desired result for all q ≥ 0, k ≥ 0. !

This shows a symmetry like the one in (3.3) for G(k, q).

For q = 0 we find for every k ≥ 0

∞
∑

n=k





n

k





1

(n+ 1)!
= 1. (3.5)

Note that the same result follows from (1.1) for x = 1. The value of this remarkable series is

independent of k. For k = 0 on the left hand side we have only one term, 1. For k ≥ 1 fixed from

(2.4) we find the asymptotic behavior for large n





n

k





1

(n+ 1)!
∼

(γ + lnn)k−1

n(n+ 1)(k − 1)!

which shows a very slow convergence. For instance,

1000
∑

n=5





n

5





1

(n+ 1)!
< 0.8

For q = 1, k ≥ 1, we have





p

1



 = (p− 1)! and (2.1) implies the closed form evaluation

∞
∑

n=k





n

k





1

n!(n+ 1)2
=

∞
∑

p=1

1

p(p+ 1)k+1
= k + 1−

k
∑

j=1

ζ(j + 1) (3.6)
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where the second equality follows from the recurrence relation

∞
∑

p=1

1

p(p+ 1)k+1
=

∞
∑

p=1

1 + p− p

p(p+ 1)k+1
=

∞
∑

p=1

1

p(p+ 1)k
− ζ(k + 1) + 1

=
∞
∑

p=1

1

p(p+ 1)k−1
− ζ(k + 1)− ζ(k) + 2 etc.

For q = 2 we have





p

2



 = (p− 1)!Hp−1 and therefore,

∞
∑

n=k





n

k





1

n!(n+ 1)3
=

∞
∑

p=1

Hp−1

p(p+ 1)k+1
(3.7)

etc.

3.3 Dirichlet series with Cauchy numbers

The Cauchy numbers of the first kind cn and second kind dn are interesting combinatorial numbers.

They are defined by the generating functions

x

ln(x+ 1)
=

∞
∑

n=0

cn
n!

xn

−x

(1− x) ln(1− x)
=

∞
∑

n=0

dn
n!

xn

where |x| < 1 (see [7, p. 294] and [3, 14]). Now consider the function

f(x) =
−x

ln(1− x)
=

∞
∑

n=0

(−1)ncn
n!

xn (|x| < 1).

Using again the substitution 1− x = e−t we compute

∫ 1

0
f(x)(1− x)n dx =

∫ ∞

0

1− e−t

t
e−(n+1)t dt =

∫ ∞

0

e−(n+1)t − e−(n+2)t

t
dt = ln

n+ 2

n+ 1

as this is a Frullani integral. After changing the index p → p+ 1 we get the following result.
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Corollary 3.3. For every integer k ≥ 0 we have the series identities

∞
∑

p=1

(−1)p−1cp−1

p!pk
=

∞
∑

p=0

(−1)pcp
p!(p+ 1)k+1

=
∞
∑

n=k





n

k





1

n!
ln

n+ 2

n+ 1
. (3.8)

∞
∑

p=1

dp−1

p!pk
=

∞
∑

p=0

dp
p!(p+ 1)k+1

=
∞
∑

n=k





n

k





1

n!
ln

(

1 +
1

n

)

. (3.9)

Proof. The first identity has been proved above. For the second one we use the function

f(x) =
−x

(1− x) ln(1− x)

in the same way. !

Both series on the right hand sides of (3.8) and (3.9) are very slowly convergent series with positive

terms. In (3.9), for instance, with k ≥ 1 fixed





n

k





1

n!
ln

(

1 +
1

n

)

∼
1

(k − 1)!

(γ + lnn)k−1

n
ln

(

1 +
1

n

)

.

3.4 Dirichlet series with derangement numbers

The derangement numbers

Dn = n!
n
∑

j=0

(−1)j

j!

are popular in combinatorics [7, p. 180] and [10, pp. 194–200]. We will relate them to Stirling

numbers of the first kind. The generating function for the derangement numbers is given by

D(x) =
e−x

1− x
=

∞
∑

n=0

Dn
xn

n!
(|x| < 1).

In this case

∫ 1

0
D(x)(1− x)ndx =

∫ 1

0
e−x(1− x)n−1dx =

1

e

∫ 1

0
e ttn−1dt = (−1)n(n− 1)!



e−1 −
n−1
∑

j=0

(−1)j

j!





and therefore, we come to the series identity below.
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Corollary 3.4. For every integer k ≥ 0

∞
∑

p=1

Dp−1

(p− 1)!pk+1
=

∞
∑

p=0

Dp

p!(p+ 1)k+1
=

∞
∑

n=k





n

k





(−1)n

n



e−1 −
n−1
∑

j=0

(−1)j

j!



 . (3.10)

From Taylor’s formula we get the estimate

∣

∣

∣

∣

∣

∣

e−1 −
n−1
∑

j=0

(−1)j

j!

∣

∣

∣

∣

∣

∣

≤
1

n!

which assures convergence for the last series in view of (2.4).

The computation of the above integral shows that with f(x) = e−x in (2.1) we come to

∫ 1

0
e−x(1 − x)n dx = (−1)n+1n!



e−1 −
n
∑

j=0

(−1)j

j!





and this result implies the identity

∞
∑

p=0

(−1)p

p!(p+ 1)k+1
=

∞
∑

n=k





n

k



 (−1)n+1



e−1 −
n
∑

j=0

(−1)j

j!



 . (3.11)

In the same way
∫ 1

0
ex(1− x)n dx = n!



e −
n
∑

j=0

1

j!





and therefore,
∞
∑

p=0

1

p!(p+ 1)k+1
=

∞
∑

n=k





n

k







e−
n
∑

j=0

1

j!



 . (3.12)

3.5 Identities for Dirichlet series with binomial and central binomial

coefficients

Noticing that
∫ 1

0
(1− x)λ dx =

1

λ+ 1
(λ > −1)

we take the function

f(x) = (1− x)r =
∞
∑

n=0





r

n



 (−1)nxn, |x| < 1, an =





r

n



 (−1)n

and from (2.1) we come to the next result:
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Corollary 3.5. For every integer k ≥ 0 and k + r + 1 > 0

∞
∑

p=0





r

p





(−1)p

(p+ 1)k+1
=

∞
∑

n=k





n

k





1

n!(n+ r + 1)
. (3.13)

Here we need n+ r+1 > 0. This will be true when k+ r+1 > 0 or r > −k− 1. This identity was

obtained in [2, Example 10] by other means.

When r is a nonnegative integer, the sum on the left hand side is finite. For example, when r = 0

equation (3.13) turns into (3.5). For r = 1 and r = 2 we have correspondingly as in [2, Example

10]

1−
1

2k+1
=

∞
∑

n=k





n

k





1

n!(n+ 2)
(3.14)

1−
1

2k
+

1

3k+1
=

∞
∑

n=k





n

k





1

n!(n+ 3)
(3.15)

etc.

For r = −1/2 and r = 1/2 the binomial coefficients take a special form





−1/2

p



 = (−1)p





2p

p





1

4p
,





1/2

p



 = (−1)p+1





2p

p





1

4p(2p− 1)

and (3.13) produces the two identities involving central binomial coefficients:

Corollary 3.6. For any k ≥ 0

∞
∑

p=0





2p

p





1

4p(p+ 1)k+1
= 2

∞
∑

n=k





n

k





1

n!(2n+ 1)
(3.16)

∞
∑

p=0





2p

p





1

4p(2p− 1)(p+ 1)k+1
= −2

∞
∑

n=k





n

k





1

n!(2n+ 3)
. (3.17)

In particular, with k = 0 in (3.16) we have the evaluation

∞
∑

p=0





2p

p





1

4p(p+ 1)
= 2

coming from the generating function of the Catalan numbers for x =
1

4
(see next subsection).

Wang and Xu [17] studied series similar to the one on the left hand side in (3.16) and evaluated
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them in terms of multiple zeta values.

3.6 Dirichlet series with Catalan numbers

We involve now the Catalan numbers

Cp =





2p

p





1

1 + p

which are very popular in combinatorics and analysis [4], [7, p. 101], [8, p. 53], [10, p. 203]. It is

easy to see that for p ≥ 1




2p

p





1

2p− 1
= 2Cp−1.

Our first identity with Catalan numbers comes from (3.17) written in the form

∞
∑

p=1

Cp−1

4p(p+ 1)k+1
=

1

2
−

∞
∑

n=k





n

k





1

n!(2n+ 3)
. (3.18)

Correspondingly, for k = 0, 1, 2 we have from (3.18)

∞
∑

p=1

Cp−1

4p(p+ 1)
=

1

6
(3.19)

∞
∑

p=1

Cp−1

4p(p+ 1)2
=

1

2
−

∞
∑

n=1

1

n(2n+ 3)
=

2 ln 2

3
−

7

18
(3.20)

∞
∑

p=1

Cp−1

4p(p+ 1)3
=

1

2
−

∞
∑

n=2

Hn−1

n(2n+ 3)
= −

77

54
+
π2

18
+

16

9
ln 2−

2

3
ln2 2 (3.21)

where in equation (3.20) we used the evaluation (for example, from Wolfram Alpha)

∞
∑

n=1

1

n(2n+ 3)
=

8

9
−

2 ln 2

3
.

and the second equality in (3.21) was found by Mathematica and was provided by one of the

referees.

The generating function for the Catalan numbers is [4, 13]

2

1 +
√
1− 4x

=
∞
∑

n=0

Cnx
n (|x| < 4)
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Replacing x by x/4 we consider the function

f(x) =
2

1 +
√
1− x

=
∞
∑

n=0

Cn

4n
xn

and apply our theorem to it. Using the substitution 1− x = t2 we find

∫ 1

0
f(x)(1 − x)ndx = 2

∫ 1

0

(1− x)n

1 +
√
1− x

dx = 4

∫ 1

0

t2n+1

1 + t
dt = 4β(2n+ 2)

where

β(x) =

∫ 1

0

tx−1

1 + t
dt =

∞
∑

m=0

(−1)m

m+ x

is Nielsen’s beta function. We come to the curious companion to (3.18)

∞
∑

p=0

Cp

4p(p+ 1)k+1
= 4

∞
∑

n=k





n

k





β(2n+ 2)

n!
. (3.22)

For k = 0 this gives the known identity

∞
∑

p=0

Cp

4p(p+ 1)
= 4β(2) = 4(1− ln 2). (3.23)

For k = 1 in (3.22) we find
∞
∑

p=0

Cp

4p(p+ 1)2
= 4

∞
∑

n=1

β(2n+ 2)

n
(3.24)

and for k = 2 we have a series identity involving Catalan, harmonic numbers, and beta values

∞
∑

p=0

Cp

4p(p+ 1)3
= 4

∞
∑

n=1

Hn−1β(2n+ 2)

n
. (3.25)

At the same time from (2.2)

∞
∑

p=0

Cp

4p(p+ 1)k+1
=

2(−1)k

k!

∫ 1

0

(ln x)k

1 +
√
1− x

dx (3.26)

and for k = 0 this confirms (3.23). For k = 1 by computing the integral we find

∞
∑

p=0

Cp

4p(p+ 1)2
= 8− 8 ln 2 + 4(ln 2)2 −

π2

3
(3.27)
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which gives also the value of the series on the right hand side in (3.24)

∞
∑

n=1

β(2n+ 2)

n
= 2− 2 ln 2 + (ln 2)2 −

π2

12
.

The integral

∫ 1

0

lnx

1 +
√
1− x

dx can be computed by the substitution 1 − x = t2 followed by the

expansion of ln(1− t2) in power series. More directly, one can use Maple or Mathematica.

3.7 Dirichlet series with even central binomial coefficients

The numbers





4n

2n



 appear in some interesting applications in mathematics [5, 6]. Their gen-

erating function for 0 ≤ x < 1 is (see [6])

f(x) =
∞
∑

n=0





4n

2n





xn

16n
=

1

2

(

1
√

1−
√
x
+

1
√

1 +
√
x

)

=
1

2

(

√

1−
√
x+

√

1 +
√
x√

1− x

)

which is easily derived from the binomial series. The theorem implies the identity below.

Corollary 3.7. For every integer k ≥ 0 we have the identity

∞
∑

p=0





4p

2p





1

16p(p+ 1)k+1
=

∞
∑

n=k





n

k





An

n!
(3.28)

where

An =
1

2

∫ 1

0

(

√

1−
√
x+

√

1 +
√
x

)

(1 − x)n−
1
2 dx.

This interesting integral supposedly has the form An = an − bn
√
2 with an, bn positive rational

numbers. This hypothesis was suggested by several cases verified by Maple.

A rough estimate gives

An ≤
1

2

∫ 1

0
(1 + 2) (1 − x)n−

1
2 dx =

3

2n+ 1

which in view of (2.4) provides good convergence for the right hand side in (3.28). Also, from (2.2)

we find the integral representation

∞
∑

p=0





4p

2p





1

16p(p+ 1)k+1
=

(−1)k

2k!

∫ 1

0

(

1
√

1−
√
x
+

1
√

1 +
√
x

)

(lnx)k dx (3.29)

=
(−1)k2k

k!

∫ 1

0

(

t√
1− t

+
t√
1 + t

)

(ln t)k dt
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for every k ≥ 0. For example, when k = 0, 1

∞
∑

p=0





4p

2p





1

16p(p+ 1)
=

8

3
−

2

3

√
2 (3.30)

∞
∑

p=0





4p

2p





1

16p(p+ 1)2
=

80

9
−

32

9
(ln 8 +

√
2) +

16

3
ln (

√
2 + 1) (3.31)

etc. The integral

∫ 1

0

(

t√
1− t

+
t√
1 + t

)

ln t dt for (3.31) was computed here by using both Maple

and Mathematica.

In conclusion, the author wants to express his deep gratitude to the referees for a number of

valuable comments and suggestions that helped to improve the paper.
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1 Introduction

Fourth order boundary value problems arise from the study of elasticity. They are models for

the deflection or bending of elastic beams (see [15, 16]). Recently, fourth order boundary value

problems for differential equations with parameters have received quite some attention in the

literature. For example, in 2003, Li [5] considered the fourth order boundary value problem

u(4) + βu′′ − αu = f(t, u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where α,β are parameters. For a partial list of some recent papers on boundary value problems

with parameters, we refer the reader to the papers [1, 2, 3, 4, 6, 7, 8, 9, 11, 12].

In 2011, Webb and Zima [10] studied the existence of multiple positive solutions for a class of

fourth order boundary value problems. They also studied in [10] a class of second order boundary

value problems with a parameter, which are closely related to the fourth order ones. One of the

problems that were considered in [10] consists of the equation

u′′(t) + k2u(t) + f(t, u(t)) = 0, 0 ≤ t ≤ 1, (1.1)

and the boundary conditions

u(0) = u(1) = 0, (1.2)

where k ∈ (0,π) is a positive constant. It is well-known that second order boundary value problems

are important in their own right. Second order problems arise in a wide variety of mathematical

models and have been studied extensively.

When k ∈ (0,π), the Green function G : [0, 1]× [0, 1] → [0,∞) for the problem (1.1)-(1.2) is given

by (see [10])

G(t, s) =



















sin(kt) sin(k(1 − s))

k sin k
, t ≤ s,

sin(ks) sin(k(1 − t))

k sin k
, s ≤ t.

The problem (1.1)-(1.2) is equivalent to the integral equation

u(t) =

∫ 1

0
G(t, s)f(s, u(s)) ds, 0 ≤ t ≤ 1. (1.3)

It is easy to see that G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1. Webb and Zima proved a number of results

in [10]. In particular, in the case of k ∈ (π/2,π), they obtained the following upper and lower

estimates for the Green function G(t, s).
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Lemma 1.1 ([10, Lemma 2.1]). If k ∈ (π/2,π), then it holds that

cT (t)ΦT (s) ≤ G(t, s) ≤ ΦT (s), 0 ≤ t, s ≤ 1, (1.4)

where

ΦT (s) =
1

k sin k















sin(ks), s < 1− π/(2k),

sin(ks) sin(k(1− s)), 1− π/(2k) ≤ s ≤ π/(2k),

sin(k(1− s)), s > π/(2k),

and

cT (t) = min {sin(kt), sin(k(1− t))} , 0 ≤ t ≤ 1.

There are different approaches to solutions for boundary value problems. One important way of

finding positive solutions for boundary value problems is to apply fixed point index theorems on

a positive cone. To define a positive cone in a function space (for example, the space C[0, 1]), we

need some a priori upper and lower estimates for positive solutions of the boundary value problem.

Through the years, we have learned that sharper estimates can help define a smaller cone, and,

it is easier to search for the positive solution(s) in a smaller cone than in a larger cone. In other

words, finer upper and lower estimates can help us establish sharper existence and nonexistence

conditions. We refer the reader to the recent papers [14, 15] in which the author used a fixed

point theorem on cones to solve fourth order boundary value problems. In both papers, upper and

lower estimates for positive solutions play a crucial role in finding solutions for the boundary value

problems.

The main purpose of this paper is to further improve the upper estimate in (1.4). Throughout this

paper, we assume that

(H) k ∈ (π/2,π) is a real number, f : [0, 1]× [0,∞) → [0,∞) is a continuous function.

This paper is organized as follows. In Section 2, we establish a new upper estimate for the Green

function G(t, s). In Section 3, we prove an interval estimate for points where a positive solution to

the problem (1.1)-(1.2) can achieve its maximum. In Section 4, we establish a new upper estimate

for positive solutions to the problem (1.1)-(1.2). Here, by a positive solution, we mean a solution

u(t) to the the problem (1.1)-(1.2) such that u(t) > 0 for 0 < t < 1. In Section 5, we present an

example to illustrate that our new upper estimates can help us solve fourth order boundary value

problems.

We remark that some authors like to base their study on estimates for the Green function (like

the authors of [10]), and some other authors choose to base their study on estimates for positive

solutions (like we will do in Section 5 of this paper). Since both types of estimates have applications,

we in this paper will present both types (one type in Section 2, and a second type in Section 4).
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Though the two types are similar in form, usually they do not imply each other. This is a second

reason we choose to present both types of upper estimates in this paper.

2 New upper estimate for G(t, s)

In this section, we will prove a new upper estimate for the Green function G(t, s). Since the

analysis is on G(t, s) only, we will not mention any positive solution u(t) to the problem (1.1)-(1.2)

in this section.

We define the function b : [0, 1] → [0, 1] by

b(t) =



















sin(k(1 − t)), 0 ≤ t ≤ 1− π
2k ,

1, 1− π
2k ≤ t ≤ π

2k ,

sin(kt), π
2k ≤ t ≤ 1.

The function b(t) will be used to give a new upper estimate for the Green function of the problem

(1.1)-(1.2). Also, we define the function τ : [0, 1] → [0, 1] by

τ(t) = min
{ π

2k
,max

{

t, 1−
π

2k

}}

.

In other words,

τ(t) =























1− π
2k , 0 ≤ t ≤ 1− π

2k ,

t, 1− π
2k ≤ t ≤ π

2k ,

π
2k ,

π
2k ≤ t ≤ 1.

With this notation, we can rewrite the function ΦT (s) in Lemma 1.1 into a new form.

Lemma 2.1. We have

ΦT (s) = G(τ(s), s), 0 ≤ s ≤ 1.

Proof. If 0 ≤ s ≤ 1−
π

2k
, we have

τ(s) = 1−
π

2k
.

In this case, we have τ(s) ≥ s, therefore,

G(τ(s), s) =
sin(ks) sin(k(1− τ(s)))

k sin k
=

sin(ks) sin(k · (π/(2k)))

k sin k
=

sin(ks) sin(π/2)

k sin k

=
sin(ks)

k sink
= ΦT (s).

The other two cases — the case where 1−
π

2k
≤ s ≤

π

2k
and the case where

π

2k
≤ s ≤ 1 — can be
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handled in a similar way. The proof of the lemma is now complete. !

As a consequence of Lemma 2.1, we can now rewrite the upper estimate for G(t, s) in Lemma 1.1

as

G(t, s) ≤ G(τ(s), s), 0 ≤ t, s ≤ 1. (2.1)

We will obtain a new upper estimate for G(t, s), which is better than (2.1), in the next several

lemmas.

Lemma 2.2. If (H) holds and 0 ≤ t ≤ s ≤ 1, then G(t, s) ≤ b(t)G(τ(s), s).

Proof. We take six cases to prove the inequality.

Case 1: 0 ≤ t ≤ s ≤ 1− π/(2k). In this case, we have

0 ≤ s− t ≤ 1−
π

2k
,

and, consequently,

0 ≤ k(s− t) ≤ k −
π

2
<

π

2
.

Hence, in this case, we then have

b(t)G(τ(s), s) −G(t, s) =
sin(k − kt) sin(ks)

k sink
−

sin(kt) sin(k(1 − s))

k sin k
=

1

k
sin(k(s− t)) ≥ 0.

Case 2: 0 ≤ t ≤ 1− π/(2k) ≤ s ≤ π/(2k). In this case, we have

0 ≤ kt ≤ k −
π

2
<

π

2
.

It follows that
π

2
≤ k − kt ≤ k < π,

and therefore,

sin(k − kt) ≥ 0, cos(k − kt) ≤ 0. (2.2)

Also, since

k −
π

2
≤ ks ≤

π

2
,

we have
π

2
≤ π − ks ≤

3π

2
− k < π,

sin(ks) = sin(π − ks) ≥ sin

(

3π

2
− k

)

= − cos k. (2.3)
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By using (2.2) and (2.3), we have

b(t)G(τ(s), s) −G(t, s) =
sin(k − ks)

k sink
(sin(k − kt) sin(ks)− sin(kt))

≥
sin(k − ks)

k sink
(− sin(k − kt) cos k − sin(kt))

= −
sin(k − ks)

k sin k
· cos(k − kt) sin k

= −
sin(k − ks)

k
· cos(k − kt) ≥ 0.

Case 3: 0 ≤ t ≤ 1− π/(2k) and π/(2k) ≤ s ≤ 1. In this case, we have

0 ≤ kt ≤ k −
π

2
<

π

2
,

from where it follows that

π

2
≤ k − kt ≤ k < π and

π

2
< π − kt ≤ π.

In summary, we have
π

2
≤ k − kt ≤ π − kt ≤ π,

which implies that

sin(k − kt) ≥ sin(π − kt).

So, in this case, we have

b(t)G(τ(s), s) −G(t, s) =
sin(k − ks)

k sin k
(sin(k − kt)− sin(kt))

=
sin(k − ks)

k sin k
(sin(k − kt)− sin(π − kt)) ≥ 0.

Case 4: 1− π/(2k) ≤ t ≤ s ≤ π/(2k). In this case, we have

0 ≤ kt ≤ ks ≤
π

2

and

b(t)G(τ(s), s) −G(t, s) = G(s, s)−G(t, s) =
sin(k − ks)

k sin k
(sin(ks)− sin(kt)) ≥ 0.

Case 5: 1− π/(2k) ≤ t ≤ π/(2k) and π/(2k) ≤ s ≤ 1. In this case, we have

b(t)G(τ(s), s) −G(t, s) = G(π/(2k), s)−G(t, s) =
sin(k − ks)

k sin k
(1 − sin(kt)) ≥ 0.
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Case 6: π/(2k) ≤ t ≤ s ≤ 1. In this case,

b(t)G(τ(s), s) −G(t, s) = 0.

The proof is now complete. !

Lemma 2.3. If (H) holds and 0 ≤ s ≤ t ≤ 1, then G(t, s) ≤ b(t)G(τ(s), s).

Proof. First, we notice that, for all t, s ∈ [0, 1],

G(t, s) = G(1− t, 1− s), (2.4)

b(t) = b(1− t), (2.5)

τ(t) = τ(1 − t), (2.6)

and

G(τ(1 − s), 1− s) = G(τ(s), s). (2.7)

Now, if 0 ≤ s ≤ t ≤ 1, then 0 ≤ 1− t ≤ 1− s ≤ 1, and, by Lemma 2.2,

G(1 − t, 1− s) ≤ b(1− t)G(τ(1 − s), 1− s). (2.8)

In this case, if we combine (2.8) together with the symmetry properties (2.4), (2.5), (2.6), and

(2.7), we get

G(t, s) ≤ b(t)G(τ(s), s), for 0 ≤ s ≤ t ≤ 1.

The proof of the lemma is now complete. !

If we combine Lemmas 2.2 and 2.3, we get

Theorem 2.4. If (H) holds, then, for all t, s ∈ [0, 1], G(t, s) ≤ b(t)G(τ(s), s).

Since b(t) ≤ 1 for 0 ≤ t ≤ 1, it is clear that Theorem 2.4 improves the upper estimate (2.1) for

G(t, s) in Lemma 1.1.

3 Localization of the maximum

In this section, we shall prove some upper and lower estimates for the point where a solution to

the problem (1.1)-(1.2) achieves its maximum on the interval [0, 1]. In other words, we shall find

a subinterval of [0, 1] which contains the point where the maximum is achieved by a solution.
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Theorem 3.1. Suppose that k ∈ (π/2,π), and suppose that u ∈ C2[0, 1]. If

u′′(t) + k2u(t) ≤ 0 for 0 ≤ t ≤ 1, (3.1)

u(0) = u(1) = 0, and u(t) (≡ 0 on [0, 1], then u(t) > 0 on (0, 1), and there exists a unique t0 ∈ (0, 1)

such that u(t0) = ‖u‖. Here,

‖u‖ := max
t∈[0,1]

|u(t)|.

Proof. For convenience, we define the auxiliary function

h(t) := −u′′(t)− k2u(t), 0 ≤ t ≤ 1.

Then, by (3.1), we have

u(t) =

∫ 1

0
G(t, s)(−u′′(s)− k2u(s)) ds ≥ 0, 0 ≤ t ≤ 1.

Since u(t) (≡ 0, we have ‖u‖ > 0. Combining (3.1) and the fact that u(t) ≥ 0, we have

u′′(t) ≤ −k2u(t) ≤ 0, 0 ≤ t ≤ 1.

Since u′′(t) ≤ 0, by Theorem 1.2 of [13], we have

u(t) ≥ min{t, 1− t}‖u‖, 0 ≤ t ≤ 1.

This implies that

u(t) > 0 for 0 < t < 1. (3.2)

Again, by virtue of (3.1), we have

u′′(t) ≤ −k2u(t) < 0, 0 < t < 1.

This implies there exists a unique t0 ∈ (0, 1) such that u(t0) = ‖u‖ > 0. The proof of the theorem

is now complete. !

Theorem 3.2. Suppose that k ∈ (π/2,π), and suppose that u ∈ C2[0, 1] satisfies (3.1), u(0) =

u(1) = 0, and u(t) > 0 on (0, 1). If t0 ∈ (0, 1) is such that u(t0) = ‖u‖, then

1−
π

2k
≤ t0 ≤

π

2k
.

Proof. We define the auxiliary function h(t) the same way as in the proof of Theorem 3.1, that is,
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h(t) = −u′′(t)− k2u(t), 0 ≤ t ≤ 1. It is clear that h ∈ C[0, 1] and h(t) ≥ 0 on [0, 1], and

u(t) =

∫ 1

0
G(t, s)h(s) ds, 0 ≤ t ≤ 1.

Since u(t) (≡ 0, we have h(t) (≡ 0 on [0, 1]. Therefore, there exists a subinterval [α,β] ⊂ [0, 1] such

that

h(t) > 0, α ≤ t ≤ β. (3.3)

It is clear that, for 0 ≤ t ≤ 1,

u(t) =

∫ 1

0
G(t, s)h(s) ds =

∫ t

0

sin(ks) sin(k(1− t))

k sin k
h(s) ds+

∫ 1

t

sin(kt) sin(k(1 − s))

k sin k
h(s) ds.

Taking the derivative, we get

u′(t) = −

∫ t

0

sin(ks) cos(k(1− t))

sin k
h(s) ds+

∫ 1

t

cos(kt) sin(k(1− s))

sink
h(s) ds. (3.4)

We note that

sin(ks) > 0 for 0 < s < 1, (3.5)

sin(k(1− s)) > 0 for 0 < s < 1, (3.6)

− cos(k(1− t)) > 0 for 0 < t < 1−
π

2k
, (3.7)

cos(kt) > 0 for 0 < t < 1−
π

2k
. (3.8)

If we apply (3.3), (3.5), (3.6), (3.7), and (3.8) in (3.4), we get

u′(t) > 0, 0 ≤ t < 1−
π

2k
. (3.9)

So, if t0 ∈ (0, 1) is such that u(t0) = ‖u‖, then u′(t0) = 0 and therefore, in view of (3.9), it must

hold that t0 ≥ 1 −
π

2k
. In a similar way, we can show that t0 ≤

π

2k
. The proof of the theorem is

now complete. !

4 Upper estimate for positive solutions

In this section, we shall prove a new upper estimate for positive solutions to the problem (1.1)-

(1.2). Note that this new upper estimate for positive solutions can not be derived directly from

the upper estimate for the Green function G(t, s) that was obtained in Section 2, though these

upper estimates look similar.
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Theorem 4.1. Suppose that k ∈ (π/2,π). If u ∈ C2[0, 1] satisfies (3.1) and u(0) = u(1) = 0, then

u(t) ≤ b(t)‖u‖, 0 ≤ t ≤ 1. (4.1)

Proof. Again, let h(t) = −u′′(t)− k2u(t). It is clear that h(t) ≥ 0 for 0 ≤ t ≤ 1.

If u(t) ≡ 0, then the theorem is trivially true. So, in the rest of the proof, we assume that u(t) (≡ 0

on [0, 1]. In this case, by Theorem 3.1, we have u(t) > 0 on (0, 1), and there exists a unique

t0 ∈ (0, 1) such that u(t0) = ‖u‖ > 0. By Theorem 3.2, the point t0 satisfies

1−
π

2k
≤ t0 ≤

π

2k
.

Without loss of generality, we assume that u(t0) = ‖u‖ = 1.

We will first show that

u(t) ≤ b(t)‖u‖ = b(t), 0 ≤ t ≤ 1− π/(2k). (4.2)

Assume, to the contrary, that there exists α ∈ (0, 1− π/(2k)) such that

u(α) > b(α) = sin(k − kα).

For easy reference, denote σ = 1− π/(2k). Then, we have 0 < α < σ. Define an auxiliary function

z(t) =
u(t)− sin(k − kt)

sin(kt+ π−k
2 )

, 0 ≤ t ≤ 1.

It is clear that

z(α) > 0, z(σ) ≤ 0, z(1) = 0. (4.3)

It follows that there exists t1 ∈ [α, 1) such that z′(t1) = 0, z(t1) ≤ 0, and

z(t1) ≤ z(t) for all α ≤ t ≤ 1.

Direct calculations show that

z′′(t) + p(t)z′(t) = q(t), (4.4)

where

p(t) =
2k cos(kt+ π−k

2 )

sin(kt+ π−k
2 )

, 0 ≤ t ≤ 1

and

q(t) = −
h(t)

sin(kt+ π−k
2 )

, 0 ≤ t ≤ 1.
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It is clear that p(t) and q(t) are continuous functions defined on [0, 1], and q(t) ≤ 0 for 0 ≤ t ≤ 1.

Define

P (t) = exp

(
∫ t

0
p(s)ds

)

, 0 ≤ t ≤ 1.

Multiplying Equation (4.4) by P (t), we get

(P (t)z′(t))
′
≤ 0, 0 ≤ t ≤ 1.

Since z′(t1) = 0, we have

P (t)z′(t) ≥ 0, 0 ≤ t ≤ t1.

That is, z(t) is non-decreasing on [0, t1]. Since z(t1) ≤ 0 and α < t1, we have z(α) ≤ 0, which

contradicts the first inequality in (4.3). Hence, (4.2) must be true.

In a similar way, we can show that

u(t) ≤ b(t)‖u‖, π/(2k) ≤ t ≤ 1.

And, it is obvious that

u(t) ≤ ‖u‖ = b(t)‖u‖, 1− π/(2k) ≤ t ≤ π/(2k).

The proof of the theorem is now complete. !

Corollary 4.2. Suppose that (H) holds. If u ∈ C2[0, 1] is a positive solution for the problem

(1.1)-(1.2), then u(t) satisfies (4.1).

Proof. If u ∈ C2[0, 1] is a positive solution for the problem (1.1)-(1.2), then u(t) satisfies the

boundary conditions (1.2), and, for 0 ≤ t ≤ 1,

u′′(t) + k2u(t) = −f(t, u(t)) ≤ 0.

That is, u(t) satisfies the inequality (3.1). By Theorem 4.1, u(t) satisfies (4.1). This completes the

proof of the corollary. !

5 Example

We conclude this paper with a concrete example. Consider the fourth order boundary value

problem

u′′′′(t)− ω4u(t) = f(t, u(t)), 0 ≤ t ≤ 1, (5.1)
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u(0) = u′′(0) = u′′(1) = u(1) = 0. (5.2)

Here, the function f : [0, 1]× [0,+∞) → [0,∞) is defined as

f(t, u) = 15max{(1 + 99u)/100, u2}, u ≥ 0. (5.3)

It is clear that this function f(t, u) is actually independent of t and continuous in u. Throughout

the section, we fix ω = 3.

We will adopt the same set of notations as in [10]. In particular, the symbols m,µ1, f0, f∞, f0,r

are all defined the same way as in [10] (see pages 233, 234 of [10]). Also, the Green’s functions

G0(t, s), GT (t, s), GH(t, s) are defined the same way as in [10] (see equations (2.18), (2.19), and

(2.20) of [10]). Note that the function GT (t, s) of [10] is the same as the function G(t, s) that was

given in Section 1 of this paper. We know from [10] that all three functions GT (t, s), GH(t, s), and

G0(t, s) are non-negative functions.

For this special case (where ω = 3), the following computational results are given in [10, page 235]:

m ≈ 12.8961, µ1 ≈ 16.4091. (5.4)

According to [10], these numerical values can be used together with the following existence result

to solve the fourth order boundary value problem (5.1)-(5.2) for two positive solutions in the case

where µ1 < f0, f∞ ≤ +∞.

Lemma 5.1 ([10, Theorem 2.4, Case (D2)]). If

µ1 < f0 ≤ ∞, f0,r < m for some r > 0 and µ1 < f∞ ≤ ∞,

then the problem (5.1)-(5.2) has at least two positive solutions.

For the function f(t, u) defined in (5.3), it is straightforward to verify that f0 = f∞ = +∞ and,

for each r > 0, f0,r ≥ 15 > m. Therefore, Lemma 5.1 does not apply to the problem (5.1)-(5.2).

On the other hand, by applying the new upper estimate that was obtained in this paper, we are

able to show that the problem (5.1)-(5.2) has two positive solutions. For this purpose, we choose

our function space X = C[0, 1], which is equipped with the supremum norm ‖ ·‖. Define a positive

cone P of X by

P = {u ∈ X | b(t)u(1/2)/cT (1/2) ≥ u(t) ≥ cT (t)‖u‖ for 0 ≤ t ≤ 1}.
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Define the operator T : P → X by

(Tu)(t) =

∫ 1

0
G0(t, s)f(s, u(s)) ds, ∀ t ∈ [0, 1], ∀u ∈ P.

It is clear that T is completely continuous. It is also clear that, in order to show that the problem

(5.1)-(5.2) has two positive solutions, we need only to show that the operator T has two distinct

nonzero fixed points in P . Next, we shall prove that, for this particular cone P , it holds that T

maps P into P . We will need the upper estimate given in Theorem 4.1 in the proof of this fact.

Lemma 5.2. For each u ∈ X such that u(t) ≥ 0 for 0 ≤ t ≤ 1, it holds that Tu ∈ P . In particular,

T (P ) ⊂ P .

Proof. Let z(t) = (Tu)(t) and let h(t) = z′′(t) + ω2z(t) for 0 ≤ t ≤ 1. Then, we have

z′′′′(t)− ω4z(t) = f(t, u(t)), 0 ≤ t ≤ 1,

z(0) = z′′(0) = z′′(1) = z(1) = 0.

It follows that h(0) = h(1) = 0, and

h′′(t)− ω2h(t)− f(t, u(t)) = 0, 0 ≤ t ≤ 1.

Hence,

h(t) =

∫ 1

0
GH(t, s)(−f(s, u(s))) ds ≤ 0, 0 ≤ t ≤ 1.

Since z′′(t) + ω2z(t)− h(t) = 0 and z(0) = z(1) = 0, we have

z′′(t) + ω2z(t) ≤ 0, 0 ≤ t ≤ 1,

z(t) =

∫ 1

0
GT (t, s)(−h(s)) ds ≥ 0, 0 ≤ t ≤ 1.

Note that ω = 3 ∈ (π/2,π). If we apply Theorem 4.1, we get

z(t) ≤ b(t)‖z‖, 0 ≤ t ≤ 1.

For all t1, t2 ∈ [0, 1], by Lemma 1.1, we have

z(t1) =

∫ 1

0
GT (t1, s)(−h(s)) ds ≥

∫ 1

0
cT (t1)ΦT (s)(−h(s)) ds = cT (t1)

∫ 1

0
ΦT (s)(−h(s)) ds

≥ cT (t1)

∫ 1

0
GT (t2, s)(−h(s)) ds = cT (t1)z(t2).
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Since t2 ∈ [0, 1] is arbitrary, we have

z(t1) ≥ cT (t1)‖z‖, 0 ≤ t1 ≤ 1.

In summary, we have, for all 0 ≤ t ≤ 1,

z(t) ≤ b(t)‖z‖ ≤ b(t)z(1/2)/cT (1/2).

The proof of the lemma is now complete. !

Lemma 5.3. For each u ∈ P with ‖u‖ = 1, we have ‖Tu‖ < ‖u‖.

Proof. For each u ∈ P with ‖u‖ = 1, we have Tu ∈ P , and

(GT (1/2))‖Tu‖ ≤ (Tu)(1/2) =

∫ 1

0
G0(1/2, s)f(s, u(s)) ds

=

∫ 1

0
G0(1/2, s)(15 · (1 + 99u(s))/100) ds

≤

∫ 1

0
G0(1/2, s)(15 · (1 + 99b(s)/cT (1/2))/100) ds.

It follows that, for each u ∈ P with ‖u‖ = 1,

‖Tu‖ ≤ (GT (1/2))
−1 · (3/20) ·

∫ 1

0
G0(1/2, s)(1 + 99b(s)/cT (1/2)) ds.

A direct calculation shows that the right hand side of the last inequality is approximately 0.978566.

Thus, we have shown that, for each u ∈ P with ‖u‖ = 1, it holds that

‖Tu‖ < 0.979 < 1 = ‖u‖.

The proof is complete. !

In a similar way, since f0 = f∞ = +∞, we can show that

1. there exists a small positive number α ∈ (0, 1/2) such that, for each u ∈ P with ‖u‖ = α, it

holds that ‖Tu‖ ≥ ‖u‖; and

2. there exists a positive number β ∈ (2,+∞) such that, for each u ∈ P with ‖u‖ = β, it holds

that ‖Tu‖ ≥ ‖u‖.
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Now, by the norm type of the fixed point theorem of cone expansion and contraction (see Theorem

4 of [14]), the operator T has two fixed points u1 and u2 such that

0 < α ≤ ‖u1‖ < 1 < ‖u2‖ ≤ β.

It follows that the problem (5.1)-(5.2) has two positive solutions. Note that we are able to achieve

this because the new upper estimate (in terms of b(t)) from Section 4 can help us define a fine cone

P , which makes the search for positive solution(s) easier.
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ABSTRACT

Suppose B(H) is the Banach algebra of all bounded linear

operators on a Hilbert space H with dim(H) ≥ 3. Let γ(.)

denote the reduced minimum modulus of an operator. We

charaterize surjective maps ϕ on B(H) satisfying

γ(ϕ(T )ϕ(S)) = γ(TS) (T, S ∈ B(H)).

Also, we give the general form of surjective maps on B(H)

preserving the reduced minimum modulus of Jordan triple

products of operators.

RESUMEN

Suponga que B(H) es el álgebra de Banach de todos los

operadores lineales acotados en un espacio de Hilbert H con

dim(H) ≥ 3. Denote por γ(.) el módulo mı́nimo reducido de

un operador. Caracterizamos las aplicaciones sobreyectivas

ϕ en B(H) que satisfacen

γ(ϕ(T )ϕ(S)) = γ(TS) (T, S ∈ B(H)).

También entregamos la forma general de las aplicaciones so-

breyectivas en B(H) que preservan el módulo mı́nimo re-

ducido de productos triples de Jordan de operadores.
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1 Introduction and Preliminaries

Throughout the paper all Banach spaces are assumed over the field of complex numbers C. For a

given Banach space X , B(X) denotes the Banach algebra of all bounded linear operators on X .

For T ∈ B(X), R(T ) and ker(T ) denote the range and the null space of T , respectively. The unit

circle in C will be denoted by T.

Mappings between Banach algebras or operator algebras who preserve various spectral properties

have been widely studied. Suppose H is a Hilbert space. Mbekhta [10] characterized surjective

linear maps on B(H) preserving the generalized spectrum, and then deduced the form of all

surjective unital linear maps on B(H) preserving the reduced minimum modulus. See also the

paper by Bourhim [2], the Banach space case is settled. This result was generalized by Skhiri

[13] who, for an arbitrary Banach space X , determined the structure of surjective linear maps ϕ

on B(X) preserving the reduced minimum modulus, provided that ϕ(I) is invertible. Bourhim

et. al. [3] showed that a surjective linear map between C∗-algebras which preserves the reduced

minimum modulus is a Jordan ∗-isomorphism multiplied by a unitary element. Consequently, the

invertiblity assumption of ϕ(I) in [13] is superfluous.

Let X and Y be Banach spaces. Mashreghi and Stepanyan [9], described a bicontinuous bijective

(with no linearity assumption) map ϕ : B(X) → B(Y ) which leaves invariant the reduced mini-

mum modulus of sum/difference of operators. Later, Costara [5] showed that a bijective map on

Mn(C) which preserves the reduced minimum modulus of difference of operators is automatically

bicontinuous. Cui and Hou [6] characterized maps on standard operator algebras on a Hilbert space

H preserving functional values of operator products, where by a functional value on a standard

operator algebra A we mean a function F : A → [0,+∞] satisfying the following conditions:

(i) F (T ) < ∞ for each rank one T ∈ B(H),

(ii) F is unitary (and conjugate unitary) similarity invariant,

(iii) F (λT ) = |λ|F (T ) for all T ∈ B(H) and λ ∈ C,

(iv) F (T ) = 0 if and only if T = 0.

The reduced minimum modulus of an operator T ∈ B(X) is defined by

γ(T ) :=







inf{‖Tx‖ : dist(x, ker(T )) ≥ 1} if T '= 0,

∞ if T = 0.
(1.1)

(see e.g. [3, 8, 12]). This quantity measures the closeness of the range of an operator, that is for

T ∈ B(X), γ(T ) > 0 if and only if R(T ), the range of T , is closed (see [12, Part 10, Chapter II]).

It is proved that if T is invertible then γ(T ) = ‖T−1‖−1, see [3, 12]. Suppose H is a Hilbert space.
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For T ∈ B(H), let σ(T ) denote the spectrum of T , then

γ(T )2 = inf{λ : λ ∈ σ(T ∗T ) \ {0}}, (1.2)

see [8, Theorem 4]. Consequently, γ(T ) = γ(T ∗T )
1
2 = γ(TT ∗)

1
2 = γ(T ∗). So, γ(T )2 = γ(T 2)

whenever T = T ∗. Moreover, if U, V ∈ B(H) are unitary operators, then γ(UTV ) = γ(T ) for all

T ∈ B(H).

We denote byR1(H) the set of all bounded rank one operators onH . We recall that every rank one

operator T inB(H) is of the form T = x⊗y for some nonzero vectors x, y ∈ H , and (x⊗y)∗ = y⊗x.

So, (x ⊗ y)∗(x ⊗ y) = (y ⊗ x)(x ⊗ y) = ‖x‖2y ⊗ y. Thus, σ((x ⊗ y)∗(x⊗ y)) = {0, ‖x‖2‖y‖2}, and

γ(x⊗ y) = ‖x‖‖y‖.

In this paper, we study surjective maps preserving the reduced minimum modulus of products

and Jordan triple products. Obviously, such maps preserve zero product/Jordan triple product in

both directions. So, preserving zero product/Jordan triple product plays an important role in our

arguments.

Recall that, another definition of γ(·) was given by C. Apostol in [1] which is different at T = 0.

The advantage of Definition (1.1) is that it separates the zero operator from the others. So we

would be able to use the results for zero product (resp. zero Jordan triple product) preservers.

Therefore, in this article, we shall work with the definition of γ(·) given by (1.1).

In Section 2, we assume that H is a complex Hilbert space of dimension greater than or equal

3 and study surjective maps (no linearity and continuity are assumed) on B(H) preserving the

reduced minimum modulus of operator products. Note that the reduced minimum modulus is

not a functional value in the sense of [6], as it does not satisfy Condition (iv) in the definition

of a functional value. However, Condition (iv) in [6] is used to show zero product preserving

property for the maps under consideration. So, the characterization given in [6] works here. We

use this characterization to find a finer characterization for surjections on B(H) preserving the

reduced minimum modulus of operator products. We show that a surjective map φ on B(H)

preserves the reduced minimum modulus of products if and only if φ is a linear or conjugate linear

∗-automorphism multiplied by partial isometries. More precisely, φ(T ) = UTψ(T ) = ψ(T )V ∗
T

for all T ∈ B(H), where ψ is a linear or conjugate linear ∗-automorphism and UT , VT are partial

isometries on R(ψ(T )) andR(ψ(T )∗), respectively. We recall that by the general characterization of

∗-automorphisms (resp. ∗-anti-automorphisms) on B(H) (see [11, Theorem A.8]), ψ(T ) = UTU∗

(resp. ψ(T ) = UT ∗U∗), where U is a unitary (resp. anti-unitary) operator onH . Finally in Section

3, we consider surjections on B(H) preserving the reduced minimum modulus of Jordan triple

products of operators. If H is infinite dimensional, we prove that a surjective map φ : B(H) →

B(H) preserves the reduced minimum modulus of Jordan triple products if and only if there is a

unitary operator U on H and a function µ : B(H) → T such that either φ(T ) = µ(T )UTU∗ or
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φ(T ) = µ(T )UT ∗U∗, for all T ∈ B(H). In finite dimensional case, we will show that such a map

on Mn(C) (n ≥ 3), has one of the forms φ(A) = µ(A)Uf(A)U∗ or φ(A) = µ(A)Uf(A)trU∗ for all

A ∈ Mn(C), where µ is a function from Mn(C) to T and for a matrix A = [aij ], f(A) = [f0(aij)],

where f0 : C → C is the identity or the conjugation map.

2 Preserving reduced minimum modulus of operator prod-

ucts

Let H be a complex Hilbert space of dimension ≥ 3 and let U(H) denote the set of unitaries on

H . In this section we describe a surjective (with no linearity and continuity assumption) map

φ : B(H) → B(H) satisfying

γ
(

φ(T )φ(S)
)

= γ(TS) (T, S ∈ B(H)). (2.1)

Then obviously, for T, S ∈ B(H), TS = 0 ⇒ φ(T )φ(S) = 0. So, φ preserves zero product. We

recall that γ(.) does not satisfy Condition (iv) in the definition of a functional value. However,

in arguments leading to [6, Theorem 2.3 and Theorem 3.2], the only use of this condition is zero

product preserving property. In addition, γ(p) = inf{λ : λ ∈ σ(p∗p)\{0}}
)

1
2 = 1 for all projections

p ∈ B(H). Particularly, γ(.) is constant on the set of all rank one projections. So, we have the

same characterization as in [6, Theorem 2.3] on R1(H). Hence by a similar discussion leading

to [6, Theorem 3.2], we see that a surjective map φ on B(H) satisfies (2.1) if and only if there

exist a unitary or an anti-unitary U0 in B(H) and functions h1, h2 : B(H) → U(H) satisfying

h1(T )T = Th2(T ) for all T ∈ B(H), such that

φ(T ) = U0h1(T )TU0
∗ = U0Th2(T )U0

∗, (2.2)

for all T ∈ B(H).

Here by using properties of γ, we are going to find further necessary and sufficient conditions for

φ to satisfy (2.1).

To prove our main results, we need the following lemma.

Lemma 2.1. Let A,B ∈ B(H). Then the following statements are equivalent.

(i) γ(AT ) = γ(BT ) for all T ∈ B(H).

(ii) γ(AT ) = γ(BT ) for all T ∈ R1(H).

(iii) |A| = |B|.
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Similarly, the following statements are also equivalent.

(i)′ γ(TA) = γ(TB) for all T ∈ B(H).

(ii)′ γ(TA) = γ(TB) for all T ∈ R1(H).

(iii)′ |A∗| = |B∗|.

Proof. The implication (i) ⇒ (ii) is obvious. Assume that γ(AT ) = γ(BT ) for all T ∈ R1(H). Let

x, y ∈ H and y '= 0, then

‖Ax‖‖y‖ = γ(A(x⊗ y)) = γ(B(x⊗ y)) = ‖Bx‖‖y‖.

Thus, ‖Ax‖ = ‖Bx‖ for all x ∈ H . So, 〈A∗Ax, x〉 = 〈B∗Bx, x〉 for all x ∈ H . Consequently,

|A| = |B| that is (ii) implies (iii). If |A| = |B|, then A∗A = B∗B and

γ(AT )2 = γ(T ∗A∗AT ) = γ(T ∗B∗BT ) = γ(BT )2, (2.3)

for all T ∈ B(H). Thus, γ(AT ) = γ(BT ) for all T ∈ B(H).

Since γ(T ) = γ(T ∗) for all T ∈ B(H), the equivalence of the last three statements is an immediate

consequence of the one of the previous statements. !

Proposition 2.2. Let H be a complex Hilbert space with dimH ≥ 3, and φ : B(H) → B(H)

a surjective map. Then φ satisfies (2.1) if and only if there exists a linear or conjugate linear

∗-automorphism ψ : B(H) → B(H) such that |φ(T )| = |ψ(T )| and |φ(T )∗| = |ψ(T )∗| for all

T ∈ B(H).

Proof. Assume that φ satisfies (2.1). Using (2.2), it is easy to see that |φ(T )| = |ψ(T )| and

|φ(T )∗| = |ψ(T )∗| for all T ∈ B(H), where ψ(T ) = U0TU0
∗ and U0 is a unitary or anti-unitary

operator on H .

Conversely, suppose that there exists a linear or conjugate linear ∗-automorphism ψ on B(H) such

that |φ(T )| = |ψ(T )| and |φ(T )∗| = |ψ(T )∗| for all T ∈ B(H). Let T ∈ B(H) be an arbitrary but

fixed element, then by the implication (iii) ⇒ (i) in Lemma 2.1, we have

γ(φ(T )φ(S)) = γ(ψ(T )φ(S)) (S ∈ B(H)). (2.4)

On the other hand, since |φ(S)∗| = |ψ(S)∗| for all S ∈ B(H), by the implication (iii)′ ⇒ (i)′ in

Lemma 2.1, we get

γ(ψ(T )φ(S)) = γ(ψ(T )ψ(S)) = γ(ψ(TS)) = γ(TS) (S ∈ B(H)). (2.5)
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Comparing (2.4) and (2.5) implies that γ(φ(T )φ(S)) = γ(TS) for all T, S ∈ B(H), and we are

done. !

Lemma 2.3. Let T ∈ B(H) and U be a partial isometry on R(T ). Then, γ(UTS) = γ(TS) for

all S ∈ B(H).

Proof. Since U is a partial isometry on R(T ),

‖UTx‖ = ‖Tx‖ (2.6)

for all x ∈ H and kerUT = kerT . Let S ∈ B(H), then

x ∈ ker(UTS) ⇐⇒ UTSx = 0 ⇐⇒ Sx ∈ kerUT ⇐⇒ Sx ∈ kerT ⇐⇒ x ∈ kerTS.

By (2.6), we get ‖UTSx‖ = ‖TSx‖ for all x ∈ H . Now, using the above argument we have

γ(UTS) = inf{‖UTSx‖ : dist(x, kerUTS) ≥ 1} = inf{‖TSx‖ : dist(x, kerTS) ≥ 1} = γ(TS).

!

Now we are ready to give a slightly finer characterization for surjections on B(H) preserving the

reduced minimum modulus of operator products.

Theorem 2.4. Let H be a complex Hilbert space with dimH ≥ 3, and φ : B(H) → B(H) a

surjective map. Then φ satisfies (2.1) if and only if

φ(T ) = UTψ(T ) = ψ(T )V ∗
T (T ∈ B(H)),

where ψ is a linear or conjugate linear ∗-automorphism on B(H) and for each T ∈ B(H), UT , VT

are partial isometries on R(ψ(T )), R(ψ(T )∗), respectively. As a consequence, there is a unitary or

anti-unitary operator U on H such that

φ(T ) = UTUTU∗ = UTU∗V ∗
T (T ∈ B(H)).

Proof. First, we assume that φ satisfies (2.1). By Proposition 2.2, there exists a linear or conjugate

linear ∗-automorphism ψ : B(H) → B(H) such that |φ(T )| = |ψ(T )| and |φ(T )∗| = |ψ(T )∗| for

all T ∈ B(H). Choose an arbitrary but fixed T ∈ B(H). Note that ‖φ(T )x‖ = ‖ψ(T )x‖ and

‖φ(T )∗x‖ = ‖ψ(T )∗x‖ for all x ∈ H . Define

U1 : ψ(T )(H) → φ(T )(H)

ψ(T )x -→ φ(T )x,
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for all x ∈ H. Then, U1 is well-defined. Indeed, if y1, y2 ∈ ψ(T )(H), then there exist x1, x2 ∈ H

such that ψ(T )x1 = y1 and ψ(T )x2 = y2. Also,

‖U1y1 − U1y2‖ = ‖U1(ψ(T )x1)− U1(ψ(T )x2)‖ = ‖φ(T )x1 − φ(T )x2‖

= ‖φ(T )(x1 − x2)‖ = ‖ψ(T )(x1 − x2)‖ = ‖ψ(T )x1 − ψ(T )x2‖

= ‖y1 − y2‖.

So U1y1 = U1y2, whenever y1 = y2 which means that U1 is well-defined. It is easy to see that U1

is a linear isometry. Hence, it has a linear isometric extension U1 to R(ψ(T )). Define UT : H → H

by UT (x) = U1(x) whenever x ∈ R(ψ(T )), and UT (x) = 0 for x ∈ R(ψ(T ))
⊥
. Therefore, UT is a

partial isometry with kerUT = R(ψ(T ))
⊥

and we have φ(T ) = UTψ(T ). By a similar argument,

we find a partial isometry VT such that kerVT = R(ψ(T )∗)
⊥

and φ(T )∗ = VTψ(T )∗. So, φ(T ) =

ψ(T )V ∗
T . Consequently, φ(T ) = UTψ(T ) = ψ(T )V ∗

T for all T ∈ B(H).

Conversely, suppose that for T ∈ B(H), φ(T ) = UTψ(T ) = ψ(T )V ∗
T , where ψ : B(H) → B(H)

is a linear or conjugate linear ∗-automorphism and UT , VT are partial isometries on R(ψ(T )),

R(ψ(T )∗), respectively. Then by Lemma 2.3, for T, S ∈ B(H),

γ
(

φ(T )φ(S)
)

= γ(UTψ(T )ψ(S)V
∗
S

)

= γ
(

ψ(T )ψ(S)V ∗
S

)

= γ
(

VSψ(S)
∗ψ(T )∗

)

= γ
(

ψ(S)∗ψ(T )∗
)

= γ
(

ψ(T )ψ(S)
)

= γ(TS).

The last assertion follows by [11, Theorem A.8]. !

3 Preserving reduced minimum modulus of Jordan triple

product

In [7], authors studied preservers of zero Jordan triple products and found a characterization

through some certain subsets of B(X). We recall that the Jordan triple product of operators T, S

is TST . In the sequel, we consider surjective maps φ on B(H) satisfying

γ(φ(T )φ(S)φ(T )) = γ(TST ) (T, S ∈ B(H)). (3.1)

It is easily seen that such a map preserves zero Jordan triple product in both directions, that is

TST = 0 ⇐⇒ φ(T )φ(S)φ(T ) = 0. (3.2)

We apply the characterization of maps satisfying (3.2), in [7], to find a finer characterization for

maps satisfying (3.1).
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Remark 3.1. (1) Applying [7, Theorem 2.2], we conclude that if H is infinite dimensional and

a surjection φ on B(H) satisfies (3.2), then there is a function µ : B(H) → C \ {0} and a

bounded invertible linear or conjugate linear operator A : H → H such that either

(a) φ(T ) = µ(T )ATA−1 (T ∈ B(H)) or (b) φ(T ) = µ(T )AT !A−1 (T ∈ B(H)).

Here T ! denotes the Banach space adjoint of T ∈ B(H). If J is the conjugate linear

isomorphism from H onto its dual H∗, then it is easily seen that T ! = JT ∗J−1, for all

T ∈ B(H). Therefore,

φ(T ) = µ(T )AJT ∗J−1A−1 (T ∈ B(H)).

Clearly, AJ is linear or conjugate linear depending on A is conjugate linear or linear, respec-

tively. Renaming AJ by A, we arrive at

(b)′ φ(T ) = µ(T )AT ∗A−1, for all T ∈ B(H),

where A is a linear or conjugate linear invertible operator.

(2) Suppose that H = Cn, n ≥ 3, and that φ : Mn(C) → Mn(C) is a surjective map satisfying

(3.2). Applying [7, Theorem 2.1] shows that there exist an invertible matrix S ∈ Mn(C), a

field automorphism f0 : C → C, and a scalar function µ : Mn(C) → C \ {0} such that one of

the following holds:

(c) φ(A) = µ(A)Sf(A)S−1 (A ∈ Mn(C)),

or

(d) φ(A) = µ(A)Sf(A)trS−1 (A ∈ Mn(C)), where f([aij ]) = [f0(aij)].

In the two following theorems, we show that if a surjective map φ on B(H) satisfies (3.1), then

the invertible operators A and S in Remark 3.1 (1)-(2) can be replaced by unitaries and moreover,

|µ| = 1. As a consequence, φ is norm preserving.

Let H be a complex Hilbert space and let {ei}i be a fixed orthonormal basis for H . If x =
∑

i

〈x, ei〉ei is an arbitrary element inH , we define Cx =
∑

i

〈x, ei〉ei which is called the conjugation

operator on H . It is evident that C is an anti-unitary operator with C∗ = C. Hence, C−1 = C

and C2 = I. Since σ(CTC) = σ(T ), we have σ((CTC)∗(CTC)) = σ(CT ∗TC) = σ(T ∗T ). Thus,

γ(CTC) = γ(T ) for all T ∈ B(H).

Theorem 3.2. Let H be an infinite dimensional complex Hilbert space. A surjective map φ :

B(H) → B(H) satisfies (3.1) if and only if there exist a function µ : B(H) → T and a unitary or

anti-unitary operator U on H such that either φ(T ) = µ(T )UTU∗ or φ(T ) = µ(T )UT ∗U∗, for all

T ∈ B(H).
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Proof. The “if” part holds in an obvious way. Suppose that φ satisfies (3.1), then φ satisfies (3.2).

Thus by Remark 3.1 (1)-(a), (b)′, there exists an invertible linear or conjugate linear operator

A ∈ B(H) such that either

(i) φ(T ) = µ(T )ATA−1 (T ∈ B(H)) or (ii) φ(T ) = µ(T )AT ∗A−1 (T ∈ B(H)).

It follows that for each T ∈ B(H), γ(φ(T )) = γ(T ). Indeed, 1 = γ(I) = γ(φ(I)3) = |µ(I)3| and so

|µ(I)| = 1. Therefore,

γ(T ) = γ(φ(I)φ(T )φ(I)) = |µ(I)|2γ(φ(T )) = γ(φ(T )) (T ∈ B(H)).

Case 1. In either case, assume that A is linear and that A = U |A| is the polar decomposition of

A. Then U is unitary. Set φ
U
(T ) = U∗φ(T )U (T ∈ B(H)) and R = |A|, then

φ
U
(T ) = µ(T )RTR−1 (T ∈ B(H)) or φ

U
(T ) = µ(T )RT ∗R−1 (T ∈ B(H)).

For a unit vector x ∈ H , we have

1 = γ(x⊗ x) = γ
(

φ(x ⊗ x)
)

= γ
(

U∗φ(x ⊗ x)U
)

= γ
(

φ
U
(x⊗ x)

)

= |µ(x⊗ x)|‖Rx‖‖R−1x‖.

On the other hand,

1 = γ
(

(x ⊗ x)I(x ⊗ x)
)

= γ
(

φ
U
(x⊗ x)2

)

= |µ(x⊗ x)|2‖Rx‖‖R−1x‖.

Therefore, |µ(x⊗x)|2 = |µ(x⊗x)|. Since γ(φ
U
(x⊗x)) = γ(x⊗x) = 1 is nonzero, |µ(x⊗x)| = 1.

It follows that |µ| = 1 on the set of rank one projections on H . Consequently, ‖Rx‖‖R−1x‖ =

1 for all unit vectors x ∈ H . By [6, Lemma 2.4], there is α > 0 such that R = αI. So,

φ
U
(T ) = µ(T )αITα−1I = µ(T )T (T ∈ B(H))

or

φ
U
(T ) = µ(T )αIT ∗α−1I = µ(T )T ∗ (T ∈ B(H)).

In addition, for T ∈ B(H)

γ(T ) = γ(φ(T )) = γ(φ
U
(T )) = |µ(T )|γ(T ).

Thus, |µ(T )| = 1 for every T ∈ B(H), and we infer that

φ(T ) = µ(T )UTU∗ (T ∈ B(H)) or φ(T ) = µ(T )UT ∗U∗ (T ∈ B(H)).
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Case 2. Let A be conjugate linear (in (i) or (ii)), and let C be the conjugation operator on H .

Define φ
C
(T ) = Cφ(T )C for all T ∈ B(H). Then, φ

C
satisfies (3.1). Since φ satisfies one

of the conditions (i) or (ii) above, φ
C
(T ) = µ(T )CATA−1C, or φ

C
(T ) = µ(T )CAT ∗A−1C,

where CA is linear with inverse A−1C. Now, by the first part of the proof, there is a unitary

operator V on H such that either φ
C
(T ) = µ(T )V TV ∗ or φ

C
(T ) = µ(T )V T ∗V ∗, for all

T ∈ B(H) and |µ(T )| = 1 for all T . Putting U = CV , then U is an anti-unitary operator

and either φ(T ) = µ(T )UTU∗ or φ(T ) = µ(T )UT ∗U∗, for all T ∈ B(H). !

The proof of the following theorem follows the same line as the proof of [7, Theorem 4.1]. We

recall that Atr denotes the transpose of a matrix A.

Theorem 3.3. Suppose n ≥ 3. Then φ : Mn(C) → Mn(C) satisfies (3.1) if and only if there exists

a unitary matrix U and a function µ : Mn(C) → T such that either

(i) φ(A) = µ(A)Uf(A)U∗ or (ii) φ(A) = µ(A)U(f(A))trU∗,

for all A = [aij ] ∈ Mn(C). We have f([aij ]) = [f0(aij)] where, f0 : C → C is the identity or the

complex conjugate on C.

Remark 3.4. (i) As we mentioned in Section 1, another definition of the reduced minimum

modulus was given by C. Apostol in [1] which differs from (1.1) at T = 0. Let T be a bounded

linear operator on a Banach space X. According to [1], the reduced minimum modulus of T

which we denote by γa(T ), is defined by

γa(T ) :=







inf{‖Tx‖ : dist(x, ker(T )) ≥ 1} if T '= 0,

0 if T = 0.
(3.3)

It is natural to ask whether our results remain valid when we replace (1.1) by (3.3). The ad-

vantage of Definition (1.1) is that it separates the zero operator from the others. So we would

be able to use the properties of zero product (resp. zero Jordan triple product) preservers.

Since positivity of γ(T ) (resp. γa(T )) is equivalent to the closeness of the range of T , and

since in finite dimensional case every operator has closed range, so in this case γa(T ) = 0

if and only if T = 0. Hence, our results hold true with convention (3.3). However, in the

inifinite dimensional case, we still do not know whether the same characterizations remain

valid with convention (3.3), and the problem remains open.

(ii) One of our main assumptions in this article is that dimH ≥ 3. In fact a principal key

in our arguments is the characterization of zero product (resp. zero Jordan triple product)

preservers on certain subalgebras of B(X) when X is a Banach space with dimX ≥ 3, given

in [6, 7]. In general, this assumption on dimension is crucial for characterizing zero product

preservers, see [4, Example 3.1]. It seems that characterizing the maps preserving the reduced
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minimum modulus of products (resp. Jordan triple product) of complex 2× 2 matrices needs

different arguments.
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1 Introduction

Several authors, among others, Berinde [1], Berinde and Păcurar [3], Cho [4], Hicks and Rhoades

[8], Kasahara [9] and Kirk and Shahzad [10] studied the existence of fixed points of single and set-

valued operators, by stating conditions on the orbits of these operators. In the current work, we are

interested in investigating the existence of fixed points, for set-valued mappings or correspondences,

by a type of the so called Banach orbital condition. This condition is an adaptation of the usual

one, which we introduce motivated by the work of Hicks and Rhoades in [8].

The main result of this note establishes the existence of fixed points for set-valued mappings

satisfying the mentioned condition. Moreover, we show that this result and variants of it apply to

various multi-valued mappings existing in the literature.

The presentation of this work is subdivided into three sections. Apart of this introduction, in

Section 2, some notations and preliminary definitions are presented. The main result and its

consequences are introduced in Section 3. Finally, Section 4 is devoted to some examples existing

in the literature and satisfying the Banach orbital condition for set-valued mappings.

2 Preliminaries

In the sequel, (X, d) stands for a complete metric space and, for a ∈ X and r > 0, we denote

B(a, r) = {x ∈ X : d(x, a) < r}. A subset A is said to be bounded, whenever there exist a ∈ X

and r > 0 such that A ⊂ B(a, r). We denote by B(X) the family of all bounded sets of X and by

C(X) the family of all nonempty and closed subsets of X . In what follows, CB(X) = C(X)∩B(X)

and B(A, r) =
⋃

a∈A B(a, r), for each A ∈ B(X) and r > 0.

Let T : X → CB(X) be a set-valued mapping, x ∈ X and B be a subset of X . We denote

T (B) =
⋃

y∈B Ty and for each n ∈ N, T n+1x = T (T nx), with T 0x = {x}. The orbit of x under T

is defined as

O(x, T ) =
∞⋃

n=0

T nx.

Let x0 ∈ X . A function G : X → R is said to be (x0, T )-orbitally lower semicontinuous at x∗ ∈ X ,

if for any sequence {xn}n∈N in O(x0, T ) converging to x∗, we have G(x∗) ≤ lim inf G(xn). In the

sequel, GT : X → R stands for the function defined as GT (x) = d(x, Tx) and for ξ : X → X , we

denote Gξ = G{ξ}.

Given a set-valued mapping T : X → CB(X), x0 ∈ X , and k ∈ [0, 1), we say T satisfies the

multivalued Banach orbital (MBO) condition at x0 with constant k, whenever for all x ∈ O(x0, T ),

inf
y∈Tx

d(y, T y) ≤ kd(x, Tx), and that, T satisfies the strong multivalued Banach orbital (SMBO)

condition at x0 with constant k, whenever for all x ∈ O(x0, T ), sup
y∈Tx

d(y, T y) ≤ kd(x, Tx).
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3 Main results

Theorem 3.1. Let T : X → CB(X) be a set-valued mapping satisfying the MBO condition at

x0 ∈ X with constant k. Then, there exist x∗ ∈ X and a sequence {xn}n∈N converging to x∗ such

that, for all n ∈ N, xn+1 ∈ Txn, and the following two conditions hold:

(i) d(xn, T xn) ≤ d(xn, xn+1) ≤ knd(x0, T x0) and

(ii) d(x∗, T xn) ≤ {kn+1/(1− k)}d(x0, T x0), for all n ∈ N.

Moreover, the following conditions are equivalent:

(iii) x∗ ∈ Tx∗

(iv) GT is (x0, T )-orbitally lower semicontinuous at x∗, and

(v) the function h : X → R, defined by h(x) = d(x, Tx), is lower semicontinuous at x∗.

Proof. Let ρ ∈ (k, 1). If d(x0, T x0) = 0, we define xn = x0, for all n ≥ 1. Otherwise, from

assumption, there exists x1 ∈ Tx0 such that d(x1, T x1) < ρd(x0, T x0). If d(x1, T x1) = 0, we define

xn = x1, for all n ≥ 2. Otherwise, there exists x2 ∈ Tx1 such that d(x2, T x2) < ρd(x1, T x1) <

ρ2d(x0, T x0). It follows by induction that there exists a sequence {xn}n∈N in X such that, for all

n ∈ N, d(xn, T xn) ≤ d(xn, xn+1) ≤ ρnd(x0, T x0) and xn+1 ∈ Txn. Hence, condition (i) holds.

For all n ∈ N and m ≥ 1, we have

d(xn, xn+m) ≤
m−1∑

k=0

d(xn+k, xn+k+1) ≤
m−1∑

k=0

ρn+kd(x0, T x0) = ρn
m−1∑

k=0

ρkd(x0, T x0)

≤ ρn
m−1∑

k=0

ρkd(x0, T x0).

Hence, d(xn, xn+m) ≤ {ρn/(1 − ρ)}d(x0, T x0). In particular, {xn}n∈N is a Cauchy sequence and

consequently there exists x∗ ∈ X such that {xn}n∈N converges to x∗. By taking limit, as m → ∞,

in the last inequality, we have

d(x∗, T xn−1) ≤ d(x∗, xn) ≤ {ρn/(1− ρ)}d(x0, T x0), for all n ≥ 1,

and consequently condition (ii) holds.

Suppose x∗ ∈ Tx∗. Since GT (x∗) = 0, it is clear that GT is (x, T )-orbitally lower semicontinuous

at x∗, for all x ∈ X . This proves that condition (iii) implies condition (iv). Next, conditions

(iv) and (v) are equivalent, by the first axiom of countability. Finally, by assuming the lower
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semicontinuity of h, we have d(x∗, T x∗) = h(x∗) ≤ lim inf h(xn) = 0, by condition (i). Since Tx∗

is closed, this proves that condition (v) implies condition (iii) and the proof is complete. !

Remark 3.2. Any lower semicontinuity set-valued mapping, T : X → CB(X), satisfying assump-

tions of Theorem 3.1, also satisfies the equivalent conditions (iii)−(v). Indeed, let h be the function

defined in condition (v) and a > 0. Hence, {x ∈ X : h(x) < a} = {x ∈ X : Tx ∩ B(x, a) )= ∅}.

That is, h is upper semicontinuous.

Given x0 ∈ X and a single valued function, f : X → X , we denote O(x0, f) = O(x0, {f}). As

usual, {fn}n∈N denotes the sequence of functions defined recursively as f0 the identity function

and fn+1 = f ◦ fn, for all n ∈ N. The following corollary is an equivalent version of the main

result of Hicks and Rhoades in [8].

Corollary 3.3. Let ξ : X → X be a function and k ∈ [0, 1). Suppose there exists x0 ∈ X such

that, for all x ∈ O(x0, ξ), d(ξ(x), ξ2(x)) ≤ kd(x, ξ(x)). Then, there exists x∗ ∈ X such that the

following two conditions hold:

(i) lim
n→∞

d(x∗, ξn(x0)) = 0 and

(ii) d(x∗, ξn(x0)) ≤ {kn/(1− k)}d(x0, ξ(x0)), for all n ∈ N.

Moreover, x∗ = ξ(x∗), if and only if, the function x ∈ X ,→ d(x, ξ(x)) ∈ R is (x0, ξ)-orbitally lower

semicontinuous at x∗.

Proof. By Theorem 3.1, there exist x∗
k ∈ X and a sequence {xn}n∈N converging to x∗

k such that

xn+1 = ξ(xn) = ξn(x0). Since the sequence {xn}n∈N only depends on x0 and not on k, neither

does x∗
k depend on k. Therefore, conditions (i) and (ii) follow from Theorem 3.1 and the proof is

complete. !

A set-valued mapping T : X → CB(X) is said to be Hausdorff upper semicontinuous, if for each

x ∈ X and ε > 0, there exists a neighborhood U of x such that Ty ⊂ B(Tx, ε), for all y ∈ U . This

concept is weaker that the upper semicontinuity ot T . However, as we see below, it contributes to

obtaining orbital lower semicontinuity for T .

Theorem 3.4. Let T : X → CB(X) be a Hausdorff upper semicontinuous set-valued mapping and

suppose T satisfies the MBO condition at x0 ∈ X with constant k. Then, there exists x∗ ∈ X such

that x∗ ∈ Tx∗.

Proof. By Theorem 3.1, there exist x∗ ∈ X and a sequence {xn}n∈N in O(x0, T ), converging to x∗

such that, for all n ∈ N, xn+1 ∈ Txn. Let ε > 0. From assumption, there exists a neighborhood U
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of x∗ such that Tx ⊂ B(Tx∗, ε), for all x ∈ U . Let N ∈ N such that xn ∈ U , for all n ≥ N . Hence

Txn ⊂ B(Tx∗, ε), which implies that sup
y∈Txn

d(y, Tx∗) ≤ ε, for all n ≥ N . We have

d(x∗, T x∗) ≤ d(x∗, xn+1) + d(xn+1, T x
∗) ≤ d(x∗, xn+1) + ε, for all n ≥ N.

By taking inf-limit in n and considering that ε > 0 is arbitrary, we obtain d(x∗, T x∗) = 0. Since

Tx∗ is closed, we have x∗ ∈ Tx∗, which completes the proof. !

We denote by H the Pompeiu-Hausdorffmetric (see [3]) associate to d, i.e., H : CB(X)×CB(X) →

R is defined as

H(U, V ) = inf {ε > 0 : U ⊂ B(V, ε) and V ⊂ B(U, ε)} .

Corollary 3.5. Let T : X → CB(X) be a continuous set-valued mapping with respect to the

Pompeiu-Hausdorff metric, i.e. lim
n→∞

H(Txn, T x) = 0, for all sequence, {xn}n∈N, in X converging

to x ∈ X. Suppose T satisfies the MBO condition at x0 ∈ X with constant k. Then, there exist

x∗ ∈ X such that x∗ ∈ Tx∗.

Proof. It is a consequence of Theorem 3.4, and the Pompeiu-Hausdorff continuity of T implies its

Hausdorff upper semicontinuity. !

Remark 3.6. Let T : X → CB(X) be a set-valued mapping, x0 ∈ X and k ∈ [0, 1). Notice that,

a sufficient condition to T satisfies the MBO condition is d(y, T y) ≤ kd(x, y), for all x ∈ O(x0, T )

and y ∈ Tx, and a sufficient condition to T satisfies the SMBO condition is d(y, T y) ≤ kd(x, Tx),

for all y ∈ Tx.

4 Some examples

In this section, we introduce some special types of set-valued mappings, which satisfy the MBO

condition.

1. (Nadler contraction [6, 11]) A set-valued mapping T : X → CB(X) is a Nadler contraction,

if for all x, y ∈ X , H(Tx, T y) ≤ kd(x, y), for some k ∈ [0, 1). Let x ∈ X and y ∈ Tx. Hence,

d(y, T y) ≤ sup
z∈Tx

d(z, T y) ≤ H(Tx, T y) ≤ kd(x, y),

and consequently T satisfies the MBO condition. In this case, there exists x∗ ∈ X such that

x∗ ∈ Tx∗, by Corollary 3.5.

2. (Kannan contraction [12]) A set-valued mapping T : X → CB(X) satisfies the Kannan

contraction, if and only if, there exists k ∈ [0, 1/2) such that H(Tx, T y) ≤ k(d(x, Tx) +
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d(y, T y)), for all x, y ∈ X . Let k ∈ [0, 1/2) such that H(Tx, T y) ≤ k(d(x, Tx) + d(y, T y)),

for all x, y ∈ X . We have

d(y, T y) ≤ H(Tx, T y) ≤ k(d(x, Tx) + d(y, T y)),

and hence, (1− k)d(y, T y) ≤ kd(x, Tx). Accordingly,

d(y, T y) ≤ {k/(1− k)}d(x, Tx), for all x ∈ X and y ∈ Tx.

Since k/(1− k) ∈ [0, 1), we have T satisfies the SMBO condition with constant k/(1− k).

3. (Kannan generalized contraction [7, 12]) A set-valued mapping T : X → CB(X) satisfies the

generalized Kannan contraction, if and only if, there exists k ∈ [0, 1) such that H(Tx, T y) ≤

kmax{d(x, Tx), d(y, T y)}, for all x, y ∈ X . In this case, if for some y ∈ Tx, d(x, Tx) ≤

d(y, T y), then d(y, T y) = 0, otherwise d(y, T y) ≤ kd(x, Tx), for all y ∈ Tx. Consequently, T

satisfies the SMBO condition with constant k.

4. (Chatterjea contraction [13]) A set-valued mapping T : X → CB(X) satisfies the Chatterjea

contraction, if there exists k ∈ [0, 1/2) such that for all x, y ∈ X , H(Tx, T y) ≤ k(d(x, T y) +

d(y, Tx)). Let x ∈ X and y ∈ Tx. Hence,

d(y, T y) ≤ H(Tx, T y) ≤ k(d(x, T y) + d(y, Tx)) = kd(x, T y).

This fact along with the inequality d(x, T y) ≤ d(x, y) + d(y, T y) implies that

d(y, T y) ≤ {k/(1− k)}d(x, y), for all x ∈ X and y ∈ Tx.

Consequently, T satisfies the multivalued Banach orbital condition with constant k/(1−k) ∈

[0, 1).

5. (Chatterjea generalized contraction) A set-valued mapping T : X → CB(X) satisfies the

generalized Chatterjea contraction, if there exists k ∈ [0, 1/2) such that, for all x, y ∈ X ,

H(Tx, T y) ≤ kmax{d(x, T y), d(y, Tx)}. Let x ∈ X and y ∈ Tx. Hence,

d(y, T y) ≤ H(Tx, T y) ≤ kd(x, T y),

and accordingly, T satisfies the SMBO condition with constant k/(1− k) ∈ [0, 1).

6. (Berinde contraction [2]) A set-valued mapping T : X → CB(X) satisfies the Berinde con-

traction if there exist k ∈ [0, 1) and L ≥ 0 such that, for all x, y ∈ X , H(Tx, T y) ≤
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kd(x, y) + Ld(y, Tx). Let x ∈ X and y ∈ Tx. We have

H(Tx, T y) ≤ kd(x, y) + L(y, Tx) = kd(x, y), for all x ∈ X and y ∈ Tx,

and since y ∈ Tx, we obtain d(y, T y) ≤ kd(x, y) and hence T satisfy the MBO condition

with constant k.

7. (Ciric-Reich-Rus contraction [2]) A set-valued mapping T : X → CB(X) is said to verify the

Ciric-Reich-Rus contraction if and only if, there exists α,β, γ ∈ [0, 1] such that α + β + γ ∈

[0, 1) and, for all x, y ∈ X , H(Tx, T y) ≤ αd(x, y)+βd(x, Tx)+γd(y, T y). Let x ∈ X , y ∈ Tx.

We will prove that any Ciric-Reich-Rus contraction is a Berinde contraction. Let x, y ∈ X .

As we observed previously, we have the inequality

d(y, T y) ≤ d(y, z) + (z, T y),

for all z ∈ Tx. Replacing this, and by the fact d(x, Tx) ≤ d(x, z), we have

H(Tx, T y) ≤ αd(x, y) + βd(x, z) + γd(y, T y))

≤ αd(x, y) + β(d(x, y) + d(y, z)) + γ(d(y, z) + d(z, T y))

= (α + β)d(x, y) + (β + γ)d(y, z) + γd(z, T y)

≤ (α + β)d(x, y) + (β + γ)d(y, z) + γH(Tx, T y).

Hence,

H(Tx, T y) ≤ ({α+β)/(1−γ)}d(x, y)+{(β+γ)/(1−γ)}d(y, Tx), for all x ∈ X and y ∈ Tx,

and since α+β+γ < 1, it follows that (α+β)/(1−γ) < 1 and (β+γ)/(1−γ) ≥ 0. Therefore,

T is a Berinde contraction, and accordingly T satisfies the MBO condition.

8. (Ciric contraction [5]) A set-valued mapping T : X → CB(X) satisfies the Ciric contraction,

if there exist α ∈ [0, 1/2) such that for all x, y ∈ X ,

H(Tx, T y) ≤ α max{d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)}.

We have T satisfies the multivalued Banach orbital condition. Indeed, let x ∈ X and y ∈ Tx.

Hence, for some α ∈ [0, 1/2), we have

H(Tx, T y) ≤ α max{d(x, y), d(x, Tx), d(y, T y), d(x, T y), d(y, Tx)},
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but, since y ∈ Tx and d(x, Tx) ≤ d(x, y), we obtain

H(Tx, T y) ≤ α max{d(x, y), d(y, T y), d(x, T y)} ≤ k(d(x, y) + d(y, T y)).

Consequently,

d(y, T y) ≤ {k/(1− k)}d(x, y), for all x ∈ X and y ∈ Tx,

and therefore, T satisfies the MBO condition.

9. We introduce a new type of contraction, which satisfies the SMBO condition. Indeed, let

T : X → CB(X) be given as follows:

H(Tx, T y) ≤ α(d(x, T y) + d(y, T y)), for all x, y ∈ X,

where α ∈ [0, 1). Observe that, for all y ∈ Tx and x ∈ X , we have d(y, T y) ≤ αd(x, Tx).

Consequently, T satisfies the SMBO condition with constant α.

It is worth noting that the existence of a fixed point for contractions (1)-(6) was proved in [2].

Remark 4.1. Although the nine contraction set-valued mappings in this section satisfy the MBO

condition, only the Nadler contraction has a fixed point without additional assumptions. The

MBO condition for the other contractions is insufficient to have a fixed point.
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