Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds




In this article, we investigate the Kenmotsu manifold when applied to a \(D_{\alpha}\)-homothetic deformation. Then, given a submanifold in a \(D_{\alpha}\)-homothetically deformed Kenmotsu manifold, we derive the generalized Wintgen inequality. Additionally, we find this inequality for submanifolds such as slant, invariant, and anti-invariant in the  same ambient space.


Normalized scalar curvature , scalar curvature , mean curvature , Dα-homothetic deformation

Mathematics Subject Classification:

34B10 , 34B15 , 11F23
  • Pages: 349–361
  • Date Published: 2023-11-30
  • Vol. 25 No. 3 (2023)

E. Abedi, R. B. Ziabari, and M. M. Tripathi, “Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form,” Arch. Math (Brno), vol. 52, no. 2, pp. 113–130, 2016, doi: 10.5817/AM2016-2-113.

P. Alegre, D. E. Blair, and A. Carriazo, “Generalized Sasakian-space-forms,” Israel J. Math., vol. 141, pp. 157–183, 2004, doi: 10.1007/BF02772217.

M. Aslam, M. D. Siddiqi, and A. N. Siddiqui, “Generalized wintgen inequality for bi-slant submanifolds in conformal sasakian space form with quarter-symmetric connection,” Arab J. Math. Sci., vol. ahead-of-print, no. ahead-of-print, 2022, doi: 10.1108/AJMS-03-2021-0057.

A. M. Blaga, “Geometric solitons in a D-homothetically deformed Kenmotsu manifold,” Filo- mat, vol. 36, no. 1, pp. 175–186, 2022, doi: 10.2298/fil2201175b.

D. E. Blair, Contact manifolds in Riemannian geometry, ser. Lecture Notes in Mathematics. Berlin-New York: Springer-Verlag, 1976, vol. 509.

J. L. Cabrerizo, A. Carriazo, L. M. Fernández, and M. Fernández, “Semi-slant submanifolds of a Sasakian manifold”, Geom. Dedicata, vol. 78, no. 2, pp. 183–199, 1999, doi: 10.1023/A:1005241320631.

J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, “Slant submanifolds in Sasakian manifolds”, Glasg. Math. J., vol. 42, no. 1, pp. 125–138, 2000, doi: 10.1017/S0017089500010156.

A. Carriazo and V. Martín-Molina, “Generalized (κ, μ)-space forms and Da-homothetic deformations,” Balkan J. Geom. Appl., vol. 16, no. 1, pp. 37–47, 2011.

B.-Y. Chen, Geometry of slant submanifolds. Louvain, Belgium: Katholieke Universiteit Leuven, 1990.

U. C. De and S. Ghosh, “D-homothetic deformation of normal almost contact metric manifolds,” Ukrainian Math. J., vol. 64, no. 10, pp. 1514–1530, 2013, doi: 10.1007/s11253-013- 0732-7.

J. Ge and Z. Tang, “A proof of the DDVV conjecture and its equality case,” Pacific J. Math., vol. 237, no. 1, pp. 87–95, 2008, doi: 10.2140/pjm.2008.237.87.

I. V. Guadalupe and L. Rodriguez, “Normal curvature of surfaces in space forms,” Pacific J. Math., vol. 106, no. 1, pp. 95–103, 1983.

I. E. Hirică and L. Nicolescu, “Conformal connections on Lyra manifolds,” Balkan J. Geom. Appl., vol. 13, no. 2, pp. 43–49, 2008.

J.-B. Jun, U. C. De, and G. Pathak, “On Kenmotsu manifolds,” J. Korean Math. Soc., vol. 42, no. 3, pp. 435–445, 2005, doi: 10.4134/JKMS.2005.42.3.435.

K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. (2), vol. 24, pp. 93–103, 1972, doi: 10.2748/tmj/1178241594.

Z. Lu, “Normal scalar curvature conjecture and its applications,” J. Funct. Anal., vol. 261, no. 5, pp. 1284–1308, 2011, doi: 10.1016/j.jfa.2011.05.002.

I. Mihai, “On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms,” Nonlinear Anal., vol. 95, pp. 714–720, 2014, doi: 10.1016/

I. Mihai, “On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms”, Tohoku Math. J. (2), vol. 69, no. 1, pp. 43–53, 2017, doi: 10.2748/tmj/1493172127.

M. D. Siddiqi, A. N. Siddiqui, and O. Bahadir, “Generalized Wintgen inequalities for submanifolds of trans-Sasakian space form,” Matimyás Mat., vol. 44, no. 1, pp. 1–14, 2021.

M. D. Siddiqi, G. F. Ramandi, and M. Hasan, “Optimal inequalities for submanifolds in an (ε)-almost para-contact manifolds”, Math. Anal. and Convex Opt., vol. 2, no. 1, pp. 107–118, 2021, doi: 10.52547/maco.2.1.11.

A. N. Siddiqui and K. Ahmad, “Generalized Wintgen inequality for totally real submanifolds in LCS-manifolds”, Balkan J. Geom. Appl., vol. 24, no. 2, pp. 53–62, 2019, doi: 10.3390/mca24020053.

A. N. Siddiqui, M. D. Siddiqi, and M. H. Shahid, “Optimization on submanifolds of δ- Lorentzian trans-Sasakian manifolds with Casorati curvatures”, Tamkang J. Math., vol. 53, no. 4, pp. 385–406, 2022, doi: 10.5556/j.tkjm.53.2022.4075.

S. Tanno, “Partially conformal transformations with respect to (m − 1)-dimensional distributions of m-dimensional Riemannian manifolds,” Tohoku Math. J. (2), vol. 17, pp. 358–409, 1965, doi: 10.2748/tmj/1178243507.

S. Tanno, “The topology of contact Riemannian manifolds,” Illinois J. Math., vol. 12, pp. 700–717, 1968.

P. Wintgen, “Sur l’inégalité de Chen-Willmore”, C. R. Acad. Sci. Paris Sér. A-B, vol. 288, no. 21, pp. A993–A995, 1979.

K. Yano and M. Kon, Anti-invariant submanifolds, ser. Lecture Notes in Pure and Applied Mathematics. New York-Basel: Marcel Dekker, Inc, 1976, vol. 21.


Download data is not yet available.



How to Cite

M. D. Siddiqi, A. N. Siddiqui, A. H. Hakami, and M. Hasan, “Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds”, CUBO, vol. 25, no. 3, pp. 349–361, Nov. 2023.