On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial





In this article, we have mainly focused on the uniqueness problem of an \(L\)-function \(\mathcal{L}\) with an \(L\)-function or a meromorphic function \(f\) under the condition of sharing the sets, generated from the zero set of some strong uniqueness polynomials. We have introduced two new definitions, which extend two existing important definitions of URSM and UPM in the literature and the same have been used to prove one of our main results. As an application of the result, we have exhibited a much improved and extended version of a recent result of Khoai-An-Phuong [23]. Our remaining results are about the uniqueness of \(L\)-function under weighted sharing of sets generated from the zeros of a suitable strong uniqueness polynomial, which improve and extend some results in [12].


Meromorphic function , strong uniqueness polynomial , uniqueness , shared sets , L function

Mathematics Subject Classification:

11M36 , 30D35
  • Pages: 497–514
  • Date Published: 2023-12-30
  • Vol. 25 No. 3 (2023)

T. T. H. An, J. T.-Y. Wang, and P.-M. Wong, “Strong uniqueness polynomials: the complex case,” Complex Var. Theory Appl., vol. 49, no. 1, pp. 25–54, 2004, doi: 10.1080/02781070310001634601.

A. Banerjee and S. Maity, “Further investigations on a unique range set under weight 0 and 1,” Carpathian Math. Publ., vol. 14, no. 2, pp. 504–512, 2022.

A. Banerjee, “Uniqueness of meromorphic functions sharing two sets with finite weight II,” Tamkang J. Math., vol. 41, no. 4, pp. 379–392, 2010.

A. Banerjee and I. Lahiri, “A uniqueness polynomial generating a unique range set and vice versa,” Comput. Methods Funct. Theory, vol. 12, no. 2, pp. 527–539, 2012, doi: 10.1007/BF03321842.

A. Banerjee and S. Mallick, “On the characterisations of a new class of strong uniqueness polynomials generating unique range sets,” Comput. Methods Funct. Theory, vol. 17, no. 1, pp. 19–45, 2017, doi: 10.1007/s40315-016-0174-y.

H. Fujimoto, “On uniqueness of meromorphic functions sharing finite sets,” Amer. J. Math., vol. 122, no. 6, pp. 1175–1203, 2000.

H. Fujimoto, “On uniqueness polynomials for meromorphic functions,” Nagoya Math. J., vol. 170, pp. 33–46, 2003, doi: 10.1017/S0027763000008527.

F. Gross, “Factorization of meromorphic functions and some open problems,” in Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), ser. Lecture Notes in Math. Springer, Berlin-New York, 1977, vol. 599, pp. 51–67.

W. K. Hayman, Meromorphic functions, ser. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1964.

P.-C. Hu and B. Q. Li, “A simple proof and strengthening of a uniqueness theorem for L- functions,” Canad. Math. Bull., vol. 59, no. 1, pp. 119–122, 2016, doi: 10.4153/CMB-2015- 045-1.

H. H. Khoai, V. H. An, and L. Q. Ninh, “Value-sharing and uniqueness for L-functions,” Ann. Polon. Math., vol. 126, no. 3, pp. 265–278, 2021, doi: 10.4064/ap201030-17-3.

H. H. Khoai and V. H. An, “Determining an L-function in the extended Selberg class by its preimages of subsets,” Ramanujan J., vol. 58, no. 1, pp. 253–267, 2022, doi: 10.1007/s11139- 021-00483-y.

H. H. Khoai, V. H. An, and N. D. Phuong, “On value distribution of L-functions sharing finite sets with meromorphic functions,” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 66(114), no. 3, pp. 265–280, 2023.

I. Lahiri, “Weighted value sharing and uniqueness of meromorphic functions,” Complex Variables Theory Appl., vol. 46, no. 3, pp. 241–253, 2001, doi: 10.1080/17476930108815411.

P. Li and C.-C. Yang, “Some further results on the unique range sets of meromorphic functions,” Kodai Math. J., vol. 18, no. 3, pp. 437–450, 1995, doi: 10.2996/kmj/1138043482.

P. Lin and W. Lin, “Value distribution of L-functions concerning sharing sets,” Filomat, vol. 30, no. 14, pp. 3795–3806, 2016, doi: 10.2298/FIL1614795L.

A. Z. Mohon’ko, “The Nevanlinna characteristics of certain meromorphic functions,” Teor. Funkcii Funkcional. Anal. i Priložen., no. 14, pp. 83–87, 1971.

A. Selberg, “Old and new conjectures and results about a class of Dirichlet series,” in Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989). Univ. Salerno, Salerno, 1992, pp. 367–385.

J. Steuding, Value-distribution of L-functions, ser. Lecture Notes in Mathematics. Springer, Berlin, 2007, vol. 1877.

C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, ser. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, vol. 557, doi: 10.1007/978-94-017-3626-8.

H.-X. Yi, “The reduced unique range sets for entire or meromorphic functions,” Complex Variables Theory Appl., vol. 32, no. 3, pp. 191–198, 1997, doi: 10.1080/17476939708814990.

Q.-Q. Yuan, X.-M. Li, and H.-X. Yi, “Value distribution of L-functions and uniqueness questions of F. Gross,” Lith. Math. J., vol. 58, no. 2, pp. 249–262, 2018, doi: 10.1007/s10986-018- 9390-7.

  • 09/106(0200)/2019-EMR-I


Download data is not yet available.



How to Cite

A. Banerjee and A. Kundu, “On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial”, CUBO, vol. 25, no. 3, pp. 497–514, Dec. 2023.