Double asymptotic inequalities for the generalized Wallis ratio

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2601.021

Abstract

Asymptotic estimates for the generalized Wallis ratio \(W^*(x):=\frac{1}{\sqrt{\pi}}\cdot\frac{\Gamma(x+\frac{1}{2})}{\Gamma(x+1)}\) are presented for \(x\in\mathbb{R}^+\) on the basis of Stirling's approximation formula for the \(\Gamma\) function. For example, for an integer \(p\ge2\) and a real \(x>-\tfrac{1}{2}\) we have the following double asymptotic inequality
\[
A(p,x)\,<\,W^*(x)\,<\,B(p,x),
\]

where
\begin{align*}
A(p,x):=&
W_p(x)\left(1-\tfrac{1}{8(x+p)}+\tfrac{1}{128(x+p)^2}+\tfrac{1}{379(x+p)^3}\right), \\
B(p,x):= &
W_p(x)\left(1-\tfrac{1}{8(x+p)}+\tfrac{1}{128(x+p)^2}+\tfrac{1}{191(x+p)^3}\right),\\
W_p(x):=&
\frac{1}{\sqrt{\pi\,(x+p)}}\cdot\frac{(x+1)^{(p)}}{(x+\frac{1}{2})^{(p)}},
\end{align*}

with \(y^{(p)}\equiv y(y+1)\cdots(y+p-1)\), the Pochhammer rising
(upper) factorial of order \(p\).

Keywords

Approximation , asymptotic , estimate , generalized Wallis’ ratio , double inequality

Mathematics Subject Classification:

26D20 , 41A60 , 11Y99 , 33E99 , 33F05 , 33B99
  • Pages: 21–32
  • Date Published: 2024-03-22
  • Vol. 26 No. 1 (2024)

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U. S. Government Printing Office, Washington, DC, 1964, vol. 55.

T. Burić and N. Elezović, “Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions,” J. Comput. Appl. Math., vol. 235, no. 11, pp. 3315–3331, 2011, doi: 10.1016/j.cam.2011.01.045.

T. Burić and N. Elezović, “New asymptotic expansions of the quotient of gamma functions,” Integral Transforms Spec. Funct., vol. 23, no. 5, pp. 355–368, 2012, doi: 10.1080/10652469.2011.591393.

C.-P. Chen and R. B. Paris, “Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function,” Appl. Math. Comput., vol. 250, pp. 514–529, 2015, doi: 10.1016/j.amc.2014.11.010.

V. G. Cristea, “A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality,” Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, pp. 201–209, 2015.

S. Dumitrescu, “Estimates for the ratio of gamma functions by using higher order roots,” Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, pp. 173–181, 2015.

N. Elezović, “Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means,” J. Math. Inequal., vol. 9, no. 4, pp. 1001–1054, 2015, doi: 10.7153/jmi- 09-81.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics: A Foundation for Computer Science, 2nd ed. Addison-Wesley Publishing Company, Reading, MA, 1994.

S. Guo, J.-G. Xu, and F. Qi, “Some exact constants for the approximation of the quantity in the Wallis’ formula,” J. Inequal. Appl., 2013, Art. ID 67, doi: 10.1186/1029-242X-2013-67.

M. D. Hirschhorn, “Comments on the paper: “Wallis sequence ...” by Lampret,” Austral. Math. Soc. Gaz., vol. 32, no. 3, p. 194, 2005.

D. K. Kazarinoff, “On Wallis’ formula,” Edinburgh Math. Notes, vol. 1956, no. 40, pp. 19–21, 1956.

D. Kershaw, “Upper and lower bounds for a ratio involving the gamma function,” Anal. Appl. (Singap.), vol. 3, no. 3, pp. 293–295, 2005, doi: 10.1142/S0219530505000583.

A. Laforgia and P. Natalini, “On the asymptotic expansion of a ratio of gamma functions,” J. Math. Anal. Appl., vol. 389, no. 2, pp. 833–837, 2012, doi: 10.1016/j.jmaa.2011.12.025.

V. Lampret, “Wallis’ sequence estimated accurately using an alternating series,” J. Number Theory, vol. 172, pp. 256–269, 2017, doi: 10.1016/j.jnt.2016.08.014.

V. Lampret, “A simple asymptotic estimate of Wallis’ ratio using Stirling’s factorial formula,” Bull. Malays. Math. Sci. Soc., vol. 42, no. 6, pp. 3213–3221, 2019, doi: 10.1007/s40840-018- 0654-5.

V. Lampret, “Simple, accurate, asymptotic estimates for the ratio of two gamma functions,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 115, no. 2, 2021, Art. ID 40, doi: 10.1007/s13398-020-00962-9.

A.-J. Li, W.-Z. Zhao, and C.-P. Chen, “Logarithmically complete monotonicity properties for the ratio of gamma function,” Adv. Stud. Contemp. Math. (Kyungshang), vol. 13, no. 2, pp. 183–191, 2006.

C. Mortici, “New approximation formulas for evaluating the ratio of gamma functions,” Math. Comput. Modelling, vol. 52, no. 1-2, pp. 425–433, 2010, doi: 10.1016/j.mcm.2010.03.013.

K. Nantomah, “Some inequalities for derivatives of the generalized Wallis’ cosine formula,” Int. J. Open Problems Comput. Sci. and Math., vol. 11, no. 4, pp. 16–24, 2018, doi: 10.1016/j.mcm.2010.03.013.

F. Qi, “Bounds for the ratio of two gamma functions,” RGMIA Res. Rep. Coll., vol. 11, no. 3, 2008, Art. ID 1, https://rgmia.org/papers/v11n3/bounds-two-gammas.pdf.

F. Qi, “Bounds for the ratio of two gamma functions–From Gautschi’s and Kershaw’s inequalities to completely monotonic functions,” 2009, arXiv:0904.1049.

F. Qi, “Bounds for the ratio of two gamma functions,” J. Inequal. Appl., 2010, Art. ID 493058, doi: 10.1155/2010/493058.

F. Qi, “Bounds for the ratio of two gamma functions: from Gautschi’s and Kershaw’s inequalities to complete monotonicity,” Turkish Journal of Analysis and Number Theory, vol. 2, pp. 152–164, 2014, doi: 10.12691/tjant-2-5-1.

F. Qi and Q.-M. Luo, “Bounds for the ratio of two gamma functions—from Wendel’s and related inequalities to logarithmically completely monotonic functions,” Banach J. Math. Anal., vol. 6, no. 2, pp. 132–158, 2012, doi: 10.15352/bjma/1342210165.

F. Qi and Q.-M. Luo, “Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem,” J. Inequal. Appl., 2013, Art. ID 542, doi: 10.1186/1029-242x-2013-542.

D. V. Slavić, “On inequalities for Γ(x+1)/Γ(x+1/2),” Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 498-541, pp. 17–20, 1975.

I. V. Tikhonov, V. B. Sherstyukov, and D. G. Tsvetkovich, “Comparative analysis of two-sided estimates of the central binomial coefficient,” Chelyab. Fiz.-Mat. Zh., vol. 5, no. 1, pp. 70–95, 2020, doi: 10.24411/2500-0101-2020-15106.

S. Wolfram, Mathematica 7.0, (2008). Wolfram Research, Inc.

Z.-H. Yang and J.-F. Tian, “On Burnside type approximation for the gamma function,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 113, no. 3, pp. 2665–2677, 2019, doi: 10.1007/s13398-019-00651-2.

Z.-H. Yang and J.-F. Tian, “Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 113, no. 4, pp. 3603–3617, 2019, doi: 10.1007/s13398-019-00719-z.

Z.-H. Yang, J.-F. Tian, and M.-H. Ha, “A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder,” Proc. Amer. Math. Soc., vol. 148, no. 5, pp. 2163–2178, 2020, doi: 10.1090/proc/14917.

X. You, “Approximation and bounds for the wallis ratio,” 2017, arXiv:1712.02107.

Downloads

Download data is not yet available.

Published

2024-03-22

How to Cite

[1]
V. Lampret, “Double asymptotic inequalities for the generalized Wallis ratio”, CUBO, vol. 26, no. 1, pp. 21–32, Mar. 2024.

Issue

Section

Articles